1
|
Sas DJ, Bakkaloglu SA, Belostotsky V, Hayes W, Ariceta G, Zhou J, Rawson V. Nedosiran in pediatric patients with PH1 and relatively preserved kidney function, a phase 2 study (PHYOX8). Pediatr Nephrol 2025; 40:1939-1948. [PMID: 39875734 PMCID: PMC12031765 DOI: 10.1007/s00467-025-06675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder with dysregulated glyoxylate metabolism in the liver. Oxalate over-production leads to renal stones, progressive kidney damage and renal failure, with potentially life-threatening systemic oxalosis. Nedosiran is a synthetic RNA interference therapy, designed to reduce hepatic lactate dehydrogenase (LDH) to decrease oxalate burden in PH. METHODS Currently, in the PHYOX8 study (NCT05001269), pediatric participants (2-11 years) with PH1 (N = 15) and estimated glomerular filtration rate (eGFR) ≥ 30mL/min/1.73m2 received nedosiran once monthly for 6 months. RESULTS Urinary oxalate:creatinine (Uox:Ucr) levels reduced by 64% on average. Mean Uox:Ucr reduction was 52% at day 60 and ˃60% at day 180. At one or more study visits, 93.3% (N = 14) of participants reached Uox:Ucr < 1.5 × upper limit of normal (ULN), and 53.3% (N = 8) reached ≤ 1.0 × ULN. Median percent change in plasma oxalate (12.0 µmol/L at baseline) to day 180 was -39.23% (n = 10). Average number of kidney stones per participant remained stable, whilst a 10.1% average decrease in summed surface area was observed. Median percent change from baseline in eGFR was 2.5%, indicating preservation of renal function. CONCLUSIONS Nedosiran was well tolerated, with only 3 participants experiencing at least one serious adverse event, none considered treatment-related. The incidence of injection site reactions was 6.7% (1/15 participants). In conclusion, nedosiran treatment led to a significant and sustained reduction of Uox levels in children with PH1. These findings support nedosiran treatment in pediatric patients to reduce Uox and shows promise for limiting PH1-related complications.
Collapse
Affiliation(s)
- David J Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Wesley Hayes
- Department of Pediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Gema Ariceta
- Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Jing Zhou
- Novo Nordisk A/S, Lexington, MA, USA
| | | |
Collapse
|
2
|
Qu H, Qu Y. Can coenzyme Q10 supplementation reduce exercise-induced muscle damage and oxidative stress in athletes? A systematic review and meta-analysis. Complement Ther Clin Pract 2025; 60:102001. [PMID: 40367843 DOI: 10.1016/j.ctcp.2025.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND AND PURPOSE Coenzyme Q10 (CoQ10) has been widely recognized for its potential antioxidative and cytoprotective properties. Oxidative stress and muscle damage can impair recovery in athletes. This meta-analysis evaluates the impact of CoQ10 supplementation on oxidative stress and muscle damage biomarkers in athletes. MATERIALS AND METHODS A systematic search of databases up to March 2025 identified controlled trials assessing the effects of CoQ10 on malondialdehyde (MDA), total antioxidant capacity (TAC), lactate dehydrogenase (LDH), and creatine kinase (CK). Random-effects model was performed to estimate mean differences (MD) with 95 % confidence intervals (CI). RESULTS Seventeen trials with 440 participants were included. CoQ10 significantly reduced MDA levels (MD = -0.61 μmol/L; 95 % CI: 1.18 to -0.03; p = 0.04) and muscle damage biomarkers LDH (MD = -69.99 IU/L; 95 % CI: 131.93 to -8.05; p = 0.033) and CK (MD = -71.81 IU/L; 95 % CI: 124.33 to -19.3; p = 0.012). However, CoQ10 had no significant effect on TAC (MD = -0.17 mmol/L; 95 % CI: 0.77 to 0.43; p = 0.472). Subgroup analyses revealed duration- and dose-specific effects, particularly for reductions in LDH at 14 days and CK at doses ≥300 mg/day. CONCLUSION CoQ10 supplementation shows promise in reducing oxidative stress and muscle damage markers in athletes. Although effects on TAC were not significant and evidence quality remains low to very low, these findings suggest CoQ10 may serve as a supportive recovery strategy to mitigate exercise-induced oxidative and muscle damage. Further high-quality studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Hui Qu
- Department of Physical Education, Northeastern University, Shenyang, Liaoning, China.
