1
|
Chow CFW, Lenz S, Scheremetjew M, Ghosh S, Richter D, Jegers C, von Appen A, Alberti S, Toth‐Petroczy A. SHARK-capture identifies functional motifs in intrinsically disordered protein regions. Protein Sci 2025; 34:e70091. [PMID: 40100159 PMCID: PMC11917139 DOI: 10.1002/pro.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Increasing insights into how sequence motifs in intrinsically disordered regions (IDRs) provide functions underscore the need for systematic motif detection. Contrary to structured regions where motifs can be readily identified from sequence alignments, the rapid evolution of IDRs limits the usage of alignment-based tools in reliably detecting motifs within. Here, we developed SHARK-capture, an alignment-free motif detection tool designed for difficult-to-align regions. SHARK-capture innovates on word-based methods by flexibly incorporating amino acid physicochemistry to assess motif similarity without requiring rigid definitions of equivalency groups. SHARK-capture offers consistently strong performance in a systematic benchmark, with superior residue-level performance. SHARK-capture identified known functional motifs across orthologs of the microtubule-associated zinc finger protein BuGZ. We also identified a short motif in the IDR of S. cerevisiae RNA helicase Ded1p, which we experimentally verified to be capable of promoting ATPase activity. Our improved performance allows us to systematically calculate 10,889 motifs for 2695 yeast IDRs and provide it as a resource. SHARK-capture offers the most precise tool yet for the systematic identification of conserved regions in IDRs and is freely available as a Python package (https://pypi.org/project/bio-shark/) and on https://git.mpi-cbg.de/tothpetroczylab/shark.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| | - Swantje Lenz
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Maxim Scheremetjew
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Soumyadeep Ghosh
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Ceciel Jegers
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Simon Alberti
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Kennis MGP, Rots D, Bouman A, Ockeloen CW, Boelen C, Marcelis CLM, de Vries BBA, Elting MW, Waisfisz Q, Suri M, Font-Montgomery E, Peck DS, Donnelly DE, Rogers RC, Richardson R, Caumes R, Chaumette B, Louveau C, Sallevelt SCEH, Maas SM, Smits JJ, van Haelst MM, Levy RJ, Stewart H, Loeys BL, Pfundt R, Kleefstra T, Snijders Blok L. DDX3X-related neurodevelopmental disorder in males - presenting a new cohort of 19 males and a literature review. Eur J Hum Genet 2025:10.1038/s41431-025-01832-x. [PMID: 40164730 DOI: 10.1038/s41431-025-01832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
DDX3X-related neurodevelopmental disorder is one of the most common monogenic causes of intellectual disability in females, with currently >1000 females diagnosed worldwide. In contrast, reports on affected males with DDX3X variants are scarce. The limited knowledge on this X-linked disorder in males hinders the interpretation of hemizygous DDX3X variants in clinical practice. In this study, we present a new cohort of 19 affected males (from 17 unrelated families) with (possibly) disease-causing DDX3X variants, for whom we collected clinical and molecular data. Additionally, we reviewed the existing literature on 13 males with DDX3X variants. The phenotype in males is diverse, including intellectual disability, speech/language delays, behavioural challenges and structural brain abnormalities. The vast majority of males have missense variants, including two recurrent variants (p.(Arg351Gln) and p.(Arg488Cys)). No truncating variants have been reported, consistent with the presumed embryonic lethality of complete loss-of-function of DDX3X in males. In our novel cohort, 6/17 variants are de novo in the affected male and 3/17 variants are de novo in the mother. This study provides significant insights in the genetic and phenotypic spectrum of males with DDX3X variants, by presenting the data of a combined cohort (n = 32) of novel and published individuals. Our data show that variants in DDX3X can cause an X-linked neurodevelopmental disorder in males, with unaffected or mildly affected carrier females. These findings will aid the interpretation of hemizygous missense variants in DDX3X and can guide clinical management and counselling, in particular with regard to recurrence risks in the respective families.
Collapse
Affiliation(s)
- Milou G P Kennis
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| | - Dmitrijs Rots
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Children's Clinical University Hospital, Riga, Latvia
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Caroline Boelen
- Department of Pediatrics, Admiraal De Ruyter Ziekenhuis, Goes, Zeeland, The Netherlands
| | | | | | - Mariet W Elting
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mohnish Suri
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Esperanza Font-Montgomery
- Department of Pediatrics/Genetics/Metabolism Disorders, Children's Hospital of Michigan, Detroit, MI, USA
| | - Dawn S Peck
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO, USA
| | - Deirdre E Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | | | - Ruth Richardson
- Northern Genetics Service, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Roseline Caumes
- CHU Lille, Clinique de génétique Guy Fontaine, F-, 59000, Lille, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neurosciences of Paris (INSERM U1266), GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Cécile Louveau
- Université Paris Cité, Institute of Psychiatry and Neurosciences of Paris (INSERM U1266), GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Suzanne C E H Sallevelt
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jeroen J Smits
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rebecca J Levy
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bart L Loeys
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, The Netherlands
| | - Lot Snijders Blok
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Lin S, Sallapalli BT, Chang P, He J, Coyaud E, Pierce BG, Zhang YJ. RNA Helicase DDX3 Interacts with the Capsid Protein of Hepatitis E Virus and Plays a Vital Role in the Viral Replication. Pathogens 2025; 14:177. [PMID: 40005552 PMCID: PMC11858535 DOI: 10.3390/pathogens14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
DDX3 is an ATP-dependent RNA helicase that is involved in multiple cellular activities, including RNA metabolism and innate immunity. DDX3 is known to assist the replication of some viruses while restricting others through its direct interaction with viral proteins. However, the role of DDX3 in the replication of the hepatitis E virus (HEV) is unknown. In this study, DDX3 was shown to interact with the HEV capsid protein and provide an important role in HEV replication. The DDX3 C-terminal domain was demonstrated to interact with the capsid protein. The depletion of DDX3 led to a significant reduction in HEV replication. Also, the ATPase motif of DDX3 was shown to be required in HEV replication as an ATPase-null mutant DDX3 failed to rescue the viral replication in the DDX3-depleted cells. These results demonstrate a pro-viral role of DDX3 in HEV replication, providing further insights on the virus-cell interactions.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (S.L.); (B.T.S.); (P.C.); (J.H.)
