1
|
Hartness EM, Shevalye H, Skeie JM, Eggleston T, Field MG, Schmidt GA, Phruttiwanichakun P, Salem AK, Greiner MA. Iron-Sulfur Clusters and Iron Responsive Element Binding Proteins Mediate Iron Accumulation in Corneal Endothelial Cells in Fuchs Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:23. [PMID: 40202733 PMCID: PMC11993131 DOI: 10.1167/iovs.66.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Evidence suggests that corneal endothelial cell (CEC) death in Fuchs endothelial corneal dystrophy (FECD) is due to ferroptosis, an iron-mediated cell death. Iron-sulfur cluster (ISC)-containing aconitases and the iron responsive element binding proteins IREBP1 and IREBP2 are known mediators of iron homeostasis. This study investigates mechanisms underlying iron dysregulation in CECs and proposes a role for ISCs and IREBPs in the context of FECD pathogenesis. Methods We studied gene expression of proteins responsible for ISC synthesis and iron homeostasis in human and mouse CECs and analyzed published RNA sequencing datasets. We validated a subset of transcriptional changes between FECD and control tissues using microfluidic Western blotting with human CEC tissues. Finally, we silenced proteins involved in ISC synthesis or iron homeostasis in cell cultures and assessed ferroptosis susceptibility. Results RNA-seq and qPCR data demonstrated significantly decreased transcription of genes required for ISC synthesis in FECD tissues (P < 0.05). Protein quantification revealed a significant decrease in mitochondrial aconitase (P < 0.05), ferredoxin 1 (P < 0.001), and mitofusin (P < 0.05), and a significant increase in cysteine desulfurase (P < 0.05), cytosolic aconitase/IREBP1, and IREBP2 (P < 0.05) in FECD tissues. Silencing studies revealed increased susceptibility to ferroptosis upon siRNA knockdown of ferredoxin 1 (P < 0.05). Conclusions We identified differential gene expression of proteins responsible for ISC synthesis, ISC-containing proteins, IREBPs that mediate cellular iron homeostasis, and mitofusin, which promotes mitochondrial fusion in FECD. We also identified increased susceptibility to ferroptosis after ferredoxin 1 knockdown in CECs. These results advance an ISC- and IREBP-mediated mechanism of iron accumulation in FECD CECs.
Collapse
Affiliation(s)
- Emma M. Hartness
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
| | - Hanna Shevalye
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Jessica M. Skeie
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Timothy Eggleston
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Matthew G. Field
- Minnesota Eye Consultants, Minneapolis, Minnesota, United States
| | | | - Pornpoj Phruttiwanichakun
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Aliasger K. Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Mark A. Greiner
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
3
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
4
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Braymer JJ, Stehling O, Stümpfig M, Rösser R, Spantgar F, Blinn CM, Mühlenhoff U, Pierik AJ, Lill R. Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol. Proc Natl Acad Sci U S A 2024; 121:e2400740121. [PMID: 38743629 PMCID: PMC11126956 DOI: 10.1073/pnas.2400740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
Collapse
Affiliation(s)
- Joseph J. Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Ralf Rösser
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Farah Spantgar
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Catharina M. Blinn
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Antonio J. Pierik
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| |
Collapse
|
6
|
Novoa-Aponte L, Philpott CC. Proximity Ligation Assay for the Analysis of Iron-Mediated Protein-Protein Interactions in the Nucleus. Methods Mol Biol 2024; 2839:53-75. [PMID: 39008248 DOI: 10.1007/978-1-0716-4043-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Iron forms essential cofactors used by many nuclear enzymes involved in genome maintenance. However, unchaperoned nuclear iron may represent a threat to the surrounding genetic material as it promotes redox toxicity that may affect DNA integrity. Safely handling intracellular iron implies metal transfer and cofactor assembly processes based on protein-protein interactions. Identifying those interactions commonly occurs via high-throughput approaches using affinity purification or proximity labeling coupled with mass spectrometry analysis. However, these methods do not identify the subcellular location of the interactions. The one-on-one confirmation of proposed nuclear interactions is also challenging. Many approaches used to look at protein interactions are not tailored for looking at the nucleus because the methods used to solubilize nuclear content are harsh enough to disrupt those transient interactions. Here, we describe step-by-step the use of Proximity Ligation Assay (PLA) to analyze iron-mediated protein-protein interactions in the nucleus of cultured human cells. PLA allows the subcellular visualization of the interactions via the in situ detection of the two interacting proteins using fluorescence confocal microscopy. Briefly, cells are fixed, blocked, permeabilized, and incubated with primary antibodies directed to target proteins. Primary antibodies are recognized using PLA probes consisting of one PLUS and one MINUS oligonucleotide-labeled secondary antibody. If the two proteins are close enough (<40 nm), the PLA probes are ligated and used as the template for rolling circle amplification (RCA) with fluorescently labeled oligonucleotides that yield a signal detectable using fluorescence confocal microscopy. A fluorescently labeled membrane-specific stain (WGA) and the DNA-specific probe DAPI are used to identify cellular and nuclear boundaries, respectively. Confocal images are then analyzed using the CellProfiler software to confirm the abundance and localization of the studied protein-protein interactions.
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Motyčková A, Voleman L, Najdrová V, Arbonová L, Benda M, Dohnálek V, Janowicz N, Malych R, Šuťák R, Ettema TJG, Svärd S, Stairs CW, Doležal P. Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis. PLoS Pathog 2023; 19:e1010773. [PMID: 37792908 PMCID: PMC10578589 DOI: 10.1371/journal.ppat.1010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.