| | - Yueyao Qu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Rahim M, Bednarski TK, Hasenour CM, Banerjee DR, Trenary I, Young JD. Simultaneous in vivo multi-organ fluxomics reveals divergent metabolic adaptations in liver, heart, and skeletal muscle during obesity. Cell Rep 2025; 44:115591. [PMID: 40244853 DOI: 10.1016/j.celrep.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
We present an isotope-based metabolic flux analysis (MFA) approach to simultaneously quantify metabolic fluxes in the liver, heart, and skeletal muscle of individual mice. The platform was scaled to examine metabolic flux adaptations in age-matched cohorts of mice exhibiting varying levels of chronic obesity. We found that severe obesity increases hepatic gluconeogenesis and citric acid cycle flux, accompanied by elevated glucose oxidation in the heart that compensates for impaired fatty acid oxidation. In contrast, skeletal muscle fluxes exhibit an overall reduction in substrate oxidation. These findings demonstrate the dichotomy in fuel utilization between cardiac and skeletal muscle during worsening metabolic disease and demonstrate the divergent effects of obesity on metabolic fluxes in different organs. This multi-tissue MFA technology can be extended to address important questions about in vivo regulation of metabolism and its dysregulation in disease, which cannot be fully answered through studies of single organs or isolated cells/tissues.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Valente JS, Colombelli KT, Pereira LL, Perez ÉS, Thomazini Zanella BT, Delgado AQ, Fioretto MN, Padovani CR, Vechetti IJ, Damasceno DC, Justulin LA, Dal-Pai-Silva M. Aerobic exercise acts differentially on proteins from glucose and glycogen pathways in the SOL and PL muscles of offspring rats submitted to a low-protein maternal diet. Biochem Biophys Res Commun 2025; 752:151483. [PMID: 39954356 DOI: 10.1016/j.bbrc.2025.151483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
We assess the effects of aerobic exercise on the soleus and plantaris muscles in adult rats submitted to maternal protein restriction (MPR) during pregnancy and lactation. Male offspring born from dams fed with control (17%-control) or low protein diets (6%-restricted) were randomly assigned to untrained or aerobic exercise, and morphological, biochemical, molecular, and proteomic analyses were performed. The proteome analysis showed many proteins involved with muscle energy metabolism, with emphasis on the glycolysis (ALDOA, ENO1, PGAM2, and TPI1) and glycogen (PYGM) pathways. MPR decreased ALDOA, TPI1, ENO1, PGAM2, and PYGM expression and increased glycogen content in Soleus (SOL); Plantaris (PL) increased PYGM, ALDOA, GAPDH, PKM, and TPI1 protein expression. Aerobic exercise (AE) normalized the glycemic index in restricted animals and increased the expression of proteins PYGM, ALDOA, ENO1, PGAM2, and TPI1, also decreasing glycogen content in the SOL. In the PL, aerobic exercise increased PYGM, ALDOA, GAPDH, PKM, and TPI1 proteins without a change in muscle glycogen content. Our study demonstrates that MPR and AE promoted differential muscle-specific adaptations, and aerobic exercise can represent a way to attenuate early muscle morphophysiological and metabolic changes in offspring rats submitted to MPR.
Collapse
Affiliation(s)
- Jéssica Silvino Valente
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Lins Pereira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Aislan Quintiliano Delgado
- Department of Physical Education, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ivan José Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, USA
| | - Débora Cristina Damasceno
- Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Gajula SK, Konkala A, Narra MR. Physiological and biochemical responses of Labeo rohita to neonicotinoids imidacloprid, clothianidin, and their mixture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:13. [PMID: 39621244 DOI: 10.1007/s10695-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Neonicotinoids, widely used insecticides, pose severe environmental risks due to their persistence in soil and water, adversely affecting non-target organisms and ecosystem integrity. The present study examined the 56 days effects of imidacloprid (66.6 mg/l), clothianidin (30 mg/l), and their combination (33.3 mg/l and 15 mg/l) on Labeo rohita, using one-third of the LC50 sub-lethal concentrations. Survival, weight gain, and the hepatosomatic index decreased insignificantly in the IMI group and significantly in the CLO and Mix groups. Haematological indicators, including erythrocyte counts, haemoglobin, and haematocrit values, were also significantly reduced. Blood glucose and serum creatinine levels increased, while serum albumin, globulin, and plasma total proteins decreased. White blood cell counts elevated, while immunoglobulin (IgM), respiratory burst, and lysozyme activities were significantly inhibited. Liver, brain and muscle lactate and malate dehydrogenases were elevated, whereas succinate and glutamate dehydrogenases were decreased. Liver aspartate aminotransferase activity was substantially higher than that of brain and muscle, which had considerably higher levels of alanine aminotransferase in muscle than in the brain and liver. Additionally, muscle alkaline phosphatase activity was significantly higher than in the liver and brain, whereas liver acid phosphatase showed a greater elevation than in the muscle and brain. The physiological, haematological, and biochemical indices peaked on day 28 and slight recovery was observed on day 56 (IMI > CLO > Mix). The study highlights that the mixture of insecticides poses greater hazards compared to a single active compound, and the indiscriminate use of these insecticides jeopardizes non-target organisms, ecosystems, and public health.
Collapse
Affiliation(s)
- Sadaya Kumar Gajula
- Tara Government College (A) Sangareddy, Department of Zoology, Osmania University, Hyderabad, India
| | - Anand Konkala
- Govt City Collage-Hyderabad, Department of Zoology, Osmania University, Hyderabad, India
| | - Madhusudan Reddy Narra
- Department of Zoology, College of Science, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
6
|
Mao Y, Huang J, Li S, Chen G, Du Y, Kang M, Zhu S, Zhang W, Xu Q, Wang Y, Ling W, Luo X, Wang D. Brussels Chicory Enhances Exhaustive Aerobic Exercise Performance and Post-Exercise Recovery, Possibly Through Promotion of Lactate Oxidation: A Pilot Randomized, Single-Blind, Placebo-Controlled, Two-Way Crossover Study. Nutrients 2025; 17:365. [PMID: 39861495 PMCID: PMC11769108 DOI: 10.3390/nu17020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Brussels chicory affluent in phenolic acids could inhibit atherosclerosis; however, its effects on exercise performance and post-exercise recovery are unknown. We hypothesized that Brussels chicory could enhance exhaustive aerobic exercise performance and post-exercise recovery by promoting lactate oxidation. METHODS This is a single-blind, randomized, placebo-controlled two-way cross-over trial involving 32 untrained college students (men 18) who consumed either Brussels chicory juice (100 g of Brussels chicory containing ~130 mg phenolic acids and 180 mL fresh milk) or placebo (180 mL fresh milk) for 7 days with a 2-week washout period. On the 7th day, participants received a short-term, progressive workload, high-intensity, exhaustive aerobic exercise with the Bruce protocol. Time to exhaustion and blood lactate were evaluated after exercise. C2C12 myotubes were treated with Brussels chicory phenolic acids (0.625-10 μM) to evaluate these effects on lactate metabolism and lactate dehydrogenase A (LDHA) and B (LDHB), two enzymes responsible for lactate biosynthesis and oxidation, respectively. RESULTS Brussels chicory consumption increased time to exhaustion by 8.3% and 12.2% for men and women participants, respectively. This administration also promoted post-exercise recovery, evidenced by a reduction in blood lactate (14.5% for men and 10.6% for women). In C2C12 myotubes, Brussels chicory protocatechuic acid and caffeic acid did not affect LHDA-mediated lactate production, whereas these compounds dose-dependently promoted LDHB-mediated lactate oxidation through an enrichment of mitochondria LDHB. CONCLUSIONS Dietary supplementation with Brussels chicory may enhance short-term, progressive workload, high-intensity, exhaustive aerobic exercise performance and post-exercise recovery in humans, possibly by accelerating LDHB-mediated lactate oxidation.
