1
|
Zhao Y, Dhani S, Gogvadze V, Zhivotovsky B. The crosstalk between SND1 and PDCD4 is associated with chemoresistance of non-small cell lung carcinoma cells. Cell Death Discov 2025; 11:34. [PMID: 39885142 PMCID: PMC11782486 DOI: 10.1038/s41420-025-02310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells. Here, we showed that silencing of SND1 augmented the sensitivity of NSCLC cells to different chemotherapeutic drugs. Additionally, the expression of PDCD4 (a tumor suppressor highly associated with lung cancer) in NSCLC cells with low endogenous levels was attenuated by SND1 silencing, implying that SND1 might function as a molecular regulator upstream of PDCD4. PDCD4 is differentially expressed in various NSCLC cells. In the NSCLC cells (A549 and H23 cells) with low expression of PDCD4, despite the downregulation of PDCD4, silencing of SND1 still led to sensitization of NSCLC cells to treatment with different chemotherapeutic agents by the inhibition of autophagic activity. Thus, a novel correlation interlinking SND1 and PDCD4 in the regulation of NSCLC cells concerning chemotherapy was revealed, which contributes to understanding the mechanisms of chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
| |
Collapse
|
2
|
Wu Y, Chen Z, Zheng Z, Li X, Shu J, Mao R, An J, Fan S, Luo R, Guo Y, Xu W, Liang M, Huang K, Wang C. Tudor-SN exacerbates pathological vascular remodeling by promoting the polyubiquitination of PTEN via NEDD4-1. J Biomed Sci 2024; 31:88. [PMID: 39237902 PMCID: PMC11378411 DOI: 10.1186/s12929-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Zilong Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhe Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiangcheng Shu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruiqi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jie An
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Siyuan Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruijie Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wenjing Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| |
Collapse
|
3
|
Wang Y, Wang Y, Fang Y, Jiang H, Yu L, Hu H, Zeng S. SND1 Regulates Organic Anion Transporter 2 Protein Expression and Sensitivity of Hepatocellular Carcinoma Cells to 5-Fluorouracil. Drug Metab Dispos 2024; 52:997-1008. [PMID: 38960734 DOI: 10.1124/dmd.124.001757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. Inadequate efficacy of 5-fluorouracil (5-FU) on HCC could be related to low expression of human organic anion transporter 2 (OAT2). However, the knowledge of downregulation of OAT2 in HCC remains limited. We explored the underlying mechanism focusing on protein expression regulation and attempted to design a strategy to sensitize HCC cells to 5-FU. In this study, we revealed that the 1 bp to 300 bp region of OAT2 mRNA 3' untranslated region (UTR) reduced its protein expression and uptake activity in Li-7 and PLC/PRF/5 cells. Mechanistically, it was demonstrated that staphylococcal nuclease and Tudor domain containing 1 (SND1) bound at the 1 bp to 300 bp region of OAT2 mRNA 3' UTR, leading to a decrease in OAT2 protein expression. Enrichment analysis results indicated reduction of OAT2 might be mediated by translational inhibition. Furthermore, the knockdown of SND1 upregulated OAT2 protein expression and uptake activity. Based on this, decreasing SND1 expression enhanced 5-FU-caused G1/S phase arrest in Li-7 and PLC/PRF/5 cells, resulting in suppression of cell proliferation. Additionally, the knockdown of SND1 augmented the inhibitory effect of 5-FU on PLC/PRF/5 xenograft tumor growth in vivo by increasing OAT2 protein expression and accumulation of 5-FU in the tumor. Collectively, a combination of inhibition of SND1 with 5-FU might be a potential strategy to sensitize HCC cells to 5-FU from the perspective of restoring OAT2 protein level. SIGNIFICANCE STATEMENT: We investigated the regulatory mechanism of OAT2 protein expression in HCC cells and designed a strategy to sensitize them to 5-FU (OAT2 substrate) via restoring OAT2 protein level. It found that SND1, an RNA binding protein, regulated OAT2 protein expression by interacting with OAT2 mRNA 3' UTR 1-300 bp region. Through decreasing SND1, the antitumor effect of 5-FU on HCC was enhanced in vitro and in vivo, indicating that SND1 could be a potential target for sensitizing HCC cells to 5-FU.