Collapse
Affiliation(s)
- Alžběta Motyčková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Lenka Arbonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Martin Benda
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Natalia Janowicz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Róbert Šuťák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | | | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| |
Collapse
|
8
|
da Silva AA, Galego L, Arraiano CM. New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival. Microorganisms 2023; 11:microorganisms11030632. [PMID: 36985206 PMCID: PMC10051749 DOI: 10.3390/microorganisms11030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating cellular processes such as cell permeability, biofilm production, motility, and flagella assembly. BolA is important in the switch between motile and sedentary lifestyles having connections with the signaling molecule c-di-GMP. BolA was considered a virulence factor in pathogens such as Salmonella Typhimurium and Klebsiella pneumoniae and it promotes bacterial survival when facing stresses due to host defenses. In E. coli, the BolA homologue IbaG is associated with resistance to acidic stress, and in Vibrio cholerae, IbaG is important for animal cell colonization. Recently, it was demonstrated that BolA is phosphorylated and this modification is important for the stability/turnover of BolA and its activity as a transcription factor. The results indicate that there is a physical interaction between BolA-like proteins and the CGFS-type Grx proteins during the biogenesis of Fe-S clusters, iron trafficking and storage. We also review recent progress regarding the cellular and molecular mechanisms by which BolA/Grx protein complexes are involved in the regulation of iron homeostasis in eukaryotes and prokaryotes.
Collapse
|
9
|
Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, Tietgens AJ. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci 2023; 10:1127690. [PMID: 36818045 PMCID: PMC9932599 DOI: 10.3389/fmolb.2023.1127690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Cells express hundreds of iron-dependent enzymes that rely on the iron cofactors heme, iron-sulfur clusters, and mono-or di-nuclear iron centers for activity. Cells require systems for both the assembly and the distribution of iron cofactors to their cognate enzymes. Proteins involved in the binding and trafficking of iron ions in the cytosol, called cytosolic iron chaperones, have been identified and characterized in mammalian cells. The first identified iron chaperone, poly C-binding protein 1 (PCBP1), has also been studied in mice using genetic models of conditional deletion in tissues specialized for iron handling. Studies of iron trafficking in mouse tissues have necessitated the development of new approaches, which have revealed new roles for PCBP1 in the management of cytosolic iron. These approaches can be applied to investigate use of other nutrient metals in mammals.
Collapse
|
10
|
Camponeschi F, Banci L. Metal trafficking in the cell: Combining atomic resolution with cellular dimension. FEBS Lett 2023; 597:122-133. [PMID: 36285633 DOI: 10.1002/1873-3468.14524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023]
Abstract
Metals are widely present in biological systems as simple ions or complex cofactors, and are involved in a variety of processes essential for life. Their transport inside cells and insertion into the binding sites of the proteins that need metals to function occur through complex and selective pathways involving dedicated multiprotein machineries specifically and transiently interacting with each other, often sharing the coordination of metal ions and/or cofactors. The understanding of these machineries requires integrated approaches, ranging from bioinformatics to experimental investigations, possibly in the cellular context. In this review, we report two case studies where the use of integrated in vitro and in cellulo approaches is necessary to clarify at atomic resolution essential aspects of metal trafficking in cells.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.,Department of Chemistry, University of Florence, Italy
| |
Collapse
|
11
|
Liang M, Fei Y, Wang Y, Chen W, Liu Z, Xu D, Shen H, Zhou H, Tang J. Integrative analysis of the role of BOLA2B in human pan-cancer. Front Genet 2023; 14:1077126. [PMID: 36923798 PMCID: PMC10008965 DOI: 10.3389/fgene.2023.1077126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Objective: BOLA2B is a recently discovered protein-coding gene. Here, pan-cancer analysis was conducted to determine the expression patterns of BOLA2B and its impact on immune response, gene mutation, and possible molecular biological mechanisms in different tumors, together with investigating its potential usefulness for cancer prognosis. Methods: Data on BOLA2B expression and mutations were downloaded from TCGA and GTEx databases. Clinical survival data from TCGA were used to analyze the prognostic value of BOLA2B. TIMER and ESTIMATE algorithms were used to assess correlations between BOLA2B and tumor-infiltrating immune cells, immune cytokines, and immune scores. Results: BOLA2B was found to be highly expressed at both mRNA and protein levels in multiple tumors, where it was associated with worse overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in all cancers apart from ovarian cancer. BOLA2B was also found to be positively correlated with copy number variation (CNV), and mutations in TP53, TTN, and MUC16 were found to influence BOLA2B expression. Post-transcriptional modifications, including m5C, m1A, and m6A, were observed to regulate BOLA2B expression in all cancers. Functional analysis showed that BOLA2B was enriched in pathways associated with iron-sulfur cluster formation, mTOR-mediated autophagy, and cell cycle inhibition. Decreased BOLA2B expression induced the proliferation of breast cancer cells and G2/M cell cycle arrest. Conclusion: BOLA2B was found to be highly expressed in malignant tumors and could be used as a biomarker of poor prognosis in multiple cancers. Further investigation into BOLA2B's role and molecular functions in cancer would provide new insights for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mingxing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinjiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yalin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wenquan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyu Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis and human diseases. IUBMB Life 2022; 74:705-714. [PMID: 35098635 PMCID: PMC9247042 DOI: 10.1002/iub.2597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 07/30/2023]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Fan X, Barshop WD, Vashisht AA, Pandey V, Leal S, Rayatpisheh S, Jami-Alahmadi Y, Sha J, Wohlschlegel JA. Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery. J Biol Chem 2022; 298:102094. [PMID: 35654137 PMCID: PMC9243173 DOI: 10.1016/j.jbc.2022.102094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
The cytosolic iron–sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron–sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.