| | - Bhargava Teja Sallapalli
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (S.L.); (B.T.S.); (P.C.); (J.H.)
| | - Peixi Chang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (S.L.); (B.T.S.); (P.C.); (J.H.)
| | - Jia He
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (S.L.); (B.T.S.); (P.C.); (J.H.)
| | - Etienne Coyaud
- U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), CHU Lille, National Institute of Health and Medical Research (INSERM), Universite de Lille, F-59000 Lille, France
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (S.L.); (B.T.S.); (P.C.); (J.H.)
| |
Collapse
|
4
|
Dhyani K, Dash S, Joshi S, Garg A, Pal D, Nishant K, Muniyappa K. The ATPase activity of yeast chromosome axis protein Hop1 affects the frequency of meiotic crossovers. Nucleic Acids Res 2025; 53:gkae1264. [PMID: 39727188 PMCID: PMC11797056 DOI: 10.1093/nar/gkae1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis. Consistent with this premise, we found that Hop1 binds to ATP and that substitution of amino acid residues in the putative ATP-binding site significantly impaired its ATPase activity, suggesting that this activity is intrinsic to Hop1. Notably, K65A and N67Q substitutions in the Hop1 N-terminal HORMA domain synergistically abolished its ATPase activity, noticeably impaired its DNA-binding affinity and reduced its association with meiotic chromosomes, while enhancing the frequency of meiotic crossovers (COs). Overall, our study establishes Hop1 as a DNA-independent ATPase and reveals a potential biological function for its ATPase activity in the regulation of meiotic CO frequency.
Collapse
Affiliation(s)
- Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Suman Dash
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Sameer Joshi
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Aditi Garg
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Debnath Pal
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| |
Collapse
|
5
|
Scala M, Bradley CA, Howe JL, Trost B, Salazar NB, Shum C, Mendes M, Reuter MS, Anagnostou E, MacDonald JR, Ko SY, Frankland PW, Charlebois J, Elsabbagh M, Granger L, Anadiotis G, Pullano V, Brusco A, Keller R, Parisotto S, Pedro HF, Lusk L, McDonnell PP, Helbig I, Mullegama SV, Douine ED, Corona RI, Russell BE, Nelson SF, Graziano C, Schwab M, Simone L, Zara F, Scherer SW. Genetic variants in DDX53 contribute to autism spectrum disorder associated with the Xp22.11 locus. Am J Hum Genet 2025; 112:154-167. [PMID: 39706195 PMCID: PMC11739878 DOI: 10.1016/j.ajhg.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/23/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits an ∼4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ∼1 Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been comprehensively examined, in part because there is no apparent functional murine ortholog. Through clinical testing, here, we identified 8 males and 2 females with ASD from 8 unrelated families carrying rare, predicted damaging or loss-of-function variants in DDX53. Additionally, we identified a family consisting of a male proband and his affected mother with high-functioning autism, both harboring a gene deletion involving DDX53 and exons of the noncoding RNA PTCHD1-AS. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 26 additional individuals with ASD harboring 19 mostly maternally inherited, rare, damaging DDX53 variations, including two variants detected in families from the original clinical analysis. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mice, may also influence the design and interpretation of murine modeling of ASD.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy.
| | - Clarrisa A Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Carole Shum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evdokia Anagnostou
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sangyoon Y Ko
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Paul W Frankland
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Department of Psychology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jessica Charlebois
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children's Hospital, Portland, OR 97227, USA
| | - George Anadiotis
- Department of Genetics and Metabolism, Randall Children's Hospital, Portland, OR 97227, USA
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy
| | - Sarah Parisotto
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Helio F Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Laina Lusk
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pamela Pojomovsky McDonnell
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingo Helbig
- Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Emilie D Douine
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosario Ivetth Corona
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudio Graziano
- Dipartimento MeLabeT, AUSL della Romagna, Pievesestina di Cesena, Cesena, Italy
| | - Maria Schwab
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Laurie Simone
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
6
|
Kuwayama N, Powers EN, Siketanc M, Sousa CI, Reynaud K, Jovanovic M, Hondele M, Ingolia NT, Brar GA. Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Rep 2024; 43:115059. [PMID: 39675003 PMCID: PMC11759133 DOI: 10.1016/j.celrep.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region. Global translation measurements, activity of mRNA-tethered proteins, and growth assays show that-even at matched protein levels-Ded1 is better than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Heat-stressed cells normally downregulate translation of structured housekeeping transcripts and halt growth, but neither occurs in Dbp1-expressing cells. This failure to halt growth in response to heat is not based on deficient stress granule formation or failure to reduce bulk translation. Rather, it depends on heat-triggered loss of Ded1 function mediated by an 11-amino-acid interval within its intrinsically disordered C terminus.
