1
|
Praveen A, Dougnon G, Matsui H. Exploring α-Syn's Functions Through Ablation Models: Physiological and Pathological Implications. Cell Mol Neurobiol 2025; 45:44. [PMID: 40389720 PMCID: PMC12089638 DOI: 10.1007/s10571-025-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
A significant advancement in neurodegenerative research was the discovery that α-synuclein (α-Syn/SNCA) plays a part in the pathophysiology of Parkinson's disease (PD). Decades later, the protein's significant impacts on various brain disorders are still being extensively explored. In disease conditions, α-Syn misfolds and forms abnormal aggregates that accumulate in neurons, thus triggering various organellar dysfunctions and ultimately neurodegeneration. These misfolded forms are highly heterogeneous and vary significantly among different synucleinopathies, such as PD, Multiple System Atrophy, or Dementia with Lewy bodies. Though initially believed to be exclusively localized in the brain, numerous pieces of evidence suggest that α-Syn functions transcend the central nervous system, with roles in peripheral functions, such as modulation of immune responses, hematopoiesis, and gastrointestinal regulation. Here, we aim to provide a detailed compilation of cellular functions and pathological phenotypes that are altered upon attenuation of α-Syn function in vitro and in vivo and explore the effects of SNCA gene silencing in healthy and disease states using cellular and animal models.
Collapse
Affiliation(s)
- Anjali Praveen
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Godfried Dougnon
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
2
|
Anjum R, Raza C, Faheem M. Neuroprotective effects of Morus alba ethanolic extract against rotenone-induced neurodegeneration and motor impairments in mouse model. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-19. [PMID: 40372353 DOI: 10.1080/10286020.2025.2501024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Morus alba formulations impart neuroprotective properties against dementia, oxidative stress and mitochondrial impairments. The current study aimed to evaluate the neuroprotective potential of ethanolic extract of Morus alba (EMA) on motor impairments. GC-MS characterization of extract revealed active ingredients. Adult mice were exposed to rotenone to induce neurodegeneration and motor dysfunctions. EMA reduced striatal dopamine depletion and motor impairment. Candidate genes for anti-oxidant enzymes, dopamine transmission, synaptogenesis and mitochondrial regulator were significantly modulated in EMA exposed mice. Collectively, EMA imparted preventive action against rotenone-mediated brain damage, augmented antioxidant capabilities and prevented motor dysfunctions. It is suggested that MA as a potential medicinal plant for development of protective strategies in relevant clinical applications.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Phan L, Miller D, Gopinath A, Lin M, Gunther D, Kiel K, Quintin S, Borg D, Hasanpour-Segherlou Z, Newman A, Sorrentino Z, Miller E J, Seibold J, Hoh B, Giasson B, Khoshbouei H. Parkinson's Paradox: Alpha-synuclein's Selective Strike on SNc Dopamine Neurons over VTA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644952. [PMID: 40236072 PMCID: PMC11996431 DOI: 10.1101/2025.03.24.644952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In synucleinopathies, including Parkinson's disease (PD), dopamine neurons in the substantia nigra pars compacta (SNc) exhibit greater vulnerability to degeneration than those in the ventral tegmental area (VTA). While α-synuclein (αSyn) pathology is implicated in nigral dopamine neuron loss, the mechanisms by which αSyn affects neuronal activity and midbrain dopamine network connectivity prior to cell death remain unclear. This study tested the hypothesis that elevated αSyn expression induces pathophysiological changes in firing activity and disrupts network connectivity dynamics of dopamine neurons before neuronal loss. We employed two mouse models of synucleinopathy: preformed αSyn fibril (PFF) injection and AAV-mediated expression of human αSyn (hαSyn) under the control of the tyrosine hydroxylase (TH) promoter, both targeting the VTA and SNc. Four weeks post-injection, brain sections underwent histological, electrophysiological, and network analyses. Immunohistochemistry for TH, hαSyn, and phospho-Ser129 αSyn assessed αSyn expression and dopaminergic neuron alterations. Neuronal viability was evaluated using two complementary approaches: quantification of TH + or FOX3 + and TUNEL labeling. Importantly, these analyses revealed no significant changes in neuronal counts or TUNEL + cells at this time point, confirming that subsequent functional assessments captured pre-neurodegenerative, αSyn-induced alterations rather than late-stage neurodegeneration. Electrophysiological recordings revealed a differential effect of hαSyn expression. SNc dopamine neurons exhibited significantly increased baseline firing rates, whereas VTA dopamine neurons remained unchanged. These findings indicate a region-specific vulnerability to αSyn-induced hyperactivity of dopamine neurons. Further analysis revealed impaired homeostatic firing rate regulation in SNc, but not VTA, dopamine neurons, demonstrated by a reduced capacity to recover baseline firing following hyperpolarization. Collectively, our results demonstrate that, prior to neurodegeneration, elevated αSyn expression differentially disrupts both basal firing activity and network stability of SNc dopamine neurons, while sparing VTA dopamine neurons. By identifying neurophysiological changes preceding dopaminergic neuron loss, these findings provide critical insights into the pathophysiological mechanisms predisposing SNc neurons to degeneration in Parkinson's disease. Significance Statement A central question in Parkinson's disease research is why dopamine neurons in the substantia nigra pars compacta (SNc) are more vulnerable than those in the ventral tegmental area (VTA). This study reveals that alpha-synuclein (αSyn) pathology differentially impacts dopamine neuronal activity and network connectivity, causing changes in the SNc before neuronal loss occurs, but not in the VTA. These findings provide a mechanism to explain the differential resilience of these neighboring dopamine neuron populations and provide insights into Parkinson's disease progression. The methodologies developed in this study establish a foundation for investigating network topology in deep brain structures and its role in neurodegenerative disorders.