Collapse
Affiliation(s)
- Xiaorui Fan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Stephanie Leal
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shima Rayatpisheh
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
15
|
The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. INORGANICS 2022. [DOI: 10.3390/inorganics10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Collapse
|
16
|
Semeano AT, Tofoli FA, Corrêa-Velloso JC, de Jesus Santos AP, Oliveira-Giacomelli Á, Cardoso RR, Pessoa MA, da Rocha EL, Ribeiro G, Ferrari MFR, Pereira LV, Teng YD, Petri DFS, Ulrich H. Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1337-1354. [PMID: 35325357 DOI: 10.1007/s12015-022-10332-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental processes of pluripotent cells, such as proliferation and differentiation, are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to the Earth's magnetic fields and other sources, there is scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, emerging applications of electrical and magnetic stimulation to treat neurological disorders emphasize the relevance of understanding the impact and mechanisms behind these stimuli. Here, the effects of magnetic nanoparticles (MNPs) in polymeric coatings and the static external magnetic field (EMF) were investigated on neural induction of murine embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs). The results show that the presence of 0.5% MNPs in collagen-based coatings facilitates the migration and neuronal maturation of mESCs and hiPSCs in vitro. Furthermore, the application of 0.4 Tesla EMF perpendicularly to the cell culture plane, discernibly stimulates proliferation and guide fate decisions of the pluripotent stem cells, depending on the origin of stem cells and their developmental stage. Mechanistic analysis reveals that modulation of ionic homeostasis and the expression of proteins involved in cytostructural, liposomal and cell cycle checkpoint functions provide a principal underpinning for the impact of electromagnetic stimuli on neural lineage specification and proliferation. These findings not only explore the potential of the magnetic stimuli as neural differentiation and function modulator but also highlight the risks that immoderate magnetic stimulation may affect more susceptible neurons, such as dopaminergic neurons.
Collapse
Affiliation(s)
- Ana T Semeano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 307 Bloco 3 Inferior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Fabiano A Tofoli
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana C Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Ana P de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Rafaela R Cardoso
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mateus A Pessoa
- Department of Microbiology, Immunology and Parasitology at Federal University of Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology at Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gustavo Ribeiro
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Merari F R Ferrari
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Yang D Teng
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital Network, and Mass General Brigham, Boston, MA, USA
| | - Denise F S Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 307 Bloco 3 Inferior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
17
|
Sasoni N, Hartman MD, García-Effron G, Guerrero SA, Iglesias AA, Arias DG. Functional characterization of monothiol and dithiol glutaredoxins from Leptospira interrogans. Biochimie 2022; 197:144-159. [PMID: 35217125 DOI: 10.1016/j.biochi.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022]
Abstract
Thiol redox proteins and low molecular mass thiols have essential functions in maintaining cellular redox balance in almost all living organisms. In the pathogenic bacterium Leptospira interrogans, several redox components have been described, namely, typical 2-Cys peroxiredoxin, a functional thioredoxin system, glutathione synthesis pathway, and methionine sulfoxide reductases. However, until now, information about proteins linked to GSH metabolism has not been reported in this pathogen. Glutaredoxins (Grxs) are GSH-dependent oxidoreductases that regulate and maintain the cellular redox state together with thioredoxins. This work deals with recombinant production at a high purity level, biochemical characterization, and detailed kinetic and structural study of the two Grxs (Lin1CGrx and Lin2CGrx) identified in L. interrogans serovar Copenhageni strain Fiocruz L1-130. Both recombinant LinGrxs exhibited the classical in vitro GSH-dependent 2-hydroxyethyl disulfide and dehydroascorbate reductase activity. Strikingly, we found that Lin2CGrx could serve as a substrate of methionine sulfoxide reductases A1 and B from L. interrogans. Distinctively, only recombinant Lin1CGrx contained a [2Fe2S] cluster confirming a homodimeric structure. The functionality of both LinGrxs was assessed by yeast complementation in null grx mutants, and both isoforms were able to rescue the mutant phenotype. Finally, our data suggest that protein glutathionylation as a post-translational modification process is present in L. interrogans. As a whole, our results support the occurrence of two new redox actors linked to GSH metabolism and iron homeostasis in L. interrogans.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Laboratorio de Micología y Diagnóstico Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías D Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo García-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
18
|
Alkattan A, Alkhalifah A, Alsalameen E, Alghanim F, Radwan N. Polymorphisms of genes related to phase II metabolism and resistance to clopidogrel. Pharmacogenomics 2021; 23:61-79. [PMID: 34866404 DOI: 10.2217/pgs-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug's efficacy.
Collapse
Affiliation(s)
- Abdullah Alkattan
- Planning and Research Department, General Directorate of School Health, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Ahmed Alkhalifah
- Department of Sales, Fresenius Kabi, Alhaya Medical Company, Riyadh, Saudi Arabia
| | - Eman Alsalameen
- Department of Pharmacy, King Khalid University Hospital, Medical City King Saud University, Riyadh, Saudi Arabia
| | - Fatimah Alghanim
- Department of General Medicine, Faculty of Medicine, Imam Abdulrahman bin Faisal University
| | - Nashwa Radwan
- Department of Public Health & Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt.,Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Heath, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Jadhav S, Protchenko O, Li F, Baratz E, Shakoury-Elizeh M, Maschek A, Cox J, Philpott CC. Mitochondrial dysfunction in mouse livers depleted of iron chaperone PCBP1. Free Radic Biol Med 2021; 175:18-27. [PMID: 34455040 PMCID: PMC9137418 DOI: 10.1016/j.freeradbiomed.2021.08.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Iron is an essential nutrient that forms cofactors required for the activity of hundreds of cellular proteins. However, iron can be toxic and must be precisely managed. Poly r(C) binding protein 1 (PCBP1) is an essential, multifunctional protein that binds both iron and nucleic acids, regulating the fate of both. As an iron chaperone, PCBP1 binds cytosolic iron and delivers it to iron enzymes for activation and to ferritin for storage. Mice deleted for PCBP1 in the liver exhibit dysregulated iron balance, with lower levels of liver iron stores and iron enzymes, but higher levels of chemically-reactive iron. Unchaperoned iron triggers the formation of reactive oxygen species, leading to lipid peroxidation and ferroptotic cell death. Hepatic PCBP1 deletion produces chronic liver disease in mice, with steatosis, triglyceride accumulation, and elevated plasma ALT levels. Human and mouse models of fatty liver disease are associated with mitochondrial dysfunction. Here we show that, although deletion of PCBP1 does not affect mitochondrial iron balance, it does affect mitochondrial function. PCBP1 deletion affected mitochondrial morphology and reduced levels of respiratory complexes II and IV, oxygen consumption, and ATP production. Depletion of mitochondrial lipids cardiolipin and coenzyme Q, along with reduction of mitochondrial oxygen consumption, were the first manifestations of mitochondrial dysfunction. Although dietary supplementation with vitamin E ameliorated the liver disease in mice with hepatic PCBP1 deletion, supplementation with coenzyme Q was required to fully restore mitochondrial lipids and function. In conclusion, our studies indicate that mitochondrial function can be restored in livers subjected to ongoing oxidative damage from unchaperoned iron by supplementation with coenzyme Q, a mitochondrial lipid essential for respiration that also functions as a lipophilic radical-trapping agent.