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matej Siketanc
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Camila Ines Sousa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kendra Reynaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maria Hondele
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Nicholas Thomas Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Yanas A, Shweta H, Owens MC, Liu KF, Goldman YE. RNA helicases DDX3X and DDX3Y form nanometer-scale RNA-protein clusters that support catalytic activity. Curr Biol 2024; 34:5714-5727.e6. [PMID: 39591970 PMCID: PMC11978499 DOI: 10.1016/j.cub.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
DEAD-box helicases, crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs) whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nanometer-scale RNA-protein clusters (RPCs) that foster their catalytic activities in vitro and in cells. The IDRs are critical for the formation of these RPCs. A thorough analysis of the catalytic cycle of DDX3X and DDX3Y by ensemble biochemistry and single-molecule photon bursts in the confocal microscope showed that RNA release is a major step that differentiates the unwinding activities of DDX3X and DDX3Y. The N-terminal IDRs of DDX3X and DDX3Y are both the drivers of RPC formation and the major differentiators of their enzymatic activities. Our findings provide new insights that the nanoscale helicase RPCs may be the normal state of these helicases under non-stressed conditions that promote their RNA unwinding and might act as nucleation points for stress granule formation. This mechanism may apply broadly among other members of the DEAD-box helicase family.
Collapse
Affiliation(s)
- Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Specific catalytically impaired DDX3X mutants form sexually dimorphic hollow condensates. Nat Commun 2024; 15:9553. [PMID: 39500865 PMCID: PMC11538506 DOI: 10.1038/s41467-024-53636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying the impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and these catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Lavorando
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaoyu Wei
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
10
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
11
|
Owens MC, Yanas A, Liu KF. Sex chromosome-encoded protein homologs: current progress and open questions. Nat Struct Mol Biol 2024; 31:1156-1166. [PMID: 39123067 DOI: 10.1038/s41594-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Ietswaart R, Smalec BM, Xu A, Choquet K, McShane E, Jowhar ZM, Guegler CK, Baxter-Koenigs AR, West ER, Fu BXH, Gilbert L, Floor SN, Churchman LS. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol Cell 2024; 84:2765-2784.e16. [PMID: 38964322 PMCID: PMC11315470 DOI: 10.1016/j.molcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Mohamoud Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal K Guegler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Luke Gilbert
- Arc Institute, Palo Alto, CA 94305, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94518, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Wilkins KC, Schroeder T, Gu S, Revalde JL, Floor SN. A novel reporter for helicase activity in translation uncovers DDX3X interactions. RNA (NEW YORK, N.Y.) 2024; 30:1041-1057. [PMID: 38697667 PMCID: PMC11251518 DOI: 10.1261/rna.079837.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study, we developed the helicase activity reporter for translation (HART), which uses DDX3X-sensitive 5' UTRs to measure DDX3X-mediated translational activity in cells. To directly measure RNA structure in DDX3X-dependent mRNAs, we used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then used HART to investigate how sequence alterations influence DDX3X sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the translational machinery and its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role in regulating translation through its interaction with the translational machinery during ribosome scanning and establish the HART reporter as a robust, lentivirally encoded, colorimetric measurement of DDX3X-dependent translation in cells.
Collapse
Affiliation(s)
- Kevin C Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Division, University of California, San Francisco, San Francisco, California 94143, USA
| | - Till Schroeder
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Faculty of Chemistry and Pharmacy, Julius-Maximilians-University of Würzburg, Würzburg 97070, Germany
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jezrael L Revalde
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
14
|
Swarup A, Bolger TA. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024; 14:803. [PMID: 39062517 PMCID: PMC11274571 DOI: 10.3390/biom14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.
Collapse
Affiliation(s)
| | - Timothy A. Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
He YN, Han XR, Wang D, Hou JL, Hou XM. Dual mode of DDX3X as an ATP-dependent RNA helicase and ATP-independent nucleic acid chaperone. Biochem Biophys Res Commun 2024; 714:149964. [PMID: 38669753 DOI: 10.1016/j.bbrc.2024.149964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.
Collapse
Affiliation(s)
- Yi-Ning He
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Rui Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Li Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Toyama Y, Shimada I. NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity. Nat Commun 2024; 15:3303. [PMID: 38664397 PMCID: PMC11045745 DOI: 10.1038/s41467-024-47659-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The DEAD-box RNA helicase (DDX) plays a central role in many aspects of RNA metabolism by remodeling the defined structure of RNA molecules. While a number of structural studies have revealed the atomistic details of the interaction between DDX and RNA ligands, the molecular mechanism of how this molecule unwinds a structured RNA into an unstructured single-stranded RNA (ssRNA) has largely remained elusive. This is due to challenges in structurally characterizing the unwinding intermediate state and the lack of thermodynamic details underlying this process. In this study, we use solution nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction of human DDX3X, a member of the DDX family, with various RNA ligands. Our results show that the inherent binding affinity of DDX3X for ssRNA is significantly higher than that for structured RNA elements. This preferential binding, accompanied by the formation of a domain-closed conformation in complex with ssRNA, effectively stabilizes the denatured ssRNA state and thus underlies the unwinding activity of DDX3X. Our results provide a thermodynamic and structural basis for the DDX function, whereby DDX can recognize and remodel a distinct set of structured RNAs to participate in a wide range of physiological processes.