Collapse
|
4
|
Tripathi N, Saudrais F, Rysak M, Pieri L, Pin S, Roma G, Renault JP, Boulard Y. Exploring the Interaction of Human α-Synuclein with Polyethylene Nanoplastics: Insights from Computational Modeling and Experimental Corroboration. Biomacromolecules 2025; 26:1476-1497. [PMID: 39441179 DOI: 10.1021/acs.biomac.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NP), have become major environmental and health concerns due to their high chemical stability. The highly hydrophobic plastics enter living organisms through reversible interactions with biomolecules, forming biocoronas. Following recent reports on plastics breaching the blood-brain barrier, the binding behavior of human α-synuclein (hαSn) with polyethylene-based (PE) plastics was evaluated by using molecular dynamics simulations and experimental methods. The results provided three important findings: (i) hαSn transitions from an open helical to a compact conformation, enhancing intramolecular interactions, (ii) nonoxidized PE NPs (NPnonox) rapidly adsorb hαSn, as supported by experimental data from dynamic light scattering and adsorption isotherms, altering its structure, and (iii) the oxidized NP (NPox) failed to capture hαSn. These interactions were dominated by the N-terminal domain of hαSn, with major contributions from hydrophobic amino acids. These findings raise concerns about the potential pharmacological effects of NP-protein interactions on human health.
Collapse
Affiliation(s)
- Neha Tripathi
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Florent Saudrais
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Mona Rysak
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laura Pieri
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Serge Pin
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Guido Roma
- CEA, Service de Recherches en Corrosion et Comportement des Matériaux (SRMP), Université Paris-Saclay, Gif sur Yvette 91191, France
| | | | - Yves Boulard
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
5
|
Qian Y, Zhao Y, Zhang F. Protein palmitoylation: biological functions, disease, and therapeutic targets. MedComm (Beijing) 2025; 6:e70096. [PMID: 39991624 PMCID: PMC11843170 DOI: 10.1002/mco2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Protein palmitoylation, a reversible post-translational lipid modification, is catalyzed by the ZDHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases, regulating protein localization, accumulation, secretion, and function. Neurological disorders encompass a spectrum of diseases that affect both the central and peripheral nervous system. Recently, accumulating studies have revealed that pathological protein associated with neurological diseases, such as β-amyloid, α-synuclein, and Huntingtin, could undergo palmitoylation, highlighting the crucial roles of protein palmitoylation in the onset and development of neurological diseases. However, few preclinical studies and clinical trials focus on the interventional strategies that target protein palmitoylation. Here, we comprehensively reviewed the emerging evidence on the role of protein palmitoylation in various neurological diseases and summarized the classification, processes, and functions of protein palmitoylation, highlighting its impact on protein stability, membrane localization, protein-protein interaction, as well as signal transduction. Furthermore, we also discussed the potential interventional strategies targeting ZDHHC proteins and elucidated their underlying pathogenic mechanisms in neurological diseases. Overall, an in-depth understanding of the functions and significances of protein palmitoylation provide new avenues for investigating the mechanisms and therapeutic approaches for neurological disorders.
Collapse
Affiliation(s)
- Yan‐Ran Qian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
6
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
8
|
Salunkhe J, Ugale R. Recent updates on immunotherapy in neurodegenerative diseases. Brain Res 2024; 1845:149205. [PMID: 39197568 DOI: 10.1016/j.brainres.2024.149205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Neurodegeneration is a progressive event leading to specific neuronal loss due to the accumulation of aberrant proteins. These pathologic forms of proteins further worsen and interfere with normal physiologic mechanisms, which can lead to abnormal proliferation of immune cells and subsequent inflammatory cascades and ultimately neuronal loss. Recently, immunotherapies targeting abnormal, pathologic forms of protein have shown a promising approach to modify the progression of neurodegeneration. Recent advances in immunotherapy have led to the development of novel antibodies against the proteinopathies which can eradicate aggregations of protein as evident from preclinical and clinical studies. Nonetheless, only a few of them have successfully received clinical approval, while others have been discontinued due to a lack of clinical efficacy endpoints. The current review discusses the status of investigational antibodies under clinical trials, their targets for therapeutic action, and evidence for failure or success.
Collapse
Affiliation(s)
- Jotiram Salunkhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
9
|
Khrieba MO, Hegazy SK, Mustafa W, El-Haggar SM. Repurposing celecoxib as adjuvant therapy in patients with Parkinsonian disease: a new therapeutic dawn: randomized controlled pilot study. Inflammopharmacology 2024; 32:3729-3738. [PMID: 39340691 DOI: 10.1007/s10787-024-01567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The clinical presentations of Parkinson's disease (PD), a chronic neurodegenerative condition, include bradykinesia, hypokinesia, stiffness, resting tremor, and postural instability. Recently, neuroinflammation is involved in pathogenesis of PD. Application of nonsteroidal anti-inflammatory drugs captured attention to treat these neuroinflammation. AIM To investigate the possible effectiveness of celecoxib in patients with PD treated with conventional treatment. METHODS Sixty outpatients who fulfilled the inclusion requirements for PD were enrolled in this randomized, prospective, and controlled study. The patients were allocated into two groups at random (n = 30); the control group received standard PD treatment, consisting of levodopa/carbidopa, and the celecoxib group received standard PD treatment plus celecoxib. A neurologist evaluated each patient at the beginning of the treatment and after 6 months. Assessment of Unified Parkinson's disease rating scale (UPDRS) for each patient. Before and after treatment, α -synuclein (α-Syn), tumor necrosis factor alpha (TNF-α), Toll like receptors-4 (TLR-4), nuclear factor erythroid 2-related factor 2 (Nrf-2) and brain-derived neurotropic factor (BDNF) were assessed. Paired and unpaired t tests were used to assess statistical significance within and between groups respectively. RESULTS The celecoxib group exhibited a significant and statistical reduction in the level of measured parameters by unpaired t test as followed: TLR-4 (p = 0.004), TNF-α (p = 0.042), and α-Syn (p = 0.004) apart from a significant increase in BDNF (p = 0.0005) and Nrf-2 (p = 0.004), in comparison with the control group. Also, UPDRS was significantly decreased in celecoxib group (p < 0.05). CONCLUSION Celecoxib could be a promising adjuvant therapy in managing patients with PD. TRIAL REGISTRATION NUMBER NCT05962957.