Collapse
Affiliation(s)
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Fengmin Li
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Ethan Baratz
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | | | - Alan Maschek
- Dept. of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James Cox
- Dept. of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
20
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
21
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Mühlenhoff U, Braymer JJ, Christ S, Rietzschel N, Uzarska MA, Weiler BD, Lill R. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biol Chem 2021; 401:1407-1428. [PMID: 33031050 DOI: 10.1515/hsz-2020-0237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems. In addition, key components of these systems, most prominently glutathione and monothiol glutaredoxins are involved in the biogenesis of cellular Fe/S proteins. In this review, we address the biochemical role of glutathione and glutaredoxins in cellular Fe/S protein assembly in eukaryotic cells. We also summarize the recent developments in the role of cytosolic glutaredoxins in iron metabolism, in particular the regulation of fungal iron homeostasis. Finally, we discuss recent insights into the interplay of the cellular thiol redox balance and oxygen with that of Fe/S protein biogenesis in eukaryotes.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Stefan Christ
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Nicole Rietzschel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307Gdansk, Poland
| | - Benjamin D Weiler
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| |
Collapse
|
23
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
24
|
The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential. Proc Natl Acad Sci U S A 2021; 118:2104666118. [PMID: 34161287 DOI: 10.1073/pnas.2104666118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.
Collapse
|
25
|
Zhu M, Xiao S. Expression profiles and prognostic values of BolA family members in ovarian cancer. J Ovarian Res 2021; 14:75. [PMID: 34078439 PMCID: PMC8170995 DOI: 10.1186/s13048-021-00821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The BOLA gene family, comprising three members, is mainly involved in regulating intracellular iron homeostasis. Emerging evidence suggests that BolA family member 2 plays a vital role in tumorigenesis and hepatic cellular carcinoma progression. However, there was less known about its role in ovarian cancer. METHODS In the present study, we investigated the expression profiles, prognostic roles, and genetic alterations of three BolA family members in patients with ovarian cancer through several public databases, containing Oncomine and Gene Expression Profiling Interactive Analysis, Human Protein Atlas, Kaplan-Meier plotter and cBioPortal. Then, we constructed the protein-protein interaction networks of BOLA proteins and their interactors by using the String database and Cytoscape software. In addition, we performed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment by the Annotation, Visualization, and Integrated Discovery database. Finally, we explored the mechanisms underlying BolA family members' involvement in OC by using gene set enrichment analysis. RESULTS The mRNA and protein expression levels of BOLA2 and BOLA3 were heavily higher in ovarian cancer tissues than in normal ovarian tissues. Dysregulated mRNA expressions of three BolA family members were significantly associated with prognosis in overall or subgroup analysis. Moreover, genetic alterations also occurred in three BolA family members in ovarian cancer. GO analysis indicated that BolA family members might regulate the function of metal ion binding and protein disulfide oxidoreductase activity. Gene set enrichment analysis indicated that BolA family members were mainly associated with oxidative phosphorylation, proteasome, protein export, and glutathione metabolism in ovarian cancer. CONCLUSION In brief, our finding may contribute to increasing currently limited prognostic biomarkers and treatment options for ovarian cancer.
Collapse
Affiliation(s)
- Mingyang Zhu
- Department of Nursing, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shiqi Xiao
- Department of Nursing, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
26
|
Protchenko O, Baratz E, Jadhav S, Li F, Shakoury-Elizeh M, Gavrilova O, Ghosh MC, Cox JE, Maschek JA, Tyurin VA, Tyurina YY, Bayir H, Aron AT, Chang CJ, Kagan VE, Philpott CC. Iron Chaperone Poly rC Binding Protein 1 Protects Mouse Liver From Lipid Peroxidation and Steatosis. Hepatology 2021; 73:1176-1193. [PMID: 32438524 PMCID: PMC8364740 DOI: 10.1002/hep.31328] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.