Collapse
MESH Headings
- Humans
- Fluorouracil/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Animals
- Endonucleases/genetics
- Endonucleases/metabolism
- Cell Line, Tumor
- Mice
- Mice, Nude
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays/methods
- Antimetabolites, Antineoplastic/pharmacology
- Mice, Inbred BALB C
- Organic Anion Transporters, Sodium-Independent/metabolism
- Organic Anion Transporters, Sodium-Independent/genetics
- Cell Proliferation/drug effects
- 3' Untranslated Regions/genetics
- Male
Collapse
Affiliation(s)
- Yu Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Yingying Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Yanyan Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China and State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Liu C, Cong Y, Chen L, Lv F, Cheng L, Song Y, Xing Y. Hsa_circ_0001583 fuels bladder cancer metastasis by promoting staphylococcal nuclease and tudor domain containing 1-mediated MicroRNA decay. Neoplasia 2024; 47:100963. [PMID: 38176295 PMCID: PMC10805949 DOI: 10.1016/j.neo.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Muscle-invasive and metastatic bladder cancer indicates extra worse prognosis. Accumulating evidence roots for the prominent role of circular RNAs(circRNAs) in bladder cancer, while the mechanisms linking circRNAs and bladder cancer metastasis remain limitedly investigated. Here, we identified a significantly upregulated circRNA candidate, hsa_circ_0001583, from online datasets. Validated by qRT-PCR, PCR, sanger sequencing, actinomycin D and RNase R digestion experiments, hsa_circ_0001583 was proved to be a genuine circular RNA with higher expression levels in bladder cancer tissue. Through gain and loss of function experiments, hsa_circ_0001583 exhibited potent migration and invasion powers both in vitro and in vivo. The staphylococcal nuclease and Tudor domain containing 1 (SND1) was identified as an authentic binding partner for hsa_circ_0001583 through RNA pulldown and RIP experiments. Elevated levels of hsa_circ_0001583 could bind more to SND1 and protect the latter from degradation. Rescue experiments demonstrated that such interaction-induced increased in SND1 levels in bladder cancer cells enabled the protein to pump its endonuclease activity, leading to the degradation of tumor-suppressing MicroRNAs (miRNAs) including miR-126-3p, the suppressor of Disintegrin And Metalloproteinase Domain-Containing Protein 9 (ADAM9), ultimately driving cells into a highly migrative and invasive state. In summary, our study is the first to highlight the upregulation of hsa_circ_0001583 in bladder cancer and its role in downregulating miR-126-3p by binding to and stabilizing the SND1 protein, thereby promoting bladder cancer cell migration and invasion. This study adds hsa_circ_0001583 to the pool of bladder cancer metastasis biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yukun Cong
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yifei Xing
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
5
|
Memetimin H, Zhu B, Lee S, Katz WS, Kern PA, Finlin BS. Improved β-cell function leads to improved glucose tolerance in a transgenic mouse expressing lipoprotein lipase in adipocytes. Sci Rep 2022; 12:22291. [PMID: 36566329 PMCID: PMC9789969 DOI: 10.1038/s41598-022-26995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes the triglyceride core of lipoproteins and also functions as a bridge, allowing for lipoprotein and cholesterol uptake. Transgenic mice expressing LPL in adipose tissue under the control of the adiponectin promoter (AdipoQ-LPL) have improved glucose metabolism when challenged with a high fat diet. Here, we studied the transcriptional response of the adipose tissue of these mice to acute high fat diet exposure. Gene set enrichment analysis (GSEA) provided mechanistic insight into the improved metabolic phenotype of AdipoQ-LPL mice. First, the cholesterol homeostasis pathway, which is controlled by the SREBP2 transcription factor, is repressed in gonadal adipose tissue AdipoQ-LPL mice. Furthermore, we identified SND1 as a link between SREBP2 and CCL19, an inflammatory chemokine that is reduced in AdipoQ-LPL mice. Second, GSEA identified a signature for pancreatic β-cells in adipose tissue of AdipoQ-LPL mice, an unexpected finding. We explored whether β-cell function is improved in AdipoQ-LPL mice and found that the first phase of insulin secretion is increased in mice challenged with high fat diet. In summary, we identify two different mechanisms for the improved metabolic phenotype of AdipoQ-LPL mice. One involves improved adipose tissue function and the other involves adipose tissue-pancreatic β-cell crosstalk.
Collapse
Affiliation(s)
- Hasiyet Memetimin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Beibei Zhu
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Sangderk Lee
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Wendy S. Katz
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Philip A. Kern
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Brian S. Finlin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| |
Collapse
|
6
|
Zheng H, Wang J, Zhang W, He B, Wang Y, Zhang X, Mao H, Fan L. Mechanism for Bioactive Nanomaterial circ0024831 Regulation of Staphylococcal Nuclease Domain Containing 1 via RNA Methylation Recognition in Osteosarcoma. J Biomed Nanotechnol 2022; 18:453-462. [PMID: 35484754 DOI: 10.1166/jbn.2022.3256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive nanomaterial circular RNA (circRNA) is an important non-coding RNA with a strong specificity, stable structure and high expression abundance. It can affect many diseases and physiological processes and may become a new way of disease diagnosis and targeted therapy. Recent studies have shown that Staphylococcal Nuclease Domain-Containing Protein 1 (SND1) can recognize N6-methyladenine (M6A) modified mRNA and regulate target mRNA stability. It can then control the expression of a series of downstream genes. However, whether SND1 can directly combine with circRNA and regulate its stability and function are new issues to be discussed. Results showed bioactive nanomaterial circ0024831 could directly bind to the Tudor domain of SND1 in the cytoplasm to block the recognition of SND1 to M6A modified RNA thus reducing the stability of downstream target gene mRNA and inhibiting the expression of downstream regulatory proteins. The down-regulation of circ0024831 expression in osteosarcoma cells relieved inhibition of SND1 which lead to change of tumor-related gene expression profile, promoting the occurrence and development of osteosarcoma.
Collapse
Affiliation(s)
- Hongrui Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Juan Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Wenjie Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Bin He
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yunhua Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | | | - Hui Mao
- Nanjing Medical University, Nanjing 211166, China
| | - Lei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
7
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Zhang J, Song Y, Shi Q, Fu L. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front Med 2021; 15:649-656. [PMID: 33973101 DOI: 10.1007/s11684-021-0830-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Tumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K-AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial-mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.