Collapse
Affiliation(s)
- Mohannad O Khrieba
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Wessam Mustafa
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| |
Collapse
|
10
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
11
|
Gupta A, Bohara VS, Siddegowda YB, Chaudhary N, Kumar S. Alpha-synuclein and RNA viruses: Exploring the neuronal nexus. Virology 2024; 597:110141. [PMID: 38917691 DOI: 10.1016/j.virol.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Alpha-synuclein (α-syn), known for its pivotal role in Parkinson's disease, has recently emerged as a significant player in neurotropic RNA virus infections. Upregulation of α-syn in various viral infections has been found to impact neuroprotective functions by regulating neurotransmitter synthesis, vesicle trafficking, and synaptic vesicle recycling. This review focuses on the multifaceted role of α-syn in controlling viral replication by modulating chemoattractant properties towards microglial cells, virus-induced ER stress signaling, anti-oxidative proteins expression. Furthermore, the text underlines the α-syn-mediated regulation of interferon-stimulated genes. The review may help suggest potential therapeutic avenues for mitigating the impact of RNA viruses on the central nervous system by exploiting α-syn neuroprotective biology.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Anjum R, Raza C, Faheem M, Ullah A, Chaudhry M. Neuroprotective potential of Mentha piperita extract prevents motor dysfunctions in mouse model of Parkinson's disease through anti-oxidant capacities. PLoS One 2024; 19:e0302102. [PMID: 38625964 PMCID: PMC11020615 DOI: 10.1371/journal.pone.0302102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Neurodegeneration of the substantia nigra (SN) and diminished release of dopamine are prominent causes of this progressive disease. The current study aims to evaluate the protective potential of ethanolic extract of Mentha piperita (EthMP) against rotenone-mediated PD features, dopaminergic neuronal degeneration, oxidative stress and neuronal survival in a mouse model. Swiss albino male mice were assigned to five groups: control (2.5% DMSO vehicle), PD (rotenone 2.5 mg/kg), EthMP and rotenone (200mg/kg and 2.5mg/kg, respectively), EthMP (200 mg/kg), and Sinemet, reference treatment containing levodopa and carbidopa (20 mg/kg and rotenone 2.5mg/kg). Behavioral tests for motor functional deficit analysis were performed. Anti-oxidant capacity was estimated using standard antioxidant markers. Histopathology of the mid-brain for neurodegeneration estimation was performed. HPLC based dopamine level analysis and modulation of gene expression using quantitative real-time polymerase chain reaction was performed for the selected genes. EthMP administration significantly prevented the rotenone-mediated motor dysfunctions compared to PD group as assessed through open field, beam walk, pole climb down, stepping, tail suspension, and stride length tests. EthMP administration modulated the lipid peroxidation (LPO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels, as well as glutathione-s-transferase (GST) and catalase (CAT) activities in mouse brain. EthMP extract prevented neurodegeneration in the SN of mice and partially maintained dopamine levels. The expression of genes related to dopamine, anti-oxidant potential and synapses were modulated in M. piperita (MP) extract treated mice brains. Current data suggest therapeutic capacities of MP extract and neuroprotective capacities, possibly through antioxidant capacities. Therefore, it may have potential clinical applications for PD management.
Collapse
Affiliation(s)
- Rabia Anjum
- Laboratory of Neurobehavioral Biology, Department of Zoology, Government College University Lahore, Punjab, Pakistan
| | - Chand Raza
- Laboratory of Neurobehavioral Biology, Department of Zoology, Government College University Lahore, Punjab, Pakistan
| | - Mehwish Faheem
- Laboratory of Neurobehavioral Biology, Department of Zoology, Government College University Lahore, Punjab, Pakistan
| | - Arif Ullah
- Laboratory of Neurobehavioral Biology, Department of Zoology, Government College University Lahore, Punjab, Pakistan
| | - Maham Chaudhry
- Laboratory of Neurobehavioral Biology, Department of Zoology, Government College University Lahore, Punjab, Pakistan
| |
Collapse
|
14
|
Medina-Luque J, Piechocinski P, Feyen P, Sgobio C, Herms J. Striatal dopamine neurotransmission is altered in age- and region-specific manner in a Parkinson's disease transgenic mouse. Sci Rep 2024; 14:164. [PMID: 38167878 PMCID: PMC10761704 DOI: 10.1038/s41598-023-49600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Dopamine (DA) plays a critical role in striatal motor control. The drop in DA level within the dorsal striatum is directly associated with the appearance of motor symptoms in Parkinson's disease (PD). The progression of the disease and inherent disruption of the DA neurotransmission has been closely related to accumulation of the synaptic protein α-synuclein. However, it is still unclear how α-synuclein affects dopaminergic terminals in different areas of dorsal striatum. Here we demonstrate that the overexpression of human α-synuclein (h-α-syn) interferes with the striatal DA neurotransmission in an age-dependent manner, preferentially in the dorsolateral striatum (DLS) of PDGF-h-α-syn mice. While 3-month-old mice showed an increase at the onset of h-α-syn accumulation in the DLS, 12-month-old mice revealed a decrease in electrically-evoked DA release. The enhanced DA release in 3-month-old mice coincided with better performance in a behavioural task. Notably, DA amplitude alterations were also accompanied by a delay in the DA clearance independently from the animal age. Structurally, dopamine transporter (DAT) was found to be redistributed in larger DAT-positive clumps only in the DLS of 3- and 12-month-old mice. Together, our data provide new insight into the vulnerability of DLS and suggest DAT-related dysfunctionalities from the very early stages of h-α-syn accumulation.