Collapse
Affiliation(s)
| | - Ethan Baratz
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD
| | | | - Fengmin Li
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD
| | | | | | - Manik C. Ghosh
- Section on Human Iron Metabolism, NICHD, NIH, Bethesda, MD
| | - James E. Cox
- Deparment of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - J. Alan Maschek
- Deparment of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Allegra T. Aron
- Department of Chemistry, University of California, Berkeley, CA
| | | | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
27
|
Martins L, Knuesting J, Bariat L, Dard A, Freibert SA, Marchand CH, Young D, Dung NHT, Voth W, Debures A, Saez-Vasquez J, Lemaire SD, Lill R, Messens J, Scheibe R, Reichheld JP, Riondet C. Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. PLANT PHYSIOLOGY 2020; 184:676-692. [PMID: 32826321 PMCID: PMC7536686 DOI: 10.1104/pp.20.00906] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 05/02/2023]
Abstract
Heat stress induces misfolding and aggregation of proteins unless they are guarded by chaperone systems. Here, we examined the function of the glutaredoxin GRXS17, a member of thiol reductase families in the model plant Arabidopsis (Arabidopsis thaliana). GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin domain and three CGFS active-site motif-containing GRX domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione-dependent manner. As an Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, GRXS17 presented both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induced loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active-site cysteines in the corresponding thioredoxin domains. This oxidation led to a shift of GRXS17 to a high-molecular-weight complex and thus activated its holdase activity in vitro. Moreover, GRXS17 was specifically involved in plant tolerance to moderate high temperature and protected root meristematic cells from heat-induced cell death. Finally, GRXS17 interacted with a different set of proteins upon heat stress, possibly protecting them from heat injuries. Therefore, we propose that the Fe-S cluster enzyme GRXS17 is an essential guard that protects proteins against moderate heat stress, likely through a redox-dependent chaperone activity. We reveal the mechanism of an Fe-S cluster-dependent activity shift that converts the holoenzyme GRXS17 into a holdase, thereby preventing damage caused by heat stress.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Johannes Knuesting
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Sven A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
| | - David Young
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Nguyen Ho Thuy Dung
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Wilhelm Voth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anne Debures
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Julio Saez-Vasquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Unité Mixte de Recherche 7238, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Renate Scheibe
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| |
Collapse
|
28
|
Berndt C, Christ L, Rouhier N, Mühlenhoff U. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148317. [PMID: 32980338 DOI: 10.1016/j.bbabio.2020.148317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Among the thioredoxin superfamily of proteins, the observation that numerous glutaredoxins bind iron-sulphur (Fe/S) clusters is one of the more recent and major developments concerning their functional properties. Glutaredoxins are present in most organisms. All members of the class II subfamily (including most monothiol glutaredoxins), but also some members of the class I (mostly dithiol glutaredoxins) and class III (land plant-specific monothiol or dithiol glutaredoxins) are Fe/S proteins. In glutaredoxins characterised so far, the [2Fe2S] cluster is coordinated by two active-site cysteine residues and two molecules of non-covalently bound glutathione in homo-dimeric complexes bridged by the cluster. In contrast to dithiol glutaredoxins, monothiol glutaredoxins possess no or very little oxidoreductase activity, but have emerged as important players in cellular iron metabolism. In this review we summarise the recent developments of the most prominent Fe/S glutaredoxins in eukaryotes, the mitochondrial single domain monothiol glutaredoxin 5, the chloroplastic single domain monothiol glutaredoxin S14 and S16, the nuclear/cytosolic multi-domain monothiol glutaredoxin 3, and the mitochondrial/cytosolic dithiol glutaredoxin 2.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Merowingerplatz1a, 40225 Düsseldorf, Germany
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35032 Marburg, Germany.
| |
Collapse
|
29
|
Burns M, Rizvi SHM, Tsukahara Y, Pimentel DR, Luptak I, Hamburg NM, Matsui R, Bachschmid MM. Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6803. [PMID: 32948023 PMCID: PMC7555996 DOI: 10.3390/ijms21186803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.
Collapse
Affiliation(s)
- Mannix Burns
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - David R. Pimentel
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Ivan Luptak
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Naomi M. Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| |
Collapse
|
30
|
Talib EA, Outten CE. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118847. [PMID: 32910989 DOI: 10.1016/j.bbamcr.2020.118847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
The synthesis and trafficking of iron-sulfur (Fe-S) clusters in both prokaryotes and eukaryotes requires coordination within an expanding network of proteins that function in the cytosol, nucleus, mitochondria, and chloroplasts in order to assemble and deliver these ancient and essential cofactors to a wide variety of Fe-S-dependent enzymes and proteins. This review focuses on the evolving roles of two ubiquitous classes of proteins that operate in this network: CGFS glutaredoxins and BolA proteins. Monothiol or CGFS glutaredoxins possess a Cys-Gly-Phe-Ser active site that coordinates an Fe-S cluster in a homodimeric complex. CGFS glutaredoxins also form [2Fe-2S]-bridged heterocomplexes with BolA proteins, which possess an invariant His and an additional His or Cys residue that serve as cluster ligands. Here we focus on recent discoveries in bacteria, fungi, humans, and plants that highlight the shared and distinct roles of CGFS glutaredoxins and BolA proteins in Fe-S cluster biogenesis, Fe-S cluster storage and trafficking, and Fe-S cluster signaling to transcriptional factors that control iron metabolism--.
Collapse
Affiliation(s)
- Evan A Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
31
|
Philpott CC, Patel SJ, Protchenko O. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118830. [PMID: 32835748 DOI: 10.1016/j.bbamcr.2020.118830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Iron-containing proteins rely on the incorporation of a set of iron cofactors for activity. The cofactors must be synthesized or assembled from raw materials located within the cell. The chemical nature of this pool of raw material - referred to as the labile iron pool - has become clearer with the identification of micro- and macro-molecules that coordinate iron within the cell. These molecules function as a buffer system for the management of intracellular iron and are the focus of this review, with emphasis on the major iron chaperone protein coordinating the labile iron pool: poly C-binding protein 1.
Collapse
Affiliation(s)
| | - Sarju J Patel
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS 2020. [DOI: 10.3390/inorganics8070043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Collapse
|
33
|
Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Appl Environ Microbiol 2020; 86:AEM.00221-20. [PMID: 32414791 DOI: 10.1128/aem.00221-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the Saccharomyces cerevisiae Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with GUA1 (S. cerevisiae GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.IMPORTANCE Saccharomyces cerevisiae is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.