Collapse
Affiliation(s)
- Yuki Toyama
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
17
|
Zhang H, Mañán-Mejías PM, Miles HN, Putnam AA, MacGillivray LR, Ricke WA. DDX3X and Stress Granules: Emerging Players in Cancer and Drug Resistance. Cancers (Basel) 2024; 16:1131. [PMID: 38539466 PMCID: PMC10968774 DOI: 10.3390/cancers16061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paula M. Mañán-Mejías
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrea A. Putnam
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - William A. Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
19
|
Powers EN, Kuwayama N, Sousa C, Reynaud K, Jovanovic M, Ingolia NT, Brar GA. Dbp1 is a low performance paralog of RNA helicase Ded1 that drives impaired translation and heat stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575095. [PMID: 38260653 PMCID: PMC10802583 DOI: 10.1101/2024.01.12.575095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.
Collapse
|
20
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Huang L, Liang Y, Hou H, Tang M, Liu X, Ma YN, Liang S. Prokaryotic Expression and Affinity Purification of DDX3 Protein. Protein Pept Lett 2024; 31:236-246. [PMID: 38303525 DOI: 10.2174/0109298665285625231222075700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND DDX3 is a protein with RNA helicase activity that is involved in a variety of biological processes, and it is an important protein target for the development of broad-spectrum antiviral drugs, multiple cancers and chronic inflammation. OBJECTIVES The objective of this study is to establish a simple and efficient method to express and purify DDX3 protein in E. coli, and the recombinant DDX3 should maintain helicase activity for further tailor-made screening and biochemical function validation. METHODS DDX3 cDNA was simultaneously cloned into pET28a-TEV and pNIC28-Bsa4 vectors and transfected into E. coli BL21 (DE3) to compare one suitable prokaryotic expression system. The 6×His-tag was fused to the C-terminus of DDX3 to form a His-tagging DDX3 fusion protein for subsequent purification. Protein dissolution buffer and purification washing conditions were optimized. The His-tagged DDX3 protein would bind with the Ni-NTA agarose by chelation and collected by affinity purification. The 6×His-tag fused with N-terminal DDX3 was eliminated from DDX3 by TEV digestion. A fine purification of DDX3 was performed by gel filtration chromatography. RESULTS The recombinant plasmid pNIC28-DDX3, which contained a 6×His-tag and one TEV cleavage site at the N terminal of DDX3 sequence, was constructed for DDX3 prokaryotic expression and affinity purification based on considering the good solubility of the recombinant His-tagging DDX3, especially under 0.5 mM IPTG incubation at 18°C for 18 h to obtain more soluble DDX3 protein. Finally, the exogenous recombinant DDX3 protein was obtained with more than 95% purity by affinity purification on the Ni-NTA column and removal of miscellaneous through gel filtration chromatography. The finely-purified DDX3 still retained its ATPase activity. CONCLUSION A prokaryotic expression pNIC28-DDX3 system is constructed for efficient expression and affinity purification of bioactive DDX3 protein in E. coli BL21(DE3), which provides an important high-throughput screening and validation of drugs targeting DDX3.
Collapse
Affiliation(s)
- Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yan-Ni Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
22
|
Mitchell CW, Galan Bartual S, Ferenbach AT, Scavenius C, van Aalten DMF. Exploiting O-GlcNAc transferase promiscuity to dissect site-specific O-GlcNAcylation. Glycobiology 2023; 33:1172-1181. [PMID: 37856504 DOI: 10.1093/glycob/cwad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
Protein O-GlcNAcylation is an evolutionary conserved post-translational modification catalysed by the nucleocytoplasmic O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). How site-specific O-GlcNAcylation modulates a diverse range of cellular processes is largely unknown. A limiting factor in studying this is the lack of accessible techniques capable of producing homogeneously O-GlcNAcylated proteins, in high yield, for in vitro studies. Here, we exploit the tolerance of OGT for cysteine instead of serine, combined with a co-expressed OGA to achieve site-specific, highly homogeneous mono-glycosylation. Applying this to DDX3X, TAB1, and CK2α, we demonstrate that near-homogeneous mono-S-GlcNAcylation of these proteins promotes DDX3X and CK2α solubility and enables production of mono-S-GlcNAcylated TAB1 crystals, albeit with limited diffraction. Taken together, this work provides a new approach for functional dissection of protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Conor W Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Sergio Galan Bartual
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Daan M F van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
23
|
Scala M, Bradley CA, Howe JL, Trost B, Salazar NB, Shum C, Reuter MS, MacDonald JR, Ko SY, Frankland PW, Granger L, Anadiotis G, Pullano V, Brusco A, Keller R, Parisotto S, Pedro HF, Lusk L, McDonnell PP, Helbig I, Mullegama SV, Undiagnosed Diseases Network, Douine ED, Russell BE, Nelson SF, Zara F, Scherer SW. Genetic variants in DDX53 contribute to Autism Spectrum Disorder associated with the Xp22.11 locus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.21.23300383. [PMID: 38234782 PMCID: PMC10793518 DOI: 10.1101/2023.12.21.23300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Autism Spectrum Disorder (ASD) exhibits an ~4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1 gene, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ~1Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been examined, in part because there is no apparent functional murine orthologue. Through clinical testing, here, we identified 6 males and 1 female with ASD from 6 unrelated families carrying rare, predicted-damaging or loss-of-function variants in DDX53. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 24 additional individuals with ASD harboring rare, damaging DDX53 variations, including the same variants detected in two families from the original clinical analysis. In this extended cohort of 31 participants with ASD (28 male, 3 female), we identified 25 mostly maternally-inherited variations in DDX53, including 18 missense changes, 2 truncating variants, 2 in-frame variants, 2 deletions in the 3' UTR and 1 copy number deletion. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mouse, may also influence the design and interpretation of murine-modelling of ASD.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Clarrisa A. Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Carole Shum