Collapse
Affiliation(s)
- Jose Medina-Luque
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Paul Feyen
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carmelo Sgobio
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany.
| | - Jochen Herms
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
15
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
16
|
Lyra P, Machado V, Rota S, Chaudhuri KR, Botelho J, Mendes JJ. Revisiting Alpha-Synuclein Pathways to Inflammation. Int J Mol Sci 2023; 24:ijms24087137. [PMID: 37108299 PMCID: PMC10138587 DOI: 10.3390/ijms24087137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alpha-synuclein (α-Syn) is a short presynaptic protein with an active role on synaptic vesicle traffic and the neurotransmitter release and reuptake cycle. The α-Syn pathology intertwines with the formation of Lewy Bodies (multiprotein intraneuronal aggregations), which, combined with inflammatory events, define various α-synucleinopathies, such as Parkinson's Disease (PD). In this review, we summarize the current knowledge on α-Syn mechanistic pathways to inflammation, as well as the eventual role of microbial dysbiosis on α-Syn. Furthermore, we explore the possible influence of inflammatory mitigation on α-Syn. In conclusion, and given the rising burden of neurodegenerative disorders, it is pressing to clarify the pathophysiological processes underlying α-synucleinopathies, in order to consider the mitigation of existing low-grade chronic inflammatory states as a potential pathway toward the management and prevention of such conditions, with the aim of starting to search for concrete clinical recommendations in this particular population.
Collapse
Affiliation(s)
- Patrícia Lyra
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Silvia Rota
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Kallol Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London SE5 9RS, UK
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
17
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
18
|
Simons E, Fleming SM. Role of rodent models in advancing precision medicine for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:3-16. [PMID: 36803818 DOI: 10.1016/b978-0-323-85555-6.00002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.
Collapse
Affiliation(s)
- Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
19
|
The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023; 11:biomedicines11020541. [PMID: 36831077 PMCID: PMC9953742 DOI: 10.3390/biomedicines11020541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.
Collapse
|
20
|
Ledonne A, Massaro Cenere M, Paldino E, D'Angelo V, D'Addario SL, Casadei N, Nobili A, Berretta N, Fusco FR, Ventura R, Sancesario G, Guatteo E, Mercuri NB. Morpho-Functional Changes of Nigral Dopamine Neurons in an α-Synuclein Model of Parkinson's Disease. Mov Disord 2023; 38:256-266. [PMID: 36350188 DOI: 10.1002/mds.29269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression. OBJECTIVES We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons. METHODS We performed immunohistochemistry, stereological DA cell counts, analyses of dendritic arborization, ex vivo patch-clamp recordings, and in vivo DA microdialysis measurements in a 12- to 13-month-old transgenic rat model overexpressing the full-length human α-syn (Snca+/+ ) and age-matched wild-type rats. RESULTS Aged Snca+/+ rats have mild loss of SNpc DA neurons and decreased basal DA levels in the SN. Residual nigral DA neurons display smaller soma and compromised dendritic arborization and, in parallel, increased firing activity, switch in firing mode, and hyperexcitability associated with hypofunction of fast activating/inactivating voltage-gated K+ channels and Ca2+ - and voltage-activated large conductance K+ channels. These intrinsic currents underlie the repolarization/afterhyperpolarization phase of action potentials, thus affecting neuronal excitability. CONCLUSIONS Besides clarifying α-syn-induced pathological landmarks, such evidence reveals compensatory functional mechanisms that nigral DA neurons could adopt during PD progression to counteract neurodegeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Mariangela Massaro Cenere
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Paldino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Vincenza D'Angelo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sebastian Luca D'Addario
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Annalisa Nobili
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Rossella Ventura
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | | | - Ezia Guatteo
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Motor Science and Wellness, Parthenope University, Naples, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
22
|
Zhou LX, Zheng H, Tian Y, Luo KF, Ma SJ, Wu ZW, Tang P, Jiang J, Wang MH. SNCA inhibits epithelial-mesenchymal transition and correlates to favorable prognosis of breast cancer. Carcinogenesis 2022; 43:1071-1082. [PMID: 36179220 DOI: 10.1093/carcin/bgac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
Alpha-synuclein (SNCA) is a pathological hallmark of Parkinson's disease, known to be involved in cancer occurrence and development; however, its specific effects in breast cancer remain unknown. Data from 150 patients with breast cancer were retrieved from tissue microarray and analyzed for SNCA protein level using immunohistochemistry. Functional enrichment analysis was performed to investigate the potential role of SNCA in breast cancer. SNCA-mediated inhibition of epithelial-mesenchymal transition (EMT) was confirmed with western blotting. The effects of SNCA on invasion and migration were evaluated using transwell and wound-healing experiments. Furthermore, the potential influence of SNCA expression level on drug sensitivity and tumor infiltration by immune cells was analyzed using the public databases. SNCA is lowly expressed in breast cancer tissues. Besides, in vitro and in vivo experiments, SNCA overexpression blocked EMT and metastasis, and the knockdown of SNCA resulted in the opposite effect. A mouse model of metastasis verified the restriction of metastatic ability in vivo. Further analysis revealed that SNCA enhances sensitivity to commonly used anti-breast tumor drugs and immune cell infiltration. SNCA blocks EMT and metastasis in breast cancer and its expression levels could be useful in predicting the chemosensitivity and evaluating the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- Lin-Xi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan Tian
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Emergency Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Ke-Fei Luo