Collapse
Affiliation(s)
- Jingyue Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin, 300060, China
| | - Yawen Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin, 300060, China
| | - Qianqian Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin, 300060, China
| | - Li Fu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
9
|
Zhang G, Tan G, Li T, Ai J, Song Y, Zhou Z, Xiao J, Li W. Analysis of ceRNA network of differentially expressed genes in FaDu cell line and a cisplatin-resistant line derived from it. PeerJ 2021; 9:e11645. [PMID: 34249502 PMCID: PMC8255068 DOI: 10.7717/peerj.11645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hypopharyngeal cancer accounts for 2% in head and neck cancers and has a poor prognosis. Cisplatin is a widely used chemotherapeutic drug in kinds of carcinomas, concluding hypopharyngeal cancer. However, the resistance of cisplatin appeared in recent years. Cisplatin-resistance has been partly explored before, but rarely in hypopharyngeal cancer. Methods We cultured the hypopharyngeal cancer cell (FaDu) and induced its cisplatin-resistant cell (FaDu/DDP4). Then we tested the differentially expressed genes (DEGs) between FaDu and FaDu/DDP4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the DEGs, and we drew the ceRNA networks of DEGs. Finally, we chose eight miRNAs and six mRNAs for qRT-PCR to verify our microarray. Results We induced cisplatin-resistant FaDu/DDP4 and proved its chemoresistance. The resistance index (RI) of FaDu/DDP4 was 2.828. DEGs contain 2,388 lncRNAs, 1,932 circRNAs, 745 mRNAs and 202 miRNAs. These 745 mRNAs were classified into three domains and 47 secondary GO terms. In KEGG pathway enrichment, the “TNF signaling pathway”, “IL-17 signaling pathway” and “JAK-STAT signaling pathway” were potentially significant signaling pathways. Then, 52 lncRNAs, 148 circRNAs, 155 mRNAs and 18 miRNAs were selected to draw the network. We noticed several potential targets (as miR-197-5p, miR-6808-5p, APOE, MMP1, S100A9 and CYP24A1). At last, the eight miRNAs and six mRNAs that are critical RNAs in ceRNA network were verified by qRT-PCR. Conclusion The microarray helped to find DEGs in cisplatin-resistant hypopharyngeal cancer. TNF, IL-17 and JAK-STAT signaling pathways might be more significant for cisplatin-resistance. MiR-197-5p, miR-6808-5p, APOE, MMP1, S100A9 and CYP24A1 might be potential genes inducing resistance.
Collapse
Affiliation(s)
- Gehou Zhang
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tieqi Li
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingang Ai
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yexun Song
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zheng Zhou
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Dynamic Changes of Urine Proteome in Rat Models Inoculated with Two Different Hepatoma Cell Lines. JOURNAL OF ONCOLOGY 2021; 2021:8895330. [PMID: 33505467 PMCID: PMC7810548 DOI: 10.1155/2021/8895330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Urine can accumulate systemic changes with no mechanism to be stable, which may reflect early changes associated with physiological or pathophysiological processes. To explore the potential value of the urine proteome, two rat models were established by intrahepatic injection of two different hepatoma cell lines, CBRH-7919 and RH-35. Urine samples were collected and analyzed. Compared with controls, the two models exhibited different numbers and types of differentially expressed urinary proteins despite having similar histological results. The results were compared with the urine proteome of a Walker 256 (W-256) liver tumor model. The differentially expressed urinary protein patterns in the three models were different. These findings demonstrate that changes in the urine proteomes of the two models can be detected at early stages and that the patterns of differentially expressed urinary proteins can differ even when the histological results are similar. Urinary proteins have potential utility for distinguishing among different tumor cells grown in the same organ.
Collapse
|
11
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
12
|
Yu L, Xu J, Liu J, Zhang H, Sun C, Wang Q, Shi C, Zhou X, Hua D, Luo W, Bian X, Yu S. The novel chromatin architectural regulator SND1 promotes glioma proliferation and invasion and predicts the prognosis of patients. Neuro Oncol 2020; 21:742-754. [PMID: 30753603 DOI: 10.1093/neuonc/noz038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upregulation of staphylococcal nuclease domain-containing protein 1 (SND1) is a common phenomenon in different human malignant tissues. However, little information is available on the underlying mechanisms through which SND1 affects glioma cell proliferation and invasion. METHODS SND1, Ras homolog family member A (RhoA), and marker of proliferation Ki-67 (MKI67) were analyzed in 187 gliomas by immunostaining. The correlation between those markers and patients' prognoses was assessed using the Kaplan-Meier estimator. Gene Ontology, chromatin immunoprecipitation, electrophoretic mobility shift assay, and chromosome conformation capture were applied to identify SND1-activated target genes. We also used MTT, colony formation, transwell and orthotopic implantation assays to investigate SND1 function in glioma cell proliferative and invasive activity. RESULTS We identified SND1 and RhoA as independent predictors of poor prognosis in glioma patients. SND1 knockdown significantly suppressed the proliferation and invasion of glioma cells. Mechanistically, we discovered that SND1 facilitated malignant glioma phenotypes by epigenetically inducing chromatin topological interaction, which activated downstream RhoA transcription. RhoA sequentially regulated expression of CCND1, CCNE1, CDK4, and CDKN1B and accelerated G1/S phase transition in glioma cell proliferation. CONCLUSIONS Our findings identify SND1 as a novel chromatin architectural modifier and promising prognostic indicator for glioma classification and treatment.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Jinling Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jing Liu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Huibian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
13
|
Liu R, Wang X, Curtiss C, Sheikh MS, Huang Y. Monoglyceride lipase mediates tumor-suppressive effects by promoting degradation of X-linked inhibitor of apoptosis protein. Cell Death Differ 2020; 27:2888-2903. [PMID: 32376875 DOI: 10.1038/s41418-020-0549-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022] Open
Abstract
We have previously reported that Monoglyceride Lipase (MGL) expression is absent or reduced in various human malignancies and MGL-deficient mice develop tumors in multiple organs. Evidence also suggests MGL to be a tumor suppressor, however, the mechanisms underlying its tumor-suppressive actions remain to be investigated. Here, we report a novel function of MGL as a negative regulator of XIAP, an important inhibitor of apoptosis. We found that MGL directly interacted with XIAP and enhanced E3-ligase activity and proteasomal degradation of XIAP. MGL overexpression induced cell death that was coupled with caspase activation and reduced XIAP levels. N-terminus of MGL was found to mediate interactions with XIAP and induce cell death. MGL-deficient cells exhibited elevated XIAP levels and exhibited resistance to anticancer drugs. XIAP expression was significantly elevated in tissues of MGL-deficient animals as well as human lung cancers exhibiting reduced MGL expression. Thus, MGL appears to mediate its tumor-suppressive actions by inhibiting XIAP to induce cell death.