Collapse
|
34
|
Alkafeef SS, Lane S, Yu C, Zhou T, Solis NV, Filler SG, Huang L, Liu H. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genet 2020; 16:e1008881. [PMID: 32525871 PMCID: PMC7319344 DOI: 10.1371/journal.pgen.1008881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/26/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell. Mammalian pathogens occupy a diverse set of niches within the host organism. These niches vary in iron and oxygen availability. As a commensal and pathogen of humans, its ability to regulate iron uptake and utilization in response to bioavailable iron level is critical for its survival in different host environments encompassing a broad range of iron levels. This study aims to understand how C. albicans senses and responds to iron level to regulate multiple aspects of its biology. The cytosolic monothiol glutaredoxin Grx3 is a critical regulator of C. albicans iron homeostasis and virulence. Taking a proteomic approach, we identified a large list of Grx3 associated proteins of diverse functions, including iron-sulfur trafficking, iron homeostasis, metabolism redox homeostasis, protein translation, DNA maintenance and repair. In support of these protein associations, Grx3 is important for all these processes. Thus, Grx3 is a global regulator of iron homeostasis and other iron dependent cellular processes.
Collapse
Affiliation(s)
- Selma S Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America.,Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.,David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
35
|
Camponeschi F, Prusty NR, Heider SAE, Ciofi-Baffoni S, Banci L. GLRX3 Acts as a [2Fe-2S] Cluster Chaperone in the Cytosolic Iron-Sulfur Assembly Machinery Transferring [2Fe-2S] Clusters to NUBP1. J Am Chem Soc 2020; 142:10794-10805. [PMID: 32429669 PMCID: PMC8007109 DOI: 10.1021/jacs.0c02266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Human
cytosolic monothiol glutaredoxin-3 (GLRX3) is a protein essential
for the maturation of cytosolic [4Fe–4S] proteins. We show
here that dimeric cluster-bridged GLRX3 transfers its [2Fe–2S]2+ clusters to the human P-loop NTPase NUBP1, an essential
early component of the cytosolic iron–sulfur assembly (CIA)
machinery. Specifically, we observed that [2Fe–2S]2+ clusters are transferred from GLRX3 to monomeric apo NUBP1 and reductively
coupled to form [4Fe–4S]2+ clusters on both N-terminal
CX13CX2CX5C and C-terminal CPXC motifs
of NUBP1 in the presence of glutathione that acts as a reductant.
In this process, cluster binding to the C-terminal motif of NUBP1
promotes protein dimerization, while cluster binding to the N-terminal
motif does not affect the quaternary structure of NUBP1. The cluster
transfer/assembly process is not complete on both N- and C-terminal
motifs and indeed requires a reductant stronger than GSH to increase
its efficiency. We also showed that the [4Fe–4S]2+ cluster formed at the N-terminal motif of NUBP1 is tightly bound,
while the [4Fe–4S]2+ cluster bound at the C-terminal
motif is labile. Our findings provide the first evidence for GLRX3
acting as a [2Fe–2S] cluster chaperone in the early stage of
the CIA machinery.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Nihar Ranjan Prusty
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Sabine Annemarie Elisabeth Heider
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
36
|
Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response. Int J Mol Sci 2020; 21:ijms21082908. [PMID: 32326339 PMCID: PMC7215369 DOI: 10.3390/ijms21082908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous and multifactorial respiratory disease with an important impact on childhood. Difficult-to-treat asthma is not uncommon among children, and it causes a high burden to the patient, caregivers, and society. This review aims to summarize the recent findings on pediatric asthma treatment response revealed by different omic approaches conducted in 2018–2019. A total of 13 studies were performed during this period to assess the role of genomics, epigenomics, transcriptomics, metabolomics, and the microbiome in the response to short-acting beta agonists, inhaled corticosteroids, and leukotriene receptor antagonists. These studies have identified novel associations of genetic markers, epigenetic modifications, metabolites, bacteria, and molecular mechanisms involved in asthma treatment response. This knowledge will allow us establishing molecular biomarkers that could be integrated with clinical information to improve the management of children with asthma.
Collapse
|
37
|
Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid Redox Signal 2020; 32:677-700. [PMID: 31813265 PMCID: PMC7047114 DOI: 10.1089/ars.2019.7963] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Over the past several years, oxidative post-translational modifications of protein cysteines have been recognized for their critical roles in physiology and pathophysiology. Cells have harnessed thiol modifications involving both oxidative and reductive steps for signaling and protein processing. One of these stages requires oxidation of cysteine to sulfenic acid, followed by two reduction reactions. First, glutathione (reduced glutathione [GSH]) forms a S-glutathionylated protein, and second, enzymatic or chemical reduction removes the modification. Under physiological conditions, these steps confer redox signaling and protect cysteines from irreversible oxidation. However, oxidative stress can overwhelm protein S-glutathionylation and irreversibly modify cysteine residues, disrupting redox signaling. Critical Issues: Glutaredoxins mainly catalyze the removal of protein-bound GSH and help maintain protein thiols in a highly reduced state without exerting direct antioxidant properties. Conversely, glutathione S-transferase (GST), peroxiredoxins, and occasionally glutaredoxins can also catalyze protein S-glutathionylation, thus promoting a dynamic redox environment. Recent Advances: The latest studies of glutaredoxin-1 (Glrx) transgenic or knockout mice demonstrate important distinct roles of Glrx in a variety of pathologies. Endogenous Glrx is essential to maintain normal hepatic lipid homeostasis and prevent fatty liver disease. Further, in vivo deletion of Glrx protects lungs from inflammation and bacterial pneumonia-induced damage, attenuates angiotensin II-induced cardiovascular hypertrophy, and improves ischemic limb vascularization. Meanwhile, exogenous Glrx administration can reverse pathological lung fibrosis. Future Directions: Although S-glutathionylation modifies many proteins, these studies suggest that S-glutathionylation and Glrx regulate specific pathways in vivo, and they implicate Glrx as a potential novel therapeutic target to treat diverse disease conditions. Antioxid. Redox Signal. 32, 677-700.