Collapse
Affiliation(s)
- Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China;
| | - Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Mengxi Kang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Shasha Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Wenyu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Qiuhui Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Yihan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou 510080, China
| | - Xijuan Luo
- Department of Sports, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China; (Y.M.); (S.L.); (G.C.); (Y.D.); (M.K.); (S.Z.); (W.Z.); (Q.X.); (Y.W.); (W.L.)
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
7
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
8
|
Wadsworth BJ, Leiwe M, Minogue EA, Cunha PP, Engman V, Brombach C, Asvestis C, Sah-Teli SK, Marklund E, Karppinen P, Ruas JL, Rundqvist H, Lanner JT, Johnson RS. A 2-hydroxybutyrate-mediated feedback loop regulates muscular fatigue. eLife 2024; 12:RP92707. [PMID: 39226092 PMCID: PMC11371357 DOI: 10.7554/elife.92707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.
Collapse
Affiliation(s)
- Brennan J Wadsworth
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Marina Leiwe
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Eleanor A Minogue
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Viktor Engman
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Carolin Brombach
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Christos Asvestis
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Shiv K Sah-Teli
- Faculty of Medical Biochemistry and Molecular Biology, University of OuluOuluFinland
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Emilia Marklund
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Peppi Karppinen
- Faculty of Medical Biochemistry and Molecular Biology, University of OuluOuluFinland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Helene Rundqvist
- Department of Laboratory Medicine, Karolinska InstitutetStockholmSweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Ren P, Zhou L, Xu Y, Chen M, Luo Z, Li J, Liu Y. Exercise Volume Provides New Insight into the Effects of Housing Systems on Chicken Body Conformation, Carcass Traits, Meat Quality, and Serum Biochemical Parameters. Animals (Basel) 2024; 14:2387. [PMID: 39199922 PMCID: PMC11350860 DOI: 10.3390/ani14162387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
This study aims to investigate the dynamic changes in daily step counts under different housing systems and further explore the effects of housing system on the body conformation, carcass traits, meat quality, and serum biochemical parameters of a Chinese indigenous chicken breed. At 60 d of age, 300 Jiuyuan Black male chickens with similar body weights in each housing system were further raised until the age of 150 d. At 90, 120, and 150 d of age, in both cage-reared and free-range systems, the top 20 chickens with the highest step counts measured using pedometers and the bottom 20 chickens with the lowest step counts were designated as the cage high-steps group (CHS), the cage low-steps group (CLS), the free-range high-steps group (FHS), and the free-range low-steps group (FLS), respectively. The results show that, at any age stage, the average daily steps (ADS) and total steps (TS) of the FHS group are significantly higher than the other three groups (p < 0.05). The TS of almost all groups showed an overall downward trend as the age increased. Increased exercise volume results in reduced shank length (90 d), breast width (90 d), and keel length (150 d) (p < 0.05). Only birds at 90 d of age from the FHS and FLS groups exhibited lower live body weight, carcass weight, half-eviscerated weight, eviscerated weight, breast muscle weight, leg muscle weight, and percentage of eviscerated weight than the CLS group (p < 0.05). Birds from the FHS group showed the highest heart weight values but the lowest abdominal fat weight values among these four groups (p < 0.05). Both the breast and leg muscle samples from the FHS group displayed higher dry matter and shear force than those from the CHS and CLS groups (p < 0.05). The FHS group displayed the lowest intramuscular fat among the four groups (p < 0.05). The creatine kinase (CK) and lactate dehydrogenase (LDH) levels in chickens of all age stages were almost observed to rise with increased physical activity. In conclusion, free-range chickens with more exercise volume exhibited an elevated heart weight and reduced abdominal fat but showed negative effects on some body measurements and carcass traits. These results can provide a theoretical basis for the selection of different housing systems for Chinese indigenous chickens.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Li Zhou
- Yibin Academy of Agricultural Sciences, Yibin 644600, China;
| | - Yingfeng Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
10
|
Torretta E, Moriggi M, Capitanio D, Orfei CP, Raffo V, Setti S, Cadossi R, de Girolamo L, Gelfi C. Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis. Int J Mol Sci 2024; 25:8852. [PMID: 39201538 PMCID: PMC11354614 DOI: 10.3390/ijms25168852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Tendon disorders often result in decreased muscle function and atrophy. Pulsed Electromagnetic Fields (PEMFs) have shown potential in improving tendon fiber structure and muscle recovery. However, the molecular effects of PEMF therapy on skeletal muscle, beyond conventional metrics like MRI or markers of muscle decline, remain largely unexplored. This study investigates the metabolic and structural changes in PEMF-treated muscle tissue using proteomics in a rat model of Achilles tendinopathy induced by collagenase. Sprague Dawley rats were unilaterally induced for tendinopathy with type I collagenase injection and exposed to PEMFs for 8 h/day. Gastrocnemius extracts from untreated or PEMF-treated rats were analyzed with LC-MS/MS, and proteomics differential analysis was conducted through label-free quantitation. PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production, which boosted respiratory chain activity and fatty acid beta-oxidation. Antioxidant protein levels increased, controlling ROS production. PEMF therapy restored PGC1alpha and YAP levels, decreased by tendinopathy. Additionally, myosins regulating slow-twitch fibers and proteins involved in fiber alignment and force transmission increased, supporting muscle recovery and contractile function. Our findings show that PEMF treatment modulates NAD signaling and oxidative phosphorylation, aiding muscle recovery through the upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.