Collapse
Affiliation(s)
- Renyan Liu
- Department of Pharmacology, Upstate Medical University State University of New York, Syracuse, NY, 13210, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Bostone, MA, 02215, USA
| | - Xin Wang
- Department of Pharmacology, Upstate Medical University State University of New York, Syracuse, NY, 13210, USA
| | - Christopher Curtiss
- Department of Pathology, Upstate Medical University State University of New York, Syracuse, NY, 13210, USA
| | - M Saeed Sheikh
- Department of Pharmacology, Upstate Medical University State University of New York, Syracuse, NY, 13210, USA
| | - Ying Huang
- Department of Pharmacology, Upstate Medical University State University of New York, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O, Rueda Y. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158589. [DOI: 10.1016/j.bbalip.2019.158589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
15
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
16
|
Identification of hemicatenane-specific binding proteins by fractionation of HeLa nuclei extracts. Biochem J 2020; 477:509-524. [PMID: 31930351 DOI: 10.1042/bcj20190855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
DNA hemicatenanes (HCs) are four-way junctions in which one strand of a double-stranded helix is catenated with one strand of another double-stranded DNA. Frequently mentioned as DNA replication, recombination and repair intermediates, they have been proposed to participate in the spatial organization of chromosomes and in the regulation of gene expression. To explore potential roles of HCs in genome metabolism, we sought to purify proteins capable of binding specifically HCs by fractionating nuclear extracts from HeLa cells. This approach identified three RNA-binding proteins: the Tudor-staphylococcal nuclease domain 1 (SND1) protein and two proteins from the Drosophila behavior human splicing family, the paraspeckle protein component 1 and the splicing factor proline- and glutamine-rich protein. Since these proteins were partially pure after fractionation, truncated forms of these proteins were expressed in Escherichia coli and purified to near homogeneity. The specificity of their interaction with HCs was re-examined in vitro. The two truncated purified SND1 proteins exhibited specificity for HCs, opening the interesting possibility of a link between the basic transcription machinery and HC structures via SND1.
Collapse
|
17
|
Ochoa B, Chico Y, Martínez MJ. Insights Into SND1 Oncogene Promoter Regulation. Front Oncol 2018; 8:606. [PMID: 30619748 PMCID: PMC6297716 DOI: 10.3389/fonc.2018.00606] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.
Collapse
Affiliation(s)
| | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
18
|
Xin L, Zhao R, Lei J, Song J, Yu L, Gao R, Ha C, Ren Y, Liu X, Liu Y, Yao Z, Yang J. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells. FASEB J 2018; 33:3795-3806. [PMID: 30509125 DOI: 10.1096/fj.201801728r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Staphylococcal nuclease domain-containing protein 1 (SND1) has been reported as an oncoprotein in a variety of cancers involving multiple processes, including proliferation, angiogenesis, and metastasis. However, the mechanisms underlying metastasis remain largely unknown. Herein, by using the ovarian cancer cell line SKOV3, which has high metastasis ability, we showed that loss-of-function of SND1 dramatically suppressed the invasion and migration of SKOV3 cells. We then performed gene expression profiles and further verified (by use of quantitative PCR and Western blot analysis) that loss-of-function of SND1 resulted in up-regulation of epithelial markers, such as epithelial cadherin and claudin 1, and down-regulation of mesenchymal markers, including neural cadherin and vimentin. Moreover, we illustrated that SLUG, a key transcription factor implicated in epithelial-mesenchymal transition and metastasis, acts as an essential effector of the SND1-promoted epithelial-mesenchymal transition process via regulating N-CAD and VIM expression (or E-CAD and CLDN1). The underlying molecular mechanisms illustrated that SND1 regulates the gene transcriptional activation of SLUG by increasing chromatin accessibility through the recruitment of the acetyltransferases GCN5 and CBP/p300 to the SLUG promoter proximal region. Overall, SND1 was identified as a novel upstream regulator of SLUG, which plays important roles in regulating the E-CAD/N-CAD expression switch.-Xin, L., Zhao, R., Lei, J., Song, J., Yu, L., Gao, R., Ha, C., Ren, Y., Liu, X., Liu, Y., Yao, Z., Yang, J. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells.