Collapse
Affiliation(s)
- Reiko Matsui
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Beatriz Ferran
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Albin Oh
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Dominique Croteau
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Di Shao
- Helens Clinical Research Center, Chongqing, China
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - David Richard Pimentel
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus Michael Bachschmid
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
38
|
Maione V, Grifagni D, Torricella F, Cantini F, Banci L. CIAO3 protein forms a stable ternary complex with two key players of the human cytosolic iron–sulfur cluster assembly machinery. J Biol Inorg Chem 2020; 25:501-508. [DOI: 10.1007/s00775-020-01778-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/24/2022]
|
39
|
Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. Trends Biochem Sci 2020; 45:411-426. [PMID: 32311335 DOI: 10.1016/j.tibs.2020.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.
Collapse
|
40
|
Wang AL, Qiu W, DeMeo DL, Raby BA, Weiss ST, Tantisira KG. DNA methylation is associated with improvement in lung function on inhaled corticosteroids in pediatric asthmatics. Pharmacogenet Genomics 2020; 29:65-68. [PMID: 30640894 DOI: 10.1097/fpc.0000000000000366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Asthma is the most common chronic disease in children. Inhaled corticosteroids (ICS) are the first-line treatment for asthma control, but up to one-third of children have a poor treatment response. The mechanism of ICS resistance is poorly understood, and the role of DNA methylation in ICS treatment response is not known. We examined the association between peripheral blood DNA methylation and ICS treatment response in 152 pediatric persistent asthmatics from the Childhood Asthma Management Program. Response to ICS was measured by the percentage change in forced expiratory volume in 1 s (FEV1) 8 weeks after treatment initiation. The top CpG sites with a nominal P value less than 0.001 were correlated with gene expression using Pearson's and partial correlations. In 152 participants, mean±SD age was 9.8±2.0 years and median change in FEV1 after ICS initiation was 4.6% (interquartile range: 10.4%). A total of 545 CpG sites were differentially methylated (nominal P<0.05), and seven CpG sites had a nominal P value less than 0.001. Relative hypermethylation of cg20434811, cg02822723, cg14066280, cg27254601, and cg23913400 and relative hypomethylation of cg24937126 and cg24711626 were associated with an increase in FEV1 on ICS treatment. One CpG site was associated with gene expression. Relative hypermethylation of cg27254601 was associated with both an increase in FEV1 and BOLA2 expression (ρ=0.25, P=0.02). We identified a novel association between BOLA2 methylation, gene expression, and ICS response as measured by lung function. Pharmacoepigenetics has the potential to detect treatment sensitivity in persistent childhood asthma.
Collapse
Affiliation(s)
- Alberta L Wang
- Channing Division of Network Medicine.,Division of Rheumatology, Immunology and Allergy
| | | | - Dawn L DeMeo
- Channing Division of Network Medicine.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital
| | - Benjamin A Raby
- Channing Division of Network Medicine.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital.,Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kelan G Tantisira
- Channing Division of Network Medicine.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital
| |
Collapse
|
41
|
Giannuzzi G, Schmidt PJ, Porcu E, Willemin G, Munson KM, Nuttle X, Earl R, Chrast J, Hoekzema K, Risso D, Männik K, De Nittis P, Baratz ED, Herault Y, Gao X, Philpott CC, Bernier RA, Kutalik Z, Fleming MD, Eichler EE, Reymond A. The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia Predisposition in Chromosome 16p11.2 Autism Individuals. Am J Hum Genet 2019; 105:947-958. [PMID: 31668704 DOI: 10.1016/j.ajhg.2019.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Gilles Willemin
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Davide Risso
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katrin Männik
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ethan D Baratz
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yann Herault
- University of Strasbourg, CNRS, INSERM, PHENOMIN-ICS, Institute of Genetics and Molecular and Cellular Biology, Illkirch, 67404, France
| | - Xiang Gao
- Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061 China
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne, 1010, Switzerland
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
42
|
Wachnowsky C, Rao B, Sen S, Fries B, Howard CJ, Ottesen JJ, Cowan JA. Reconstitution, characterization, and [2Fe-2S] cluster exchange reactivity of a holo human BOLA3 homodimer. J Biol Inorg Chem 2019; 24:1035-1045. [PMID: 31486956 PMCID: PMC6812618 DOI: 10.1007/s00775-019-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
A new class of mitochondrial disease has been identified and characterized as Multiple Mitochondrial Dysfunctions Syndrome (MMDS). Four different forms of the disease have each been attributed to point mutations in proteins involved in iron-sulfur (Fe-S) biosynthesis; in particular, MMDS2 has been associated with the protein BOLA3. To date, this protein has been characterized in vitro concerning its ability to form heterodimeric complexes with two putative Fe-S cluster-binding partners: GLRX5 and NFU. However, BOLA3 has yet to be characterized in its own discrete holo form. Herein we describe procedures to isolate and characterize the human holo BOLA3 protein in terms of Fe-S cluster binding and trafficking and demonstrate that human BOLA3 can form a functional homodimer capable of engaging in Fe-S cluster transfer.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Brian Rao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Brian Fries
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Cecil J Howard
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Jennifer J Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA.
| |
Collapse
|
43
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
44
|
A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol 2019; 15:872-881. [PMID: 31406370 PMCID: PMC6702080 DOI: 10.1038/s41589-019-0330-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe-2S] cluster chaperone. The Fe-GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1-Fe-GSH-BolA2 serves as an intermediate complex required for the assembly of [2Fe-2S] clusters on BolA2-Glrx3, thereby linking the ferrous iron and Fe-S distribution systems in cells.