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shu-Juan Ma
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zi-Wei Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ming-Hao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
23
|
Chan DG, Ventura K, Villeneuve A, Du Bois P, Holahan MR. Exploring the Connection Between the Gut Microbiome and Parkinson's Disease Symptom Progression and Pathology: Implications for Supplementary Treatment Options. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2339-2352. [PMID: 36278360 PMCID: PMC9837702 DOI: 10.3233/jpd-223461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The contribution of the microbiota to induce gastrointestinal inflammation is hypothesized to be a key component of alpha-synuclein (aSyn) aggregation within the gastrointestinal (GI) tract in the pathological progression of Parkinson's disease (PD). The function of the GI tract is governed by a system of neurons that form part of the enteric nervous system (ENS). The ENS hosts 100-500 million nerve cells within two thin layers lining the GI tract. The gut-brain axis (GBA) is the major communication pathway between the ENS and the central nervous system. It has become increasingly clear that the microbiota in the gut are key regulators of GBA function and help to maintain homeostasis in the immune and endocrine systems. The GBA may act as a possible etiological launching pad for the pathogenesis of age-related neurodegenerative diseases, such as PD, because of an imbalance in the gut microbiota. PD is a multi-faceted illness with multiple biological, immunological, and environmental factors contributing to its pathological progression. Interestingly, individuals with PD have an altered gut microbiota compared to healthy individuals. However, there is a lack of literature describing the relationship between microbiota composition in the gut and symptom progression in PD patients. This review article examines how the pathology and symptomology of PD may originate from dysregulated signaling in the ENS. We then discuss by targeting the imbalance within the gut microbiota such as prebiotics and probiotics, some of the prodromal symptoms might be alleviated, possibly curtailing the pathological spread of aSyn and ensuing debilitating motor symptoms.
Collapse
Affiliation(s)
- Dennis G. Chan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada,Correspondence to: Dennis G. Chan, Department of Neuroscience, Carleton University, Ottawa, ON, Canada. E-mail:
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ally Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Paul Du Bois
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
24
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
25
|
Genetic Study of Early Onset Parkinson's Disease in Cyprus. Int J Mol Sci 2022; 23:ijms232315369. [PMID: 36499697 PMCID: PMC9739936 DOI: 10.3390/ijms232315369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's Disease (PD) is a multifactorial neurodegenerative disease characterized by motor and non-motor symptoms. The etiology of PD remains unclear. However, several studies have demonstrated the interplay of genetic, epigenetic, and environmental factors in PD. Early-onset PD (EOPD) is a subgroup of PD diagnosed between the ages of 21 and 50. Population genetic studies have demonstrated great genetic variability amongst EOPD patients. Hence, this study aimed to obtain a genetic landscape of EOPD in the Cypriot population. Greek-Cypriot EOPD patients (n = 48) were screened for variants in the six most common EOPD-associated genes (PINK1, PRKN, FBXO7, SNCA, PLA2G6, and DJ-1). This included DNA sequencing and Multiplex ligation-dependent probe amplification (MLPA). One previously described frameshift variant in PINK1 (NM_032409.3:c.889del) was detected in five patients (10.4%)-the largest number to be detected to date. Copy number variations in the PRKN gene were identified in one homozygous and 3 compound heterozygous patients (8.3%). To date, the pathogenic variants identified in this study have explained the PD phenotype for 18.8% of the EOPD cases. The results of this study may contribute to the genetic screening of EOPD in Cyprus.
Collapse
|
26
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Bartrés-Faz D, Cattaneo G, Demuth I, Düzel S, Franzenburg S, Fuß J, Lindenberger U, Pascual-Leone Á, Sabet SS, Solé-Padullés C, Tormos JM, Vetter VM, Wesse T, Franke A, Lill CM, Bertram L. Epigenome-Wide Association Study in Peripheral Tissues Highlights DNA Methylation Profiles Associated with Episodic Memory Performance in Humans. Biomedicines 2022; 10:2798. [PMID: 36359320 PMCID: PMC9687249 DOI: 10.3390/biomedicines10112798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The decline in episodic memory (EM) performance is a hallmark of cognitive aging and an early clinical sign in Alzheimer’s disease (AD). In this study, we conducted an epigenome-wide association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of participants with cross-sectional data was 69 ± 11 years (30−90 years), with 50% being females. We identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson’s disease (PD) in previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant after correction for multiple testing. Likewise, estimating the degree of “epigenetic age acceleration” did not reveal significant associations with either of the two tested EM phenotypes. In summary, our study highlights several interesting candidate loci in which differential DNAm patterns in peripheral tissue are associated with EM performance in humans.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Álvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre St., Boston, MA 02131, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Campus Clínic August Pi i Sunyer, Casanova, 143, 08036 Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Garcilaso, 57, 08027 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, 08916 Barcelona, Spain
| | - Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité—Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstr. 3, 48149 Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London W68RP, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| |
Collapse
|
27
|
Beserra-Filho JIA, Maria-Macêdo A, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, de Souza Araújo AA, Lucchese AM, Quintans-Júnior LJ, Santos JR, Silva RH, Ribeiro AM. Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism. Metab Brain Dis 2022; 37:2331-2347. [PMID: 35779151 DOI: 10.1007/s11011-022-01032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with β-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.