Collapse
Affiliation(s)
- Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Carlotta Perucca Orfei
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Vincenzo Raffo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | | | | | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| |
Collapse
|
11
|
Suzuki J. Effects of exercise training with intermittent hyperoxic intervention on endurance performance and muscle metabolic properties in male mice. Physiol Rep 2024; 12:e16117. [PMID: 38898524 PMCID: PMC11186743 DOI: 10.14814/phy2.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaHokkaidoJapan
| |
Collapse
|
12
|
Maffitt NJ, Germann M, Baker AME, Baker MR, Baker SN, Soteropoulos DS. Recovery of neurophysiological measures in post-COVID fatigue: a 12-month longitudinal follow-up study. Sci Rep 2024; 14:8874. [PMID: 38632415 PMCID: PMC11024107 DOI: 10.1038/s41598-024-59232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
One of the major consequences of the COVID-19 pandemic has been the significant incidence of persistent fatigue following resolution of an acute infection (i.e. post-COVID fatigue). We have shown previously that, in comparison to healthy controls, those suffering from post-COVID fatigue exhibit changes in muscle physiology, cortical circuitry, and autonomic function. Whether these changes preceded infection, potentially predisposing people to developing post-COVID fatigue, or whether the changes were a consequence of infection was unclear. Here we present results of a 12-month longitudinal study of 18 participants from the same cohort of post-COVID fatigue sufferers to investigate these correlates of fatigue over time. We report improvements in self-perception of the impact of fatigue via questionnaires, as well as significant improvements in objective measures of peripheral muscle fatigue and autonomic function, bringing them closer to healthy controls. Additionally, we found reductions in muscle twitch tension rise times, becoming faster than controls, suggesting that the improvement in muscle fatigability might be due to a process of adaptation rather than simply a return to baseline function.
Collapse
Affiliation(s)
- Natalie J Maffitt
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Maria Germann
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Anne M E Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mark R Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
13
|
Talebi S, Mohammadi H, Zeraattalab-Motlagh S, Arab A, Keshavarz Mohammadian M, Ghoreishy SM, Abbaspour Tehrani Fard M, Amiri Khosroshahi R, Djafarian K. Nutritional interventions for exercise-induced muscle damage: an umbrella review of systematic reviews and meta-analyses of randomized trials. Nutr Rev 2024; 82:639-653. [PMID: 37460208 DOI: 10.1093/nutrit/nuad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
CONTEXT Several meta-analyses have been conducted on the effect of nutritional interventions on various factors related to muscle damage. However, the strength of the evidence and its clinical significance are unclear. OBJECTIVES This umbrella review aimed to provide an evidence-based overview of nutritional interventions for exercise-induced muscle damage (EIMD). DATA SOURCES PubMed, Scopus, and ISI Web of Science were systematically searched up to May 2022. DATA EXTRACTION Systematic reviews and meta-analyses of randomized controlled trials investigating nutritional interventions' effects on recovery following EIMD were included. The certainty of the evidence was rated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS Fifty-three randomized controlled trial meta-analyses were included, evaluating 24 nutritional interventions on 10 different outcomes. The results revealed a significant effect of hydroxymethylbutyrate (HMB) supplementation and l-carnitine supplementation for reducing postexercise creatine kinase; HMB supplementation for reducing lactate dehydrogenase; branched-chain amino acids and leaf extract supplementation for reducing the delayed onset of muscle soreness; and l-carnitine, curcumin, ginseng, polyphenols, and anthocyanins for reducing muscle soreness, all with moderate certainty of evidence. CONCLUSIONS Supplementation with HMB, l-carnitine, branched-chain amino acids, curcumin, ginseng, leaf extract, polyphenols, and anthocyanins showed favorable effects on some EIMD-related outcomes. PROTOCOL REGISTRATION PROSPERO registration no. CRD42022352565.
Collapse
Affiliation(s)
- Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abbaspour Tehrani Fard
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Beiter T, Zügel M, Hudemann J, Schild M, Fragasso A, Burgstahler C, Krüger K, Mooren FC, Steinacker JM, Nieß AM. The Acute, Short-, and Long-Term Effects of Endurance Exercise on Skeletal Muscle Transcriptome Profiles. Int J Mol Sci 2024; 25:2881. [PMID: 38474128 DOI: 10.3390/ijms25052881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Martina Zügel
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Jens Hudemann
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Marius Schild
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Frank C Mooren
- Department of Medicine, Faculty of Health, University of Witten/Herdecke, 58455 Witten, Germany
| | - Jürgen M Steinacker
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
García-Giménez JL, Cánovas-Cervera I, Pallardó FV. Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radic Biol Med 2024; 213:123-137. [PMID: 38199289 DOI: 10.1016/j.freeradbiomed.2024.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain.