Collapse
|
45
|
Sen S, Rao B, Wachnowsky C, Cowan JA. Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 2019; 10:1282-1290. [PMID: 30137089 DOI: 10.1039/c8mt00128f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
46
|
Luo J, Wang D, Zhang S, Hu K, Wu H, Li J, Wang Z, Tao Y. BolA family member 2 enhances cell proliferation and predicts a poor prognosis in hepatocellular carcinoma with tumor hemorrhage. J Cancer 2019; 10:4293-4304. [PMID: 31413749 PMCID: PMC6691716 DOI: 10.7150/jca.31829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: BolA family member 2 (BOLA2) is a novel gene highly associated with human hepatocellular carcinoma (HCC) progression. Tumor hemorrhage (TH) acts as a poor marker for HCC patients and is a community affair in the tumor microenvironment. In the present study, we examined a possible association between BOLA2 levels and HCC patients with TH. Methods: The mRNA and protein levels of BOLA2 were determined in two independent cohorts of HCC specimens by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) analysis, respectively. Survival curves and Cox regression models were used to evaluate the prognosis of HCC patients. The CRISPR/Cas9 system was used to knock out BOLA2 in HCC cells, and the functional role of BOLA2 in HCC cell proliferation in vitro and growth in vivo was examined. Results: BOLA2 mRNA expression is significantly higher in HCC tumour tissue than in nontumour tissue. Immunohistochemistry analysis of HCC tissues showed that BOLA2 protein was significantly correlated with TH, a more metastatic phenotype and worse HCC survival. The potential clinical relevance of BOLA2 expression and TH was validated by a Cox regression model. Furthermore, loss-of-function studies determined that BOLA2 plays critical roles in promoting iron overload, tumor growth and TH. Bioinformatics analysis from Gene Expression Profiling Interactive Analysis (GEPIA) revealed that BOLA2 is closely associated with the activation of p62-Keap1 signalling and ATG4B expression. These results were confirmed by immunohistochemistry analysis in HCC tissues. Conclusions: Our results suggest that BOLA2 plays an important role in cancer biology and is an independent predictor of prognosis in HCC.
Collapse
Affiliation(s)
- Jia Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Surgery, Hunan Provincial Tumor Hospital, Changsha 410006, Hunan, China
| | - Dong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Sai Zhang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haijun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiming Tao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
47
|
Pandya P, Braiman A, Isakov N. PICOT (GLRX3) is a positive regulator of stress-induced DNA-damage response. Cell Signal 2019; 62:109340. [PMID: 31176019 DOI: 10.1016/j.cellsig.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality. Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel..
| |
Collapse
|
48
|
Grossman JD, Gay KA, Camire EJ, Walden WE, Perlstein DL. Coupling Nucleotide Binding and Hydrolysis to Iron-Sulfur Cluster Acquisition and Transfer Revealed through Genetic Dissection of the Nbp35 ATPase Site. Biochemistry 2019; 58:2017-2027. [PMID: 30865432 DOI: 10.1021/acs.biochem.8b00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) scaffold, comprising Nbp35 and Cfd1 in yeast, assembles iron-sulfur (FeS) clusters destined for cytosolic and nuclear enzymes. ATP hydrolysis by the CIA scaffold plays an essential but poorly understood role in cluster biogenesis. Here we find that mutation of conserved residues in the four motifs comprising the ATPase site of Nbp35 diminished the scaffold's ability to both assemble and transfer its FeS cluster in vivo. The mutants fall into four phenotypic classes that can be understood by how each set of mutations affects ATP binding and hydrolysis. In vitro studies additionally revealed that occupancy of the bridging FeS cluster binding site decreases the scaffold's affinity for the nucleotide. On the basis of our findings, we propose that nucleotide binding and hydrolysis by the CIA scaffold drive a series of protein conformational changes that regulate association with other proteins in the pathway and with its newly formed FeS cluster. Our results provide insight into how the ATPase and cluster scaffolding activities are allosterically integrated.
Collapse
Affiliation(s)
- John D Grossman
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Kelly A Gay
- Department of Microbiology and Immunology , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Eric J Camire
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - William E Walden
- Department of Microbiology and Immunology , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Deborah L Perlstein
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
49
|
Grossman JD, Camire EJ, Glynn CA, Neil CM, Seguinot BO, Perlstein DL. The Cfd1 Subunit of the Nbp35-Cfd1 Iron Sulfur Cluster Scaffolding Complex Controls Nucleotide Binding. Biochemistry 2019; 58:1587-1595. [PMID: 30785732 DOI: 10.1021/acs.biochem.8b00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytosolic iron sulfur cluster assembly (CIA) scaffold biosynthesizes iron sulfur cluster cofactors for enzymes residing in the cytosol and the nucleus. In fungi and animals, it comprises two homologous ATPases, called Nbp35 and Cfd1 in yeast, which can form homodimeric and heterodimeric complexes. Both proteins are required for CIA function, but their individual roles are not well understood. Here we investigate the nucleotide affinity of each form of the scaffold for ATP and ADP to reveal any differences that could shed light on the functions of the different oligomeric forms of the protein or any distinct roles of the individual subunits. All forms of the CIA scaffold are specific for adenosine nucleotides and not guanosine nucleotides. Although the Cfd1 homodimer has no detectable ATPase activity, it binds ATP with an affinity comparable to that of the hydrolysis competent forms, Nbp352 and Nbp35-Cfd1. Titrations to determine the number of nucleotide binding sites combined with site-directed mutagenesis demonstrate that the nucleotide must bind to the Cfd1 subunit of the heterodimer before it can bind to Nbp35 and that the Cfd1 subunit is hydrolysis competent when bound to Nbp35 in the heterodimer. Altogether, our work reveals the distinct roles of the Nbp35 and Cfd1 subunits in their heterodimeric complex. Cfd1 controls nucleotide binding, and the Nbp35 subunit is required to activate nucleotide hydrolysis.
Collapse
Affiliation(s)
- John D Grossman
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Eric J Camire
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Calina A Glynn
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Christopher M Neil
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Bryan O Seguinot
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Deborah L Perlstein
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
50
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|