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S. Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R. MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sangyoon Y. Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital, Portland, OR 97227, USA
| | - George Anadiotis
- Department of Genetics and Metabolism, Randall Children’s Hospital, Portland, OR 97227, USA
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy
| | - Sarah Parisotto
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Helio F. Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Laina Lusk
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pamela Pojomovsky McDonnell
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingo Helbig
- Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Emilie D. Douine
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Bianca E. Russell
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- McLaughlin Centre, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
24
|
Jagtap PKA, Müller M, Kiss AE, Thomae AW, Lapouge K, Beck M, Becker PB, Hennig J. Structural basis of RNA-induced autoregulation of the DExH-type RNA helicase maleless. Mol Cell 2023; 83:4318-4333.e10. [PMID: 37989319 DOI: 10.1016/j.molcel.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Marisa Müller
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anna E Kiss
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; Core Facility Bioimaging at the Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
25
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Mutant forms of DDX3X with diminished catalysis form hollow condensates that exhibit sex-specific regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533240. [PMID: 38076929 PMCID: PMC10705264 DOI: 10.1101/2023.03.19.533240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and the catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
|
26
|
Venus S, Tandjigora K, Jankowsky E. The Viral Protein K7 Inhibits Biochemical Activities and Condensate Formation by the DEAD-box Helicase DDX3X. J Mol Biol 2023; 435:168217. [PMID: 37517790 PMCID: PMC10528715 DOI: 10.1016/j.jmb.2023.168217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The DEAD-box RNA helicase DDX3X promotes translation initiation and associates with stress granules. A range of diverse viruses produce proteins that target DDX3X, including hepatitis C, dengue, vaccinia, and influenza A. The interaction of some of these viral proteins with DDX3X has been shown to affect antiviral intracellular signaling, but it is unknown whether and how viral proteins impact the biochemical activities of DDX3X and its physical roles in cells. Here we show that the protein K7 from vaccinia virus, which binds to an intrinsically disordered region in the N-terminus of DDX3X, inhibits RNA helicase and RNA-stimulated ATPase activities, as well as liquid-liquid phase separation of DDX3X in vitro. We demonstrate in HCT 116 cells that K7 inhibits association of DDX3X with stress granules, as well as the formation of aberrant granules induced by expression of DDX3X with a point mutation linked to medulloblastoma and DDX3X syndrome. The results show that targeting of the intrinsically disordered N-terminus is an effective viral strategy to modulate the biochemical functions and subcellular localization of DDX3X. Our findings also have potential therapeutic implications for diseases linked to aberrant DDX3X granule formation.
Collapse
Affiliation(s)
- Sarah Venus
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States
| | - Kaba Tandjigora
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States.
| |
Collapse
|
27
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
28
|
Wilkins KC, Schroeder T, Gu S, Revalde JL, Floor SN. Determinants of DDX3X sensitivity uncovered using a helicase activity in translation reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557805. [PMID: 37745530 PMCID: PMC10515938 DOI: 10.1101/2023.09.14.557805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study we developed the helicase activity reporter for translation (HART) which uses DDX3X-sensitive 5' UTRs to measure DDX3X mediated translational activity in cells. To dissect the structural underpinnings of DDX3X dependent translation, we first used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then employed HART to investigate how their perturbation impacts DDX3X-sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the ribosome complex as well as its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role regulating translation through its interaction with the translational machinery during ribosome scanning, and establish the HART reporter as a robust, lentivirally encoded measurement of DDX3X-dependent translation in cells.
Collapse
Affiliation(s)
- Kevin C. Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| | - Till Schroeder
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Julius-Maximilians-University of Würzburg, Würzburg, 97070, Germany
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jezrael L. Revalde
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94143, United States
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
29
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Xiang Y, Huang W, Tan L, Chen T, He Y, Irving PS, Weeks KM, Zhang QC, Dong X. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 2023; 621:423-430. [PMID: 37674078 PMCID: PMC10499604 DOI: 10.1038/s41586-023-06500-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.