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
16
|
Emanuelsson EB, Arif M, Reitzner SM, Perez S, Lindholm ME, Mardinoglu A, Daub C, Sundberg CJ, Chapman MA. Remodeling of the human skeletal muscle proteome found after long-term endurance training but not after strength training. iScience 2024; 27:108638. [PMID: 38213622 PMCID: PMC10783619 DOI: 10.1016/j.isci.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.
Collapse
Affiliation(s)
- Eric B. Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
| | - Stefan M. Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sean Perez
- Department of Biology, Pomona College, Claremont, CA 91711, USA
| | - Maléne E. Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Carsten Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark A. Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, CA 92110, USA
| |
Collapse
|
17
|
Xia H, Scholtes C, Dufour CR, Guluzian C, Giguère V. ERRα fosters running endurance by driving myofiber aerobic transformation and fuel efficiency. Mol Metab 2023; 78:101814. [PMID: 37802398 PMCID: PMC10590867 DOI: 10.1016/j.molmet.2023.101814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Catherine R Dufour
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6.
| |
Collapse
|
18
|
Matejko B, Tota Ł, Morawska-Tota M, Pałka T, Malecki MT, Klupa T. Assessment of selected muscle damage markers and zonulin concentration after maximum-intensity exercise in men with type 1 diabetes treated with a personal insulin pump. Acta Diabetol 2023; 60:1675-1683. [PMID: 37481476 PMCID: PMC10587266 DOI: 10.1007/s00592-023-02157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
AIM Exercise-induced muscle damage depends on exercise intensity and duration and on individual susceptibility. Mechanical and metabolic stress may disturb the intestinal microflora. The study evaluated selected muscle damage markers and zonulin concentration after maximum-intensity exercise in type 1 diabetes (T1D) men compared with healthy controls. METHODS The study involved 16 T1D participants and 28 controls matched by age (22.7 [21.3-25.1] vs. 22.6 [20.9-26.3] years), body mass index (24.2 ± 1.6 vs. 24.2 ± 1.9 kg/m2), and body fat percentage (16.1 ± 5.2 vs. 14.9 ± 4.6%). The T1D group had 11.3 ± 5.1 years of diabetes duration and a suboptimal mean glycated haemoglobin level of 7.2 ± 1.1%. The subjects underwent a graded running treadmill test until exhaustion. Lactate concentration was assessed in arterialized blood at baseline and 3 and 20 min after the test. Cortisol, testosterone, tumour necrosis factor α, myoglobin, lactate dehydrogenase, zonulin, and vitamin D levels were evaluated in cubital fossa vein blood before and 60 min after the test. RESULTS T1D patients presented higher baseline zonulin, myoglobin concentration, testosterone/cortisol ratio, and lower maximal oxygen uptake. On adjusting for the baseline values, the groups differed in zonulin, lactate dehydrogenase, and myoglobin levels, testosterone/cortisol ratio, and lactate concentration determined 20 min after exercise (P < 0.05). CONCLUSION Maximum-intensity exercise increased muscle and intestinal damage in T1D participants. In patients with lower physical activity, very-high-intensity exercise should be recommended with caution. Observing the anabolic-catabolic index may help individualize effort intensity in T1D individuals.
Collapse
Affiliation(s)
- Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland.
- University Hospital in Krakow, Krakow, Poland.
| | - Łukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, ul. Jakubowskiego 2, 30-688, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
19
|
Sun Z, Yang L, Kiram A, Yang J, Yang Z, Xiao L, Yin Y, Liu J, Mao Y, Zhou D, Yu H, Zhou Z, Xu D, Jia Y, Ding C, Guo Q, Wang H, Li Y, Wang L, Fu T, Hu S, Gan Z. FNIP1 abrogation promotes functional revascularization of ischemic skeletal muscle by driving macrophage recruitment. Nat Commun 2023; 14:7136. [PMID: 37932296 PMCID: PMC10628247 DOI: 10.1038/s41467-023-42690-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Ischaemia of the heart and limbs attributable to compromised blood supply is a major cause of mortality and morbidity. The mechanisms of functional angiogenesis remain poorly understood, however. Here we show that FNIP1 plays a critical role in controlling skeletal muscle functional angiogenesis, a process pivotal for muscle revascularization during ischemia. Muscle FNIP1 expression is down-regulated by exercise. Genetic overexpression of FNIP1 in myofiber causes limited angiogenesis in mice, whereas its myofiber-specific ablation markedly promotes the formation of functional blood vessels. Interestingly, the increased muscle angiogenesis is independent of AMPK but due to enhanced macrophage recruitment in FNIP1-depleted muscles. Mechanistically, myofiber FNIP1 deficiency induces PGC-1α to activate chemokine gene transcription, thereby driving macrophage recruitment and muscle angiogenesis program. Furthermore, in a mouse hindlimb ischemia model of peripheral artery disease, the loss of myofiber FNIP1 significantly improved the recovery of blood flow. Thus, these results reveal a pivotal role of FNIP1 as a negative regulator of functional angiogenesis in muscle, offering insight into potential therapeutic strategies for ischemic diseases.