Collapse
Affiliation(s)
- Jose Ivo A Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Angélica Maria Lucchese
- Graduate Programm in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra M Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
28
|
Pang M, Peng R, Wang Y, Zhu Y, Wang P, Moussian B, Su Y, Liu X, Ming D. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson's disease. Biomed Pharmacother 2022; 155:113718. [PMID: 36152409 DOI: 10.1016/j.biopha.2022.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Collapse
Affiliation(s)
- Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Rui Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yi Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Peng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China.
| |
Collapse
|
29
|
Sossi V, Patterson JR, McCormick S, Kemp CJ, Miller KM, Stoll AC, Kuhn N, Kubik M, Kochmanski J, Luk KC, Sortwell CE. Dopaminergic Positron Emission Tomography Imaging in the Alpha-Synuclein Preformed Fibril Model Reveals Similarities to Early Parkinson's Disease. Mov Disord 2022; 37:1739-1748. [PMID: 35524682 PMCID: PMC9391270 DOI: 10.1002/mds.29051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) imaging in early Parkinson's disease (PD) subjects reveals that increased dopamine (DA) turnover and reduced dopamine transporter (DAT) density precede decreases in DA synthesis and storage. The rat α-synuclein preformed fibril (α-syn PFF) model provides a platform to investigate DA dynamics during multiple stages of α-syn inclusion-triggered nigrostriatal degeneration. OBJECTIVES We investigated multiple aspects of in vivo dopaminergic deficits longitudinally and similarities to human PD using translational PET imaging readouts. METHODS Longitudinal imaging was performed every 2 months in PFF and control rats for 7 months. [18 F]-Fluoro-3,4-dihydroxyphenyl-L-alanine (FDOPA) imaging was performed to investigate DA synthesis and storage (Kocc ) and DA turnover, estimated by its inverse, the effective distribution volume ratio (EDVR). 11 C-Methylphenidate (MP) was used to estimate DAT density (BPND ). RESULTS Early DA turnover increases and DAT binding decreases were observed in the ipsilateral striatum of PFF rats, progressing longitudinally. EDVR decreased 26%, 38%, and 47%, and BPND decreased 36%, 50%, and 65% at the 2-, 4-, and 6-month time points, respectively, compared to ipsilateral control striatum. In contrast, deficits in DA synthesis and storage were not observed in the ipsilateral striatum of PFF rats compared to control injections and were relatively preserved up to 6 months (Kocc decreased 20% at 6 months). CONCLUSIONS The relative preservation of DA synthesis and storage compared to robust progressive deficits in DAT density and increases in DA turnover in the rat α-syn PFF model display remarkable face validity to dopaminergic alterations in human PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vesna Sossi
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Joseph R. Patterson
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Siobhan McCormick
- Pacific Parkinson's Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher J. Kemp
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Kathryn M. Miller
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Anna C. Stoll
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Nathan Kuhn
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Michael Kubik
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Joseph Kochmanski
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| | - Kelvin C. Luk
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Caryl E. Sortwell
- Department of Translational NeuroscienceMichigan State UniversityGrand RapidsMichiganUSA
| |
Collapse
|
30
|
Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, Zhang X, Wang T, Guo C, Zhong M. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson’s Disease Model. Int J Mol Sci 2022; 23:ijms23148035. [PMID: 35887392 PMCID: PMC9318580 DOI: 10.3390/ijms23148035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Hehong Sun
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, China;
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang 110122, China;
| | - Xiaoyu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
- Correspondence:
| |
Collapse
|
31
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
32
|
Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 2022; 100:1775-1790. [PMID: 35642104 DOI: 10.1002/jnr.25094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD), as a debilitating neurodegenerative disease, particularly affects the elderly population, and is clinically identified by resting tremor, rigidity, and bradykinesia. Pathophysiologically, PD is characterized by an early loss of dopaminergic neurons in the Substantia nigra pars compacta, accompanied by the extensive aggregation of alpha-synuclein (α-Syn) in the form of Lewy bodies. The onset of PD has been reported to be influenced by multiple biological molecules. In this context, circular RNAs (circRNAs), as tissue-specific noncoding RNAs with closed structures, have been recently demonstrated to involve in a set of PD's pathogenic processes. These RNA molecules can either up- or downregulate the expression of α-Syn, as well as moderating its accumulation through different regulatory mechanisms, in which targeting microRNAs (miRNAs) is considered the most common pathway. Since circRNAs have prominent structural and biological characteristics, they could also be considered as promising candidates for PD diagnosis and treatment. Unfortunately, PD has become a global health concern, and a large number of its pathogenic processes are still unclear; thus, it is crucial to elucidate the ambiguous aspects of PD pathophysiology to improve the efficiency of diagnostic and therapeutic strategies. In line with this fact, the current review aims to highlight the interplay between circRNAs and PD pathogenesis, and then discusses the diagnostic and therapeutic potential of circRNAs in PD progression. This study will thus be the first of its kind reviewing the relationship between circRNAs and PD.