Collapse
Affiliation(s)
- Yezi Xiang
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke Medical Center, Duke University, Durham, NC, USA
| | - Tianyuan Chen
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Fatti E, Hirth A, Švorinić A, Günther M, Stier G, Cruciat CM, Acebrón SP, Papageorgiou D, Sinning I, Krijgsveld J, Höfer T, Niehrs C. DEAD box RNA helicases act as nucleotide exchange factors for casein kinase 2. Sci Signal 2023; 16:eabp8923. [PMID: 37098120 DOI: 10.1126/scisignal.abp8923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
DDX RNA helicases promote RNA processing, but DDX3X also activates casein kinase 1 (CK1ε). We show that other DDX proteins also stimulate the protein kinase activity of CK1ε and that this extends to casein kinase 2 (CK2). CK2 enzymatic activity was stimulated by various DDX proteins at high substrate concentrations. DDX1, DDX24, DDX41, and DDX54 were required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X indicated that CK1 and CK2 kinase stimulation engages its RNA binding but not catalytic motifs. Mathematical modeling of enzyme kinetics and stopped-flow spectroscopy showed that DDX proteins function as nucleotide exchange factors toward CK2 and reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as important for kinase regulation and as a generic function of DDX proteins.
Collapse
Affiliation(s)
- Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Sergio P Acebrón
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
33
|
Nonstructural N- and C-tails of Dbp2 confer the protein full helicase activities. J Biol Chem 2023; 299:104592. [PMID: 36894019 DOI: 10.1016/j.jbc.2023.104592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available, but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with adenosine diphosphate nucleotide (ADP) at 3.22 Å and 3.05 Å resolutions, respectively. The structures of the ADP-bound post-hydrolysis state and apo-state demonstrate the conformational changes that occur when the nucleotides are released. Our results showed that the helicase core of Dbp2 shifted between open and closed conformation in solution, but the unwinding activity was hindered when the helicase core was restricted to a single conformation. A small-angle X-ray scattering (SAXS) experiment showed that the disordered amino- (N-) and carboxy- (C-) tails are flexible in solution. Truncation mutations confirmed that the N- and C-tails were critical for the nucleic acid binding, ATPase, and unwinding activities, with the C-tail being exclusively responsible for the annealing activity. Furthermore, we labeled the terminal tails to observe the conformational changes between the disordered tails and the helicase core upon binding nucleic acid substrates. Specifically, we found that the nonstructural N- and C-tails bind to RNA substrates and tether them to the helicase core domain, thereby conferring full helicase activities to the Dbp2 protein. This distinct structural characteristic provides new insight into the mechanism of DEAD-box RNA helicases.
Collapse
|
34
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
35
|
Ryan CS, Schröder M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Front Cell Dev Biol 2022; 10:1033684. [PMID: 36393867 PMCID: PMC9642913 DOI: 10.3389/fcell.2022.1033684] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 08/27/2023] Open
Abstract
The human DEAD-box protein DDX3X is an RNA remodelling enzyme that has been implicated in various aspects of RNA metabolism. In addition, like many DEAD-box proteins, it has non-conventional functions that are independent of its enzymatic activity, e.g., DDX3X acts as an adaptor molecule in innate immune signalling pathways. DDX3X has been linked to several human diseases. For example, somatic mutations in DDX3X were identified in various human cancers, and de novo germline mutations cause a neurodevelopmental condition now termed 'DDX3X syndrome'. DDX3X is also an important host factor in many different viral infections, where it can have pro-or anti-viral effects depending on the specific virus. The regulation of translation initiation for specific mRNA transcripts is likely a central cellular function of DDX3X, yet many questions regarding its exact targets and mechanisms of action remain unanswered. In this review, we explore the current knowledge about DDX3X's physiological RNA targets and summarise its interactions with the translation machinery. A role for DDX3X in translational reprogramming during cellular stress is emerging, where it may be involved in the regulation of stress granule formation and in mediating non-canonical translation initiation. Finally, we also discuss the role of DDX3X-mediated translation regulation during viral infections. Dysregulation of DDX3X's function in mRNA translation likely contributes to its involvement in disease pathophysiology. Thus, a better understanding of its exact mechanisms for regulating translation of specific mRNA targets is important, so that we can potentially develop therapeutic strategies for overcoming the negative effects of its dysregulation.
Collapse
|
36
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
37
|
Shen H, Yanas A, Owens MC, Zhang C, Fritsch C, Fare CM, Copley KE, Shorter J, Goldman YE, Liu KF. Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. Mol Cell 2022; 82:2588-2603.e9. [PMID: 35588748 PMCID: PMC9308757 DOI: 10.1016/j.molcel.2022.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023]
Abstract
Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celia Zhang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clark Fritsch
- Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Mitchell CW, Czajewski I, van Aalten DM. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J Biol Chem 2022; 298:102276. [PMID: 35863433 PMCID: PMC9428853 DOI: 10.1016/j.jbc.2022.102276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic posttranslational modification that is catalyzed by the enzyme O-GlcNAc transferase (OGT) and is essential for neurodevelopment and postnatal neuronal function. Missense mutations in OGT segregate with a novel X-linked intellectual disability syndrome, the OGT congenital disorder of glycosylation (OGT-CDG). One hypothesis for the etiology of OGT-CDG is that loss of OGT activity leads to hypo-O-GlcNAcylation of as yet unidentified, specific neuronal proteins, affecting essential embryonic, and postnatal neurodevelopmental processes; however, the identity of these O-GlcNAcylated proteins is not known. Here, we used bioinformatic techniques to integrate sequence conservation, structural data, clinical data, and the available literature to identify 22 candidate proteins that convey OGT-CDG. We found using gene ontology and PANTHER database data that these candidate proteins are involved in diverse processes including Ras/MAPK signaling, translational repression, cytoskeletal dynamics, and chromatin remodeling. We also identify pathogenic missense variants at O-GlcNAcylation sites that segregate with intellectual disability. This work establishes a preliminary platform for the mechanistic dissection of the links between protein O-GlcNAcylation and neurodevelopment in OGT-CDG.