Collapse
Affiliation(s)
- Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Abdukahar Kiram
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhuangzhuang Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hao Yu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, Guernec A, Amérand A. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. PLoS One 2023; 18:e0292225. [PMID: 37792807 PMCID: PMC10550171 DOI: 10.1371/journal.pone.0292225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
The healthy benefits of regular physical exercise are mainly mediated by the stimulation of oxidative and antioxidant capacities in skeletal muscle. Our understanding of the cellular and molecular responses involved in these processes remain often uncomplete particularly regarding muscle typology. The main aim of the present study was to compare the effects of two types of exercise training protocol: a moderate-intensity continuous training (MICT) and a high-intensity interval training (HIIT) on metabolic processes in two muscles with different typologies: soleus and extensor digitorum longus (EDL). Training effects in male Wistar rats were studied from whole organism level (maximal aerobic speed, morphometric and systemic parameters) to muscle level (transcripts, protein contents and enzymatic activities involved in antioxidant defences, aerobic and anaerobic metabolisms). Wistar rats were randomly divided into three groups: untrained (UNTR), n = 7; MICT, n = 8; and HIIT, n = 8. Rats of the MICT and HIIT groups ran five times a week for six weeks at moderate and high intensity, respectively. HIIT improved more than MICT the endurance performance (a trend to increased maximal aerobic speed, p = 0.07) and oxidative capacities in both muscles, as determined through protein and transcript assays (AMPK-PGC-1α signalling pathway, antioxidant defences, mitochondrial functioning and dynamics). Whatever the training protocol, the genes involved in these processes were largely more significantly upregulated in soleus (slow-twitch fibres) than in EDL (fast-twitch fibres). Solely on the basis of the transcript changes, we conclude that the training protocols tested here lead to specific muscular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Féray
- EA 4324 ORPHY, Université de Brest, Brest, France
| | | | | |
Collapse
|
21
|
Jacques M, Landen S, Romero JA, Hiam D, Schittenhelm RB, Hanchapola I, Shah AD, Voisin S, Eynon N. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training. FASEB J 2023; 37:e23184. [PMID: 37698381 DOI: 10.1096/fj.202300840rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1 kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value < .05). K-means analysis revealed cumulative protein changes by clusters of proteins that presented similar changes over time. Individual responses to training were observed in 101 proteins. Seven proteins had large effect-sizes >0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Javier Alvarez Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Institute of Nutrition and Health Sciences, Deakin University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Iresha Hanchapola
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Kang HG, Lim JH, Kim HY, Kim H, Kim HM, Jeong HJ. Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models. Nutr Res Pract 2023; 17:670-681. [PMID: 37529263 PMCID: PMC10375336 DOI: 10.4162/nrp.2023.17.4.670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.
Collapse
Affiliation(s)
- Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
| | - Jin-Ho Lim
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
| | - Hee-Yun Kim
- BioChip Research Center, Hoseo University, Asan 31499, Korea
| | - Hyunyong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Ja Jeong
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
- BioChip Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
24
|
Miro C, Nappi A, Sagliocchi S, Di Cicco E, Murolo M, Torabinejad S, Acampora L, Pastore A, Luciano P, La Civita E, Terracciano D, Stornaiuolo M, Dentice M, Cicatiello AG. Thyroid Hormone Regulates the Lipid Content of Muscle Fibers, Thus Affecting Physical Exercise Performance. Int J Mol Sci 2023; 24:12074. [PMID: 37569453 PMCID: PMC10418733 DOI: 10.3390/ijms241512074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Skeletal muscle (SkM) lipid composition plays an essential role in physiological muscle maintenance and exercise performance. Thyroid hormones (THs) regulate muscle formation and fuel energy utilization by modulating carbohydrates and lipid and protein metabolism. The best-known effects of THs in SkM include the promotion of mitochondrial biogenesis, the fiber-type switch from oxidative to glycolytic fibers, and enhanced angiogenesis. To assess the role of THs on the lipidic composition of SkM fibers, we performed lipidomic analyses of SkM cells and tissues, glucose tolerance experiments, and exercise performance tests. Our data demonstrated that TH treatment induces remodeling of the lipid profile and changes the proportion of fatty acids in SkM. In brief, THs significantly reduced the ratio of stearic/oleic acid in the muscle similar to what is induced by physical activity. The increased proportion of unsaturated fatty acids was linked to an improvement in insulin sensitivity and endurance exercise. These findings point to THs as critical endocrine factors affecting exercise performance and indicate that homeostatic maintenance of TH signals, by improving cell permeability and receptor stability at the cell membrane, is crucial for muscle physiology.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Lucia Acampora
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Paolo Luciano
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
- CEINGE–Biotecnologie Avanzate S.c.a.r.l., 80131 Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| |
Collapse
|
25
|
Chung HC, Keiller DR, Swain PM, Chapman SL, Roberts JD, Gordon DA. Responsiveness to endurance training can be partly explained by the number of favorable single nucleotide polymorphisms an individual possesses. PLoS One 2023; 18:e0288996. [PMID: 37471354 PMCID: PMC10358902 DOI: 10.1371/journal.pone.0288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
Cardiorespiratory fitness is a key component of health-related fitness. It is a necessary focus of improvement, especially for those that have poor fitness and are classed as untrained. However, much research has shown individuals respond differentially to identical training programs, suggesting the involvement of a genetic component in individual exercise responses. Previous research has focused predominantly on a relatively low number of candidate genes and their overall influence on exercise responsiveness. However, examination of gene-specific alleles may provide a greater level of understanding. Accordingly, this study aimed to investigate the associations between cardiorespiratory fitness and an individual's genotype following a field-based endurance program within a previously untrained population. Participants (age: 29 ± 7 years, height: 175 ± 9 cm, mass: 79 ± 21 kg, body mass index: 26 ± 7 kg/m2) were randomly assigned to either a training (n = 21) or control group (n = 24). The training group completed a periodized running program for 8-weeks (duration: 20-30-minutes per session, intensity: 6-7 Borg Category-Ratio-10 scale rating, frequency: 3 sessions per week). Both groups completed a Cooper 12-minute run test to estimate cardiorespiratory fitness at baseline, mid-study, and post-study. One thousand single nucleotide polymorphisms (SNPs) were assessed via saliva sample collections. Cooper run distance showed a significant improvement (0.23 ± 0.17 km [11.51 ± 9.09%], p < 0.001, ES = 0.48 [95%CI: 0.16-0.32]), following the 8-week program, whilst controls displayed no significant changes (0.03 ± 0.15 km [1.55 ± 6.98%], p = 0.346, ES = 0.08, [95%CI: -0.35-0.95]). A significant portion of the inter-individual variation in Cooper scores could be explained by the number of positive alleles a participant possessed (r = 0.92, R2 = 0.85, p < 0.001). These findings demonstrate the relative influence of key allele variants on an individual's responsiveness to endurance training.