Collapse
Affiliation(s)
- Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeynab Dorostgou
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Al-zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
34
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
35
|
Dongjie S, Rajendran RS, Xia Q, She G, Tu P, Zhang Y, Liu K. Neuroprotective effects of Tongtian oral liquid, a Traditional Chinese Medicine in the Parkinson's disease-induced zebrafish model. Biomed Pharmacother 2022; 148:112706. [DOI: 10.1016/j.biopha.2022.112706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022] Open
|
36
|
α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules 2022; 12:biom12040507. [PMID: 35454096 PMCID: PMC9029495 DOI: 10.3390/biom12040507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Collapse
|
37
|
Jia ZL, Zhu CY, Rajendran RS, Xia Q, Liu KC, Zhang Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM 2.5 )-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Appl Toxicol 2022; 42:1585-1602. [PMID: 35315093 DOI: 10.1002/jat.4325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023]
Abstract
Airborne total suspended particles (TSP) and particulate matter (PM2.5 ) threaten global health and their potential impact on cardiovascular and respiratory diseases are extensively studied. Recent studies attest premature deaths, low birth weight, and congenital anomalies in the fetus of pregnant women exposed to air pollution. In this regard, only few studies have explored the effects of TSP and PM2.5 on cardiovascular and cerebrovascular development. As both TSP and PM2.5 differ in size and composition, this study is attempted to assess the variability in toxicity effects between TSP and PM2.5 on the development of cardiovascular and cerebrovascular systems and the underlying mechanisms in a zebrafish model. To explore the potential toxic effects of TSP and PM2.5 , zebrafish embryos/larvae were exposed to 25, 50, 100, 200, and 400 μg/ml of TSP and PM2.5 from 24 to 120 hpf (hours post-fertilization). Both TSP and PM2.5 exposure increased the rate of mortality, malformations, and oxidative stress, whereas locomotor behavior, heart rate, blood flow velocity, development of cardiovasculature and neurovasculature, and dopaminergic neurons were reduced. The expression of genes involved in endoplasmic reticulum stress (ERS), Wnt signaling, and central nervous system (CNS) development were altered in a dose- and time-dependent manner. This study provides evidence for acute exposure to TSP and PM2.5 -induced cardiovascular and neurodevelopmental toxicity, attributed to enhanced oxidative stress and aberrant gene expression. Comparatively, the effects of PM2.5 were more pronounced than TSP.
Collapse
Affiliation(s)
- Zhi-Li Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China.,School of life sciences, Henan University, Kaifeng, Henan Province, China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - R Samuel Rajendran
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| |
Collapse
|
38
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
39
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
40
|
Mackie PM, Gopinath A, Montas DM, Nielsen A, Smith A, Nolan RA, Runner K, Matt SM, McNamee J, Riklan JE, Adachi K, Doty A, Ramirez-Zamora A, Yan L, Gaskill PJ, Streit WJ, Okun MS, Khoshbouei H. Functional characterization of the biogenic amine transporters on human macrophages. JCI Insight 2022; 7:151892. [PMID: 35015729 PMCID: PMC8876465 DOI: 10.1172/jci.insight.151892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Monocyte-derived macrophages are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remains nebulous. In the central nervous system (CNS), biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine (NET) and dopamine (DAT) transporters on human monocyte-derived macrophages. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured monocyte-derived macrophages (MDMs), but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immuno-modulatory mechanism in response to lipopolysaccharide (LPS). LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the pro-inflammatory response to LPS. Collectively, our data introduce a potential role for DAT in the regulation of innate immunity.
Collapse
Affiliation(s)
- Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, United States of America
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Insitute, University of Florida College of Medicine, Gainesville, United States of America
| | - Dominic M Montas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Alyssa Nielsen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Aidan Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Rachel A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - John McNamee
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Joshua E Riklan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Kengo Adachi
- Neuronal Signal Transduction Group, Max Plank Florida Institute for Neuroscience, Jupiter, United States of America
| | - Andria Doty
- Flow Cytometry Core Facility, University of Florida College of Medicine, Gainesville, United States of America
| | - Adolfo Ramirez-Zamora
- Department of Neurology, University of Florida College of Medicine, Gainesville, United States of America
| | - Long Yan
- Neuronal Signal Transduction Group, Max Plank Florida Institute for Neuroscience, Jupiter, United States of America
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Michael S Okun
- University of Florida College of Medicine, Gainesville, United States of America
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| |
Collapse
|
41
|
Cognitive profiling and proteomic analysis of the modafinil analogue S-CE-123 in experienced aged rats. Sci Rep 2021; 11:23962. [PMID: 34907284 PMCID: PMC8671572 DOI: 10.1038/s41598-021-03372-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.
Collapse
|
42
|
Sun F, Salinas AG, Filser S, Blumenstock S, Medina-Luque J, Herms J, Sgobio C. Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology. Brain Pathol 2021; 32:e13036. [PMID: 34806235 PMCID: PMC8877754 DOI: 10.1111/bpa.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Misfolded α‐synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α‐synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α‐synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2‐month‐old (young) and 5‐month‐old (adult) mice. Two months after α‐synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α‐synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs‐seeded hemisphere coexist with decreased large‐sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α‐synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α‐synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.
Collapse
Affiliation(s)
- Fanfan Sun
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Armando G Salinas
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisina, USA
| | - Severin Filser
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Sonja Blumenstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Molecular Neurodegeneration Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jose Medina-Luque
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
43
|
Brzozowski CF, Hijaz BA, Singh V, Gcwensa NZ, Kelly K, Boyden ES, West AB, Sarkar D, Volpicelli-Daley LA. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathol Commun 2021; 9:180. [PMID: 34749824 PMCID: PMC8576889 DOI: 10.1186/s40478-021-01283-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson’s Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.
Collapse
|
44
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
45
|
Amadeo A, Pizzi S, Comincini A, Modena D, Calogero AM, Madaschi L, Faustini G, Rolando C, Bellucci A, Pezzoli G, Mazzetti S, Cappelletti G. The Association between α-Synuclein and α-Tubulin in Brain Synapses. Int J Mol Sci 2021; 22:ijms22179153. [PMID: 34502063 PMCID: PMC8430732 DOI: 10.3390/ijms22179153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
α-synuclein is a small protein that is mainly expressed in the synaptic terminals of nervous tissue. Although its implication in neurodegeneration is well established, the physiological role of α-synuclein remains elusive. Given its involvement in the modulation of synaptic transmission and the emerging role of microtubules at the synapse, the current study aimed at investigating whether α-synuclein becomes involved with this cytoskeletal component at the presynapse. We first analyzed the expression of α-synuclein and its colocalization with α-tubulin in murine brain. Differences were found between cortical and striatal/midbrain areas, with substantia nigra pars compacta and corpus striatum showing the lowest levels of colocalization. Using a proximity ligation assay, we revealed the direct interaction of α-synuclein with α-tubulin in murine and in human brain. Finally, the previously unexplored interaction of the two proteins in vivo at the synapse was disclosed in murine striatal presynaptic boutons through multiple approaches, from confocal spinning disk to electron microscopy. Collectively, our data strongly suggest that the association with tubulin/microtubules might actually be an important physiological function for α-synuclein in the synapse, thus suggesting its potential role in a neuropathological context.