Collapse
Affiliation(s)
- Conor W. Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacy Czajewski
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M.F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom,For correspondence: Daan M. F. van Aalten
| |
Collapse
|
39
|
Abstract
Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.
Collapse
Affiliation(s)
- Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, Korea
| |
Collapse
|
40
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
41
|
De Colibus L, Stunnenberg M, Geijtenbeek TB. DDX3X structural analysis: Implications in the pharmacology and innate immunity. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:100-109. [PMID: 35647523 PMCID: PMC9133689 DOI: 10.1016/j.crimmu.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections. This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate. The human DDX3X, an ATP-dependent RNA helicase, plays a central role in a variety of cellular processes involving RNA. DDX3X is implicated in antiviral signalling pathways. DDX3X interacts with full-length NLRP3 and its NACHT domain. The recent crystal structure of DDX3X in complex with dsRNA offers a model for understanding its binding to the HIV-1 TAR hairpin sequence.
Collapse
|
42
|
Venkataramanan S, Gadek M, Calviello L, Wilkins K, Floor SN. DDX3X and DDX3Y are redundant in protein synthesis. RNA (NEW YORK, N.Y.) 2021; 27:1577-1588. [PMID: 34535544 PMCID: PMC8594478 DOI: 10.1261/rna.078926.121] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
DDX3 is a DEAD-box RNA helicase that regulates translation and is encoded by the X- and Y-linked paralogs DDX3X and DDX3Y While DDX3X is ubiquitously expressed in human tissues and essential for viability, DDX3Y is male-specific and shows lower and more variable expression than DDX3X in somatic tissues. Heterozygous genetic lesions in DDX3X mediate a class of developmental disorders called DDX3X syndrome, while loss of DDX3Y is implicated in male infertility. One possible explanation for female-bias in DDX3X syndrome is that DDX3Y encodes a polypeptide with different biochemical activity. In this study, we use ribosome profiling and in vitro translation to demonstrate that the X- and Y-linked paralogs of DDX3 play functionally redundant roles in translation. We find that transcripts that are sensitive to DDX3X depletion or mutation are rescued by complementation with DDX3Y. Our data indicate that DDX3X and DDX3Y proteins can functionally complement each other in the context of mRNA translation in human cells. DDX3Y is not expressed in a large fraction of the central nervous system. These findings suggest that expression differences, not differences in paralog-dependent protein synthesis, underlie the sex-bias of DDX3X-associated diseases.
Collapse
Affiliation(s)
- Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kevin Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
43
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
Affiliation(s)
- Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ryan Asby
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael Screen
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zelvera Usheva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | | | - Björn Haupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Igor Ruiz De Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Peixun Zhou
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Alex E Blain
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Jamie Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Michelle Guet Khim Tan
- Department of Clinical Translational Research, Singapore General Hospital, Outram Road, Singapore 169856, Singapore
| | - G A Amos Burke
- Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Philip Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK; Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
44
|
Abstract
Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.
Collapse
|
45
|
Arginine Methylation of hnRNPK Inhibits the DDX3-hnRNPK Interaction to Play an Anti-Apoptosis Role in Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189764. [PMID: 34575922 PMCID: PMC8469703 DOI: 10.3390/ijms22189764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.
Collapse
|
46
|
Padmanabhan PK, Ferreira GR, Zghidi-Abouzid O, Oliveira C, Dumas C, Mariz FC, Papadopoulou B. Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides. Nucleic Acids Res 2021; 49:9459-9478. [PMID: 34358325 PMCID: PMC8450092 DOI: 10.1093/nar/gkab667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.