Collapse
Affiliation(s)
- Henry C. Chung
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, United Kingdom
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Don R. Keiller
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Patrick M. Swain
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Shaun L. Chapman
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- HQ Army Recruiting and Initial Training Command, United Kingdom Ministry of Defence, Upavon, United Kingdom
| | - Justin D. Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan A. Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
26
|
Sopariwala DH, Hao NTT, Narkar VA. Estrogen-related Receptor Signaling in Skeletal Muscle Fitness. Int J Sports Med 2023; 44:609-617. [PMID: 36787804 PMCID: PMC11168301 DOI: 10.1055/a-2035-8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nguyen Thi Thu Hao
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
27
|
Lavier J, Bouzourène K, Millet GP, Mazzolai L, Pellegrin M. Physical Performance and Skeletal Muscle Transcriptional Adaptations Are Not Impacted by Exercise Training Frequency in Mice with Lower Extremity Peripheral Artery Disease. Metabolites 2023; 13:metabo13040562. [PMID: 37110220 PMCID: PMC10143072 DOI: 10.3390/metabo13040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Exercise training is an important therapeutic strategy for lower extremity peripheral artery disease (PAD). However, the effects of different exercise frequency on physiological adaptations remain unknown. Thus, this study compared the effects of a 7-week moderate-intensity aerobic training performed either three or five times/week on skeletal muscle gene expression and physical performance in mice with PAD. Hypercholesterolemic male ApoE-deficient mice were subjected to unilateral iliac artery ligation and randomly assigned to sedentary or exercise training regimens either three or five times/week. Physical performance was assessed using a treadmill test to exhaustion. Expression of genes related to glucose and lipid metabolism, mitochondrial biogenesis, muscle fiber-type, angiogenesis, and inflammation was analyzed in non-ischemic and ischemic gastrocnemius muscles by real-time polymerase chain reaction. Physical performance was improved to the same extent in both exercise groups. For gene expression patterns, no statistical differences were observed between three or five times/week exercised mice, both in the non-ischemic and ischemic muscles. Our data show that exercising three to five times a week induces similar beneficial effects on performance. Those results are associated with muscular adaptations that remain identical between the two frequencies.
Collapse
Affiliation(s)
- Jessica Lavier
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Karima Bouzourène
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Xu L, Jia J, Miao S, Gong L, Wang J, He S, Zhang Y. Aerobic exercise reduced the amount of CHRONO bound to BMAL1 and ameliorated glucose metabolic dysfunction in skeletal muscle of high-fat diet-fed mice. Life Sci 2023; 324:121696. [PMID: 37061124 DOI: 10.1016/j.lfs.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
AIMS The purpose of this study was to investigate the effects of aerobic exercise on the CHRONO-BMAL1 pathway and glucose metabolism in skeletal muscle of high-fat diet (HFD)-fed mice. MAIN METHODS Male C57BL/6J mice were randomly allocated into four groups: normal chow diet with control (NCD + CON), NCD with exercise (NCD + EXE), HFD with control (HFD + CON) and HFD with exercise (HFD + EXE). The NCD and HFD groups were respectively fed a diet of 10 % and 60 % kilocalories from fat for 12 weeks. During the dietary intervention, EXE groups were subjected to 70 % VO2max intensity of treadmill exercise six times per week for 12 weeks. Body weight, energy intake, fat weight, serum lipid profiles, systemic glucose homeostasis, the amount of CHRONO bound to BMAL1, the enzymatic activity, mRNA and protein expression involved in glucose metabolism of skeletal muscle were measured. KEY FINDINGS The results showed that the 12-week HFD feeding without exercise induced weight gain, serum dyslipidemia and insulin resistance. Furthermore, HFD increased the amount of CHRONO bound to BMAL1 and repressed the glucose metabolism in skeletal muscle. However, aerobic exercise prevented weight gain, serum dyslipidemia and systemic insulin resistance in the HFD-fed mice. Meanwhile, aerobic exercise also decreased the amount of CHRONO bound to BMAL1 and increased the glucose uptake, glucose oxidation and glycogenesis in skeletal muscle of the HFD-fed mice. SIGNIFICANCE These data suggested that aerobic exercise could counterbalance CHRONO interacted with BMAL1 and prevent glucose metabolism dysfunction of skeletal muscle, and finally maintain whole-body insulin sensitivity in the HFD-fed mice.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jin Wang
- College of Sports Science, Tianjin Normal University, Tianjin 300382, China
| | - Shiyi He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
29
|