Collapse
Affiliation(s)
- Alida Amadeo
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Celoria 26, 20126 Milano, Italy
- Correspondence: (A.A.); (G.C.); Tel.: +39-025-031-4885 (A.A.); +39-025-031-4752 (G.C.)
| | - Sara Pizzi
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
| | - Alessandro Comincini
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
| | - Debora Modena
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
| | - Alessandra Maria Calogero
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
| | - Laura Madaschi
- UNITECH NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (A.B.)
| | - Chiara Rolando
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (A.B.)
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Via Zuretti 35, 20125 Milano, Italy;
| | - Samanta Mazzetti
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
- Fondazione Grigioni per il Morbo di Parkinson, Via Zuretti 35, 20125 Milano, Italy;
| | - Graziella Cappelletti
- Department of Biosciences, University of Milan, Via Celoria 26, 20126 Milano, Italy; (S.P.); (A.C.); (D.M.); (A.M.C.); (C.R.); (S.M.)
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Celoria 26, 20126 Milano, Italy
- Correspondence: (A.A.); (G.C.); Tel.: +39-025-031-4885 (A.A.); +39-025-031-4752 (G.C.)
| |
Collapse
|
46
|
Dagra A, Miller DR, Lin M, Gopinath A, Shaerzadeh F, Harris S, Sorrentino ZA, Støier JF, Velasco S, Azar J, Alonge AR, Lebowitz JJ, Ulm B, Bu M, Hansen CA, Urs N, Giasson BI, Khoshbouei H. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. NPJ Parkinsons Dis 2021; 7:76. [PMID: 34408150 PMCID: PMC8373893 DOI: 10.1038/s41531-021-00210-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.
Collapse
Affiliation(s)
- Abeer Dagra
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Douglas R. Miller
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Min Lin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adithya Gopinath
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Fatemeh Shaerzadeh
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Sharonda Harris
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Zachary A. Sorrentino
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Jonatan Fullerton Støier
- grid.5254.60000 0001 0674 042XMolecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Velasco
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Janelle Azar
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adetola R. Alonge
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Joseph J. Lebowitz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Brittany Ulm
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Mengfei Bu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Carissa A. Hansen
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Nikhil Urs
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Habibeh Khoshbouei
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| |
Collapse
|
47
|
Studying the effect of alpha-synuclein and Parkinson's disease linked mutants on inter pathway connectivities. Sci Rep 2021; 11:16365. [PMID: 34381149 PMCID: PMC8358055 DOI: 10.1038/s41598-021-95889-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease is a common neurodegenerative disease. The differential expression of alpha-synuclein within Lewy Bodies leads to this disease. Some missense mutations of alpha-synuclein may resultant in functional aberrations. In this study, our objective is to verify the functional adaptation due to early and late-onset mutation which can trigger or control the rate of alpha-synuclein aggregation. In this regard, we have proposed a computational model to study the difference and similarities among the Wild type alpha-synuclein and mutants i.e., A30P, A53T, G51D, E46K, and H50Q. Evolutionary sequence space analysis is also performed in this experiment. Subsequently, a comparative study has been performed between structural information and sequence space outcomes. The study shows the structural variability among the selected subtypes. This information assists inter pathway modeling due to mutational aberrations. Based on the structural variability, we have identified the protein-protein interaction partners for each protein that helps to increase the robustness of the inter-pathway connectivity. Finally, few pathways have been identified from 12 semantic networks based on their association with mitochondrial dysfunction and dopaminergic pathways.
Collapse
|
48
|
Lin M, Mackie PM, Shaerzadeh F, Gamble-George J, Miller DR, Martyniuk CJ, Khoshbouei H. In Parkinson's patient-derived dopamine neurons, the triplication of α-synuclein locus induces distinctive firing pattern by impeding D2 receptor autoinhibition. Acta Neuropathol Commun 2021; 9:107. [PMID: 34099060 PMCID: PMC8185945 DOI: 10.1186/s40478-021-01203-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pathophysiological changes in dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease (PD). Intracellular pathological inclusions of the protein α-synuclein within dopaminergic neurons are a cardinal feature of PD, but the mechanisms by which α-synuclein contributes to dopaminergic neuron vulnerability remain unknown. The inaccessibility to diseased tissue has been a limitation in studying progression of pathophysiology prior to degeneration of dopamine neurons. To address these issues, we differentiated induced pluripotent stem cells (iPSCs) from a PD patient carrying the α-synuclein triplication mutation (AST) and an unaffected first-degree relative (NAS) into dopaminergic neurons. In human-like dopamine neurons α-synuclein overexpression reduced the functional availability of D2 receptors, resulting in a stark dysregulation in firing activity, dopamine release, and neuronal morphology. We back-translated these findings into primary mouse neurons overexpressing α-synuclein and found a similar phenotype, supporting the causal role for α-synuclein. Importantly, application of D2 receptor agonist, quinpirole, restored the altered firing activity of AST-derived dopaminergic neurons to normal levels. These results provide novel insights into the pre-degenerative pathophysiological neuro-phenotype induced by α-synuclein overexpression and introduce a potential mechanism for the long-established clinical efficacy of D2 receptor agonists in the treatment of PD.
Collapse
Affiliation(s)
- Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Fatima Shaerzadeh
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | | | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Chris J Martyniuk
- Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
49
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
50
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|