Collapse
Affiliation(s)
- Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ran Zhao
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China; and
| | - Jing Lei
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jianchan Song
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Lin Yu
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ru Gao
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Chuanbo Ha
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China; and
| | - Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xin Liu
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yixin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China; and
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cellular and Molecular Immunology in Tianjin, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
19
|
Navarro-Imaz H, Chico Y, Rueda Y, Fresnedo O. Channeling of newly synthesized fatty acids to cholesterol esterification limits triglyceride synthesis in SND1-overexpressing hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:137-146. [PMID: 30448348 DOI: 10.1016/j.bbalip.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022]
Abstract
SND1 is a putative oncoprotein whose molecular function remains unclear. Its overexpression in hepatocellular carcinoma impairs cholesterol homeostasis due to the altered activation of the sterol regulatory element-binding protein (SREBP) 2, which results in the accumulation of cellular cholesteryl esters (CE). In this work, we explored whether high cholesterol synthesis and esterification originates changes in glycerolipid metabolism that might affect cell growth, given that acetyl-coenzyme A is required for cholesterogenesis and fatty acids (FA) are the substrates of acyl-coenzyme A:cholesterol acyltransferase (ACAT). SND1-overexpressing hepatoma cells show low triglyceride (TG) synthesis, but phospholipid biosynthesis or cell growth is not affected. Limited TG synthesis is not due to low acetyl-coenzyme A or NADPH availability. We demonstrate that the main factor limiting TG synthesis is the utilization of FAs for cholesterol esterification. These metabolic adaptations are linked to high Scd1 expression, needed for the de novo production of oleic acid, the main FA used by ACAT. We conclude that high cholesterogenesis due to SND1 overexpression might determine the channeling of FAs to CEs.
Collapse
Affiliation(s)
- Hiart Navarro-Imaz
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Yolanda Chico
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Yuri Rueda
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Olatz Fresnedo
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
20
|
Cui X, Zhao C, Yao X, Qian B, Su C, Ren Y, Yao Z, Gao X, Yang J. SND1 acts as an anti-apoptotic factor via regulating the expression of lncRNA UCA1 in hepatocellular carcinoma. RNA Biol 2018; 15:1364-1375. [PMID: 30321081 DOI: 10.1080/15476286.2018.1534525] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multifunctional SND1 (staphylococcal nuclease and tudor domain containing 1) protein is reportedly associated with different types of RNA molecules, including mRNA, miRNA, pre-miRNA, and dsRNA. SND1 has been implicated in a number of biological processes in eukaryotic cells, including cell cycle, DNA damage repair, proliferation, and apoptosis. However, the specific molecular mechanism regarding the anti-apoptotic role of SND1 in mammalian cells remains largely elusive. In this study, the analysis of the online HPA (human protein atlas) and TCGA (the cancer genome atlas) databases showed the significantly high expression of SND1 in liver cancer patients. We found that the downregulation or complete depletion of SND1 enhanced the apoptosis levels of HepG2 and SMMC-7721 cells upon stimulation with 5-Fu (5-fluorouracil), a chemotherapeutic drug for HCC (hepatocellular carcinoma). SND1 affected the 5-Fu-induced apoptosis levels of HCC cells by modulating the expression of UCA1 (urothelial cancer associated 1), which is a lncRNA (long non-coding RNA). Moreover, MYB (MYB proto-oncogene, transcription factor) may be involved in the regulation of SND1 in UCA1 expression. In summary, our study identified SND1 as an anti-apoptotic factor in hepatocellular carcinoma cells via the modulation of lncRNA UCA1, which sheds new light on the relationship between SND1 protein and lncRNA.
Collapse
Affiliation(s)
- Xiaoteng Cui
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Chunyan Zhao
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Xuyang Yao
- c Department of Ophthalmology, Peking University First Hospital , Beijing , China
| | - Baoxin Qian
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Chao Su
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Yuanyuan Ren
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Zhi Yao
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Xingjie Gao
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| | - Jie Yang
- a Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences , Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project , Tianjin Medical University , Tianjin , China
| |
Collapse
|
21
|
Xu JL, Gan XX, Ni J, Shao DC, Shen Y, Miao NJ, Xu D, Zhou L, Zhang W, Lu LM. SND p102 promotes extracellular matrix accumulation and cell proliferation in rat glomerular mesangial cells via the AT1R/ERK/Smad3 pathway. Acta Pharmacol Sin 2018; 39:1513-1521. [PMID: 30150789 DOI: 10.1038/aps.2017.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
SND p102 was first described as a transcriptional co-activator, and subsequently determined to be a co-regulator of Pim-1, STAT6 and STAT5. We previously reported that SND p102 expression was increased in high glucose-treated mesangial cells (MCs) and plays a role in the extracellular matrix (ECM) accumulation of MCs by regulating the activation of RAS. In this study, we further examined the roles of SND p102 in diabetic nephropathy (DN)-induced glomerulosclerosis. Rats were injected with STZ (50 mg/kg, ip) to induce diabetes. MCs or isolated glomeruli were cultured in normal glucose (NG, 5.5 mmol/L)- or high glucose (HG, 25 mmol/L)-containing DMEM. We found that SND p102 expression was significantly increased in the diabetic kidneys, as well as in HG-treated isolated glomeruli and MCs. In addition, HG treatment induced significant fibrotic changes in MCs evidenced by enhanced protein expression of TGF-β, fbronectin and collagen IV, and significantly increased the proliferation of MCs. We further revealed that overexpression of SND p102 significantly increased the protein expression of angiotensin II (Ang II) type 1 receptor (AT1R) in MCs by increasing its mRNA levels via directly targeting the AT1R 3'-UTR, which resulted in activation of the ERK/Smad3 signaling and subsequently promoted the up-regulation of fbronectin, collagen IV, and TGF-β in MCs, as well as the cell proliferation. These results demonstrate that SND p102 is a key regulator of AT1R-mediating ECM synthesis and cell proliferation in MCs. Thus, small molecule inhibitors of SND p102 may be a novel therapeutic strategy for DN.