Collapse
Affiliation(s)
- Prasad Kottayil Padmanabhan
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Gabriel Reis Ferreira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Ouafa Zghidi-Abouzid
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Camila Oliveira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Filipe Colaço Mariz
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| |
Collapse
|
47
|
de Castro Fonseca M, de Oliveira JF, Araujo BHS, Canateli C, do Prado PFV, Amorim Neto DP, Bosque BP, Rodrigues PV, de Godoy JVP, Tostes K, Filho HVR, Nascimento AFZ, Saito A, Tonoli CCC, Batista FAH, de Oliveira PSL, Figueira AC, Souza da Costa S, Krepischi ACV, Rosenberg C, Westfahl H, da Silva AJR, Franchini KG. Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in DDX3X. iScience 2021; 24:102841. [PMID: 34381968 PMCID: PMC8335631 DOI: 10.1016/j.isci.2021.102841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Current studies estimate that 1–3% of females with unexplained intellectual disability (ID) present de novo splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation. By using a combination of biophysical assays and imaging approaches, we demonstrate that this mutant assembles solid-like condensates and amyloid-like fibrils. Although we observed greatly reduced expression of the mutant allele in a patient who exhibits skewed X inactivation, this appears to be enough to sequestrate healthy proteins into solid-like ectopic granules, compromising cell function. Therefore, our data suggest ID-linked DDX3X L556S mutation as a disorder arising from protein misfolding and aggregation. DDX3X mutations skew X-inactivation and are found in 1-3% of unexplained ID in females DDX3X mutant proteins assemble solid-like condensates and amyloid-like fibrils Aberrant granules formed by DDX3X mutants sequestrate healthy DDX3X protein ID-linked DDX3X L556S mutation decreases cell viability and induces apoptosis
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Juliana Ferreira de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paula Favoretti Vital do Prado
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Andrey Fabricio Ziem Nascimento
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Ana Carolina Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Harry Westfahl
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antônio José Roque da Silva
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Calviello L, Venkataramanan S, Rogowski KJ, Wyler E, Wilkins K, Tejura M, Thai B, Krol J, Filipowicz W, Landthaler M, Floor SN. DDX3 depletion represses translation of mRNAs with complex 5' UTRs. Nucleic Acids Res 2021; 49:5336-5350. [PMID: 33905506 PMCID: PMC8136831 DOI: 10.1093/nar/gkab287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.
Collapse
Affiliation(s)
- Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karol J Rogowski
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Kevin Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Malvika Tejura
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bao Thai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,IRI Life Sciences, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
49
|
Moore AT, de Victoria AL, Koculi E. Interactions of the C-Terminal Truncated DEAD-Box Protein DDX3X With RNA and Nucleotide Substrates. ACS OMEGA 2021; 6:12640-12646. [PMID: 34056415 PMCID: PMC8154130 DOI: 10.1021/acsomega.1c00700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
DDX3X is a human DEAD-box RNA helicase implicated in many important cellular processes. In addition to the RecA-like catalytic core, DDX3X contains N- and C-terminal domains. The ancillary domains of DEAD-box RNA helicases have been shown to modulate their interactions with RNA and nucleotide substrates. Here, with the goal of understanding the role of N- and C-terminal domains of DDX3X on the DDX3X catalytic activity, we examined the interactions of RNA substrates and nucleotides with a DDX3X construct possessing the entire N-terminal domain and the catalytic core but lacking 80 residues from its C-terminal domain. Next, we compared our results with previously investigated DDX3X constructs. Our data show that the C-terminal truncated DDX3X does not bind to a blunt-ended double-helix RNA. This conclusion agrees with the data obtained on the wild-type LAF-1 protein, the DDX3X ortholog in Caenorhabditis elegans, and disagrees with the data obtained on the minimally active DDX3X construct, which misses 131 residues from its N-terminal domain and 80 residues from its C-terminal domain. The minimally active DDX3X construct was able to bind to the blunt-ended RNA construct. Combined, the previous studies and our results indicate that the N-terminal of DDX3X modulates the choice of DDX3X-RNA substrates. Furthermore, a previous study showed that the wild-type DDX3X construct hydrolyzes all four nucleotides and deoxynucleotides, both in the presence and absence of RNA. The C-terminal truncated DDX3X investigated here hydrolyzes only cytidine triphosphate (CTP) in the absence of RNA and CTP, adenosine triphosphate (ATP), and deoxyribose adenosine triphosphate (dATP) in the presence of RNA. Hence, the C-terminal truncated DDX3X has a more stringent nucleotide specificity than wild-type DDX3X.
Collapse
Affiliation(s)
- Anthony
F. T. Moore
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Eda Koculi
- Department
of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
50
|
Chen M, Asanuma M, Takahashi M, Shichino Y, Mito M, Fujiwara K, Saito H, Floor SN, Ingolia NT, Sodeoka M, Dodo K, Ito T, Iwasaki S. Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. Cell Chem Biol 2021; 28:475-486.e8. [PMID: 33296667 PMCID: PMC8052261 DOI: 10.1016/j.chembiol.2020.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
The translation inhibitor rocaglamide A (RocA) has shown promising antitumor activity because it uniquely clamps eukaryotic initiation factor (eIF) 4A onto polypurine RNA for selective translational repression. As eIF4A has been speculated to be a unique target of RocA, alternative targets have not been investigated. Here, we reveal that DDX3 is another molecular target of RocA. Proximity-specific fluorescence labeling of an O-nitrobenzoxadiazole-conjugated derivative revealed that RocA binds to DDX3. RocA clamps the DDX3 protein onto polypurine RNA in an ATP-independent manner. Analysis of a de novo-assembled transcriptome from the plant Aglaia, a natural source of RocA, uncovered the amino acid critical for RocA binding. Moreover, ribosome profiling showed that because of the dominant-negative effect of RocA, high expression of eIF4A and DDX3 strengthens translational repression in cancer cells. This study indicates that sequence-selective clamping of DDX3 and eIF4A, and subsequent dominant-negative translational repression by RocA determine its tumor toxicity.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Miwako Asanuma
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Koichi Fujiwara
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Hironori Saito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Japan
| | - Kosuke Dodo
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Japan.
| |
Collapse
|