Collapse
|
22
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
23
|
Chidambaranathan-Reghupaty S, Mendoza R, Fisher PB, Sarkar D. The multifaceted oncogene SND1 in cancer: focus on hepatocellular carcinoma. ACTA ACUST UNITED AC 2018; 4. [PMID: 32258418 PMCID: PMC7117101 DOI: 10.20517/2394-5079.2018.34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcal nuclease and tudor domain containing 1 (SND1) is a protein that regulates a complex array of functions. It controls gene expression through transcriptional activation, mRNA degradation, mRNA stabilization, ubiquitination and alternative splicing. More than two decades of research has accumulated evidence of the role of SND1 as an oncogene in various cancers. It is a promoter of cancer hallmarks like proliferation, invasion, migration, angiogenesis and metastasis. In addition to these functions, it has a role in lipid metabolism, inflammation and stress response. The participation of SND1 in such varied functions makes it distinct from most oncogenes that are relatively more focused in their role. This becomes important in the case of hepatocellular carcinoma (HCC) since in addition to typical cancer drivers, factors like lipid metabolism deregulation and chronic inflammation can predispose hepatocytes to HCC. The objective of this review is to provide a summary of the current knowledge available on SND1, specifically in relation to HCC and to shed light on its prospect as a therapeutic target.
Collapse
Affiliation(s)
| | - Rachel Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
24
|
Hu ZB, Ma KL, Zhang Y, Wang GH, Liu L, Lu J, Chen PP, Lu CC, Liu BC. Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacol Sin 2018; 39:1022-1033. [PMID: 29620052 DOI: 10.1038/aps.2017.177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023]
Abstract
Inflammation and lipid disorders play crucial roles in synergistically accelerating the progression of diabetic nephropathy (DN). In this study we investigated how inflammation and lipid disorders caused tubulointerstitial injury in DN in vivo and in vitro. Diabetic db/db mice were injected with 10% casein (0.5 mL, sc) every other day for 8 weeks to cause chronic inflammation. Compared with db/db mice, casein-injected db/db mice showed exacerbated tubulointerstitial injury, evidenced by increased secretion of extracellular matrix (ECM) and cholesterol accumulation in tubulointerstitium, which was accompanied by activation of the CXC chemokine ligand 16 (CXCL16) pathway. In the in vitro study, we treated HK-2 cells with IL-1β (5 ng/mL) and high glucose (30 mmol/L). IL-1β treatment increased cholesterol accumulation in HK-2 cells, leading to greatly increased ROS production, ECM protein expression levels, which was accompanied by the upregulated expression levels of proteins in the CXCL16 pathway. In contrast, after CXCL16 in HK-2 cells was knocked down by siRNA, the IL-1β-deteriorated changes were attenuated. In conclusion, inflammation accelerates renal tubulointerstitial lesions in mouse DN via increasing the activity of CXCL16 pathway.
Collapse
|
25
|
Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, Meng F, Cui Y, Wang J, Zhang B, Song X, Lu Z, Zheng T, Liu L. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 2018; 17:90. [PMID: 29764424 PMCID: PMC5953401 DOI: 10.1186/s12943-018-0838-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. METHODS We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. RESULTS We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. CONCLUSION Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.
Collapse
Affiliation(s)
- Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yao Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yan Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
26
|
Monoglyceride lipase gene knockout in mice leads to increased incidence of lung adenocarcinoma. Cell Death Dis 2018; 9:36. [PMID: 29348400 PMCID: PMC5833374 DOI: 10.1038/s41419-017-0188-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
Monoglyceride lipase (MGL) is a recently discovered cancer-related protein. The role of MGL in tumorigenesis remains to be fully elucidated. We have previously shown that MGL expression was reduced or absent in multiple human malignancies, and overexpression of MGL inhibited cancer cell growth. Here, we have generated the MGL knockout mice to further investigate the role of MGL in tumorigenesis in vivo. Our results indicate that MGL-deficient (MGL+/−, MGL−/−) mice exhibited a higher incidence of neoplasia in multiple organs, including the lung, spleen, liver and lymphoid tissues. Interestingly, lung neoplasms were the most common neoplastic changes in the MGL-deficient mice. Importantly, MGL-deficient animals developed premalignant high-grade dysplasia and adenocarcinomas in their lungs. Investigation of the MGL expression status in lung cancer specimens from patients also revealed that MGL expression was significantly reduced in the majority of primary human lung cancers when compared to corresponding matched normal tissues. Furthermore, mouse embryonic fibroblasts (MEFs) from MGL-deficient animals showed characteristics of cellular transformation including increased cell proliferation, foci formation and anchorage-independent growth. Our results also indicate that MGL deficiency was associated with activation of EGFR and ERK. In addition, pro-inflammatory molecules COX-2 and TNF-α were also activated in the MGL-deficient lung tissues. Thus, our results provide new insights into the novel role of MGL as an important negative regulator of EGFR, COX-2 and TNF-α. Accordingly, EGFR and COX-2/TNF-α activation/induction is expected to play important roles in MGL deficiency-driven lung tumors. Collectively, our results implicate the tumor suppressive role of MGL in preventing tumor development in vivo, particularly in context to the lung cancer, and highlight its role as a potential tumor suppressor.
Collapse
|
27
|
Yang X, Zhang D, Liu S, Li X, Hu W, Han C. KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. Am J Cancer Res 2018; 8:1019-1029. [PMID: 30034939 PMCID: PMC6048399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 05/13/2023] Open
Abstract
The dysregulation of cellular metabolism, particularly lipid metabolism, is essential for cancer progress. Monoglyceride lipase (MGLL) is an important fatty acid metabolism enzyme, which converts monoacylglycerides to free fatty acids and glycerol. Despite the expression level of MGLL was reported to be downregulated in Hepatocellular carcinoma (HCC), the clinical significances and molecular mechanism of MGLL downregulation remains unknown. In the current study, the clinical significances of MGLL expression were investigated in 95 patients with HCC and the transcription factors of MGLL were identified in HCC cells. We found that MGLL was frequently downregulated in HCC samples, especially in metastatic tumor tissues. Patients with low MGLL expression owned remarkably lower 5 year-overall survival (5-OS). Functionally, we found that MGLL played an important role in HCC cell migration. Overexpression of MGLL suppressed cell migration and depletion of MGLL by shRNA promoted cell migration. Further studies indicated that KLF4 directly bound to the promoter of MGLL and accelerated MGLL expression, which then led to HCC cell migration decrease. Additionally, the expression levels of KLF4 were positive association with MGLL expression in HCC tissues. Collectively, our data suggest that KLF4 is a key regulator of MGLL. The KLF4-MGLL axis plays an essential role in suppressing HCC cell migration.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell and Department of General Surgery of The First Affiliated Hospital of Dalian Medical UniversityDalian 116044, China
- Department of Physiology of College of Basic Medical Science, College of Stomatology of Dalian Medical UniversityDalian 116044, China
| | - Dongmei Zhang
- Institute of Cancer Stem Cell and Department of General Surgery of The First Affiliated Hospital of Dalian Medical UniversityDalian 116044, China
- Department of Physiology of College of Basic Medical Science, College of Stomatology of Dalian Medical UniversityDalian 116044, China
| | - Sha Liu
- Institute of Cancer Stem Cell and Department of General Surgery of The First Affiliated Hospital of Dalian Medical UniversityDalian 116044, China
- Department of Physiology of College of Basic Medical Science, College of Stomatology of Dalian Medical UniversityDalian 116044, China
| | - Xiaojie Li
- Institute of Cancer Stem Cell and Department of General Surgery of The First Affiliated Hospital of Dalian Medical UniversityDalian 116044, China
- Department of Physiology of College of Basic Medical Science, College of Stomatology of Dalian Medical UniversityDalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical UniversityHefei 230032, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell and Department of General Surgery of The First Affiliated Hospital of Dalian Medical UniversityDalian 116044, China
- Department of Physiology of College of Basic Medical Science, College of Stomatology of Dalian Medical UniversityDalian 116044, China
| |
Collapse
|
28
|
Armengol S, Arretxe E, Enzunza L, Llorente I, Mendibil U, Navarro-Imaz H, Ochoa B, Chico Y, Martínez MJ. SREBP-2-driven transcriptional activation of human SND1 oncogene. Oncotarget 2017; 8:108181-108194. [PMID: 29296233 PMCID: PMC5746135 DOI: 10.18632/oncotarget.22569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/22/2017] [Indexed: 01/28/2023] Open
Abstract
Upregulation of Staphylococcal nuclease and tudor domain containing 1 (SND1) is linked to cancer progression and metastatic spread. Increasing evidence indicates that SND1 plays a role in lipid homeostasis. Recently, it has been shown that SND1-overexpressing hepatocellular carcinoma cells present an increased de novo cholesterol synthesis and cholesteryl ester accumulation. Here we reveal that SND1 oncogene is a novel target for SREBPs. Exposure of HepG2 cells to the cholesterol-lowering drug simvastatin or to a lipoprotein-deficient medium triggers SREBP-2 activation and increases SND1 promoter activity and transcript levels. Similar increases in SND1 promoter activity and mRNA are mimicked by overexpressing nuclear SREBP-2 through expression vector transfection. Conversely, SREBP-2 suppression with specific siRNA or the addition of cholesterol/25-hydroxycholesterol to cell culture medium reduces transcriptional activity of SND1 promoter and SND1 mRNA abundance. Chromatin immunoprecipitation assays and site-directed mutagenesis show that SREBP-2 binds to the SND1 proximal promoter in a region containing one SRE and one E-box motif which are critical for maximal transcriptional activity under basal conditions. SREBP-1, in contrast, binds exclusively to the SRE element. Remarkably, while ectopic expression of SREBP-1c or -1a reduces SND1 promoter activity, knocking-down of SREBP-1 enhances SND1 mRNA and protein levels but failed to affect SND1 promoter activity. These findings reveal that SREBP-2 and SREBP-1 bind to specific sites in SND1 promoter and regulate SND1 transcription in opposite ways; it is induced by SREBP-2 activating conditions and repressed by SREBP-1 overexpression. We anticipate the contribution of a SREBPs/SND1 pathway to lipid metabolism reprogramming of human hepatoma cells.
Collapse
Affiliation(s)
- Sandra Armengol
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Enara Arretxe
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Leire Enzunza
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Irati Llorente
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Unai Mendibil
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Hiart Navarro-Imaz
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Begoña Ochoa
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - Yolanda Chico
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| | - María José Martínez
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Vizcaya, Spain
| |
Collapse
|
29
|
Jariwala N, Rajasekaran D, Mendoza RG, Shen XN, Siddiq A, Akiel MA, Robertson CL, Subler MA, Windle JJ, Fisher PB, Sanyal AJ, Sarkar D. Oncogenic Role of SND1 in Development and Progression of Hepatocellular Carcinoma. Cancer Res 2017; 77:3306-3316. [PMID: 28428278 DOI: 10.1158/0008-5472.can-17-0298] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor-initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3', 5'-deoxythymidine bisphosphate (pdTp), inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC. Cancer Res; 77(12); 3306-16. ©2017 AACR.
Collapse
Affiliation(s)
- Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. .,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
30
|
Cázares-Apátiga J, Medina-Gómez C, Chávez-Munguía B, Calixto-Gálvez M, Orozco E, Vázquez-Calzada C, Martínez-Higuera A, Rodríguez MA. The Tudor Staphylococcal Nuclease Protein of Entamoeba histolytica Participates in Transcription Regulation and Stress Response. Front Cell Infect Microbiol 2017; 7:52. [PMID: 28293543 PMCID: PMC5328994 DOI: 10.3389/fcimb.2017.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is the protozoa parasite responsible of human amoebiasis, disease that causes from 40,000 to 100,000 deaths annually worldwide. However, few are known about the expression regulation of molecules involved in its pathogenicity. Transcription of some virulence-related genes is positively controlled by the cis-regulatory element named URE1. Previously we identified the transcription factor that binds to URE1, which displayed a nuclear and cytoplasmic localization. This protein belongs to the Tudor Staphyococcal nuclease (TSN) family, which in other systems participates in virtually all pathways of gene expression, suggesting that this amoebic transcription factor (EhTSN; former EhURE1BP) could also play multiple functions in E. histolytica. The aim of this study was to identify the possible cellular events where EhTSN is involved. Here, we found that EhTSN in nucleus is located in euchromatin and close to, but not into, heterochromatin. We also showed the association of EhTSN with proteins involved in transcription and that the knockdown of EhTSN provokes a diminishing in the mRNA level of the EhRabB gene, which in its promoter region contains the URE1 motif, confirming that EhTSN participates in transcription regulation. In cytoplasm, this protein was found linked to the membrane of small vesicles and to plasma membrane. Through pull-down assays and mass spectrometry we identity thirty two candidate proteins to interact with EhTSN. These proteins participate in transcription, metabolism, signaling, and stress response, among other cellular processes. Interaction of EhTSN with some candidate proteins involved in metabolism, and signaling was validated by co-immunoprecipitation or co-localization. Finally we showed the co-localization of EhTSN and HSP70 in putative stress granules during heat shock and that the knockdown of EhTSN increases the cell death during heat shock treatment, reinforcing the hypothesis that EhTSN has a role during stress response. All data support the proposal that EhTSN is a multifunctional protein of E. histolytica.
Collapse
Affiliation(s)
- Javier Cázares-Apátiga
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| |
Collapse
|
31
|
Li CF, Chuang IC, Liu TT, Chen KC, Chen YY, Fang FM, Li SH, Chen TJ, Yu SC, Lan J, Huang HY. Transcriptomic reappraisal identifies MGLL overexpression as an unfavorable prognosticator in primary gastrointestinal stromal tumors. Oncotarget 2016; 7:49986-49997. [PMID: 27366945 PMCID: PMC5226563 DOI: 10.18632/oncotarget.10304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
The role of deregulated cellular metabolism, particularly lipid metabolism, in gastrointestinal stromal tumors (GISTs) remains unclear. Through data mining of published transcriptomes, we examined lipid metabolism-regulating drivers differentially upregulated in high-risk cases and identified monoglyceride lipase (MGLL) as the top-ranking candidate involved in GIST progression. MGLL expression status was examined in three GIST cell lines and two independent sets of primary localized GISTs. MGLL mRNA abundance and immunoexpression was determined in 70 cases through the QuantiGene assay and H-scoring on whole sections, respectively. H-scoring was extended to another cohort for evaluating MGLL immunoexpression on tissue microarrays, yielding 350 informative cases, with KIT/PDGFRA mutation genotypes noted in 213 of them. Both imatinib-sensitive (GIST882) and -resistant (GIST48 and GIST430) cell lines exhibited increased MGLL expression. MGLL mRNA levels significantly increased from adjacent normal tissue to the non-high-risk group (p = 0.030) and from the non-high-risk group to high-risk GISTs (p = 0.012), and were associated with immunoexpression levels (p < 0.001, r = 0.536). MGLL overexpression was associated with the nongastric location (p = 0.022) and increased size (p = 0.017), and was strongly related to mitosis and risk levels defined by NIH and NCCN criteria (all p ≤ 0.001). Univariately, MGLL overexpression was strongly predictive of poorer disease-free and overall survival (both p < 0.001), which remained prognostically independent for both endpoints, along with higher risk levels. Conclusively, MGLL is a lipid metabolic enzyme causatively implicated in GIST progression given its association with unfavorable clincopathological factors and independent negative prognostic effects.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - I-Chieh Chuang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ko-Chin Chen
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Yen-Yang Chen
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| |
Collapse
|
32
|
Hepatic B cell leukemia-3 suppresses chemically-induced hepatocarcinogenesis in mice through altered MAPK and NF-κB activation. Oncotarget 2016; 8:56095-56109. [PMID: 28915576 PMCID: PMC5593547 DOI: 10.18632/oncotarget.10893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.
Collapse
|