Nutrients, Physical Activity, and Mitochondrial Dysfunction in the Setting of Metabolic Syndrome. Nutrients 2023; 15:nu15051217. [PMID: 36904216 PMCID: PMC10004804 DOI: 10.3390/nu15051217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic risk factors for diabetes, coronary heart disease, non-alcoholic fatty liver disease, and some tumors. It includes insulin resistance, visceral adiposity, hypertension, and dyslipidemia. MetS is primarily linked to lipotoxicity, with ectopic fat deposition from fat storage exhaustion, more than obesity per se. Excessive intake of long-chain saturated fatty acid and sugar closely relates to lipotoxicity and MetS through several pathways, including toll-like receptor 4 activation, peroxisome proliferator-activated receptor-gamma regulation (PPARγ), sphingolipids remodeling, and protein kinase C activation. These mechanisms prompt mitochondrial dysfunction, which plays a key role in disrupting the metabolism of fatty acids and proteins and in developing insulin resistance. By contrast, the intake of monounsaturated, polyunsaturated, and medium-chain saturated (low-dose) fatty acids, as well as plant-based proteins and whey protein, favors an improvement in sphingolipid composition and metabolic profile. Along with dietary modification, regular exercises including aerobic, resistance, or combined training can target sphingolipid metabolism and improve mitochondrial function and MetS components. This review aimed to summarize the main dietary and biochemical aspects related to the physiopathology of MetS and its implications for mitochondrial machinery while discussing the potential role of diet and exercise in counteracting this complex clustering of metabolic dysfunctions.
Collapse
|
30
|
Araki H, Hino S, Anan K, Kuribayashi K, Etoh K, Seko D, Takase R, Kohrogi K, Hino Y, Ono Y, Araki E, Nakao M. LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle. eLife 2023; 12:84618. [PMID: 36695573 PMCID: PMC9876571 DOI: 10.7554/elife.84618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.
Collapse
Affiliation(s)
- Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasakiJapan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| |
Collapse
|
31
|
Kim HY, Lee JD, Lee YH, Seo SW, Lee HS, Kim S, Kim KB. Urinary Metabolomics in Young Soccer Players after Winter Training Season. Metabolites 2022; 12:metabo12121283. [PMID: 36557321 PMCID: PMC9784126 DOI: 10.3390/metabo12121283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
During the off-season, soccer players in Korea attend the winter training season (WTS) to build running stamina for the next season. For young soccer players, proper recovery time is needed to prevent injury or muscle damage. In this study, urinary metabolites in young players after 1, 5, and 10 days of the WTS were analyzed using nuclear magnetic resonance spectroscopy (NMR) combined with multivariate analysis to suggest appropriate recovery times for improving their soccer skills. After NMR analysis of the urine samples obtained from young players, 79 metabolites were identified, and each group (1, 5, or 10 days after WTS) was separated from the before the WTS group in the target profiling analysis using partial least squares-discriminant analysis (PLS-DA). Of these, 15 metabolites, including 1-methylnicotinamide, 3-indoxylsulfate, galactarate, glutamate, glycerol, histamine, methylmalonate, maltose, N-phenylacetylglycine, trimethylamine, urea, 2-hydroxybutyrate, adenine, alanine, and lactate, were significantly different than those from before the WTS and were mainly involved in the urea, purine nucleotide, and glucose-alanine cycles. In this study, most selected metabolites increased 1 day after the WTS and then returned to normal levels. However, 4 metabolites, adenine, 2-hydroxybutyrate, alanine, and lactate, increased during the 5 days of recovery time following the WTS. Based on excess ammonia, adenine, and lactate levels in the urine, at least 5 days of recovery time can be considered appropriate.
Collapse
Affiliation(s)
- Hyang-Yeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jung-Dae Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Yun-Hwan Lee
- Department of Exercise and Medical Science, Graduate School, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Sang-Won Seo
- Department of Sports Science, Gwangju University, Gwangju 61743, Republic of Korea
| | - Ho-Seong Lee
- Department of Exercise and Medical Science, Graduate School, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Correspondence: (H.-S.L.); (K.-B.K.)
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Daehak-ro 63 beon-gil 2, Busan 46241, Republic of Korea
| | - Kyu-Bong Kim
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Correspondence: (H.-S.L.); (K.-B.K.)
| |
Collapse
|
32
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
33
|
The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression. Nutrients 2022; 14:nu14235040. [PMID: 36501070 PMCID: PMC9739923 DOI: 10.3390/nu14235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare the impacts of a potential blood flow restriction (BFR)-betaine synergy on one-leg press performance, lactate concentrations, and exercise-associated biomarkers. Eighteen recreationally trained males (25 ± 5 y) were randomized to supplement 6 g/day of either betaine anhydrous (BET) or cellulose placebo (PLA) for 14 days. Subsequently, subjects performed four standardized sets of one-leg press and two additional sets to muscular failure on both legs (BFR [LL-BFR; 20% 1RM at 80% arterial occlusion pressure] and high-load [HL; 70% 1RM]). Toe-tip lactate concentrations were sampled before (PRE), as well as immediately (POST0), 30 min (POST30M), and 3 h (POST3H) post-exercise. Serum homocysteine (HCY), growth hormone (GH) and insulin-like growth factor-1 concentrations were additionally assessed at PRE and POST30M. Analysis failed to detect any significant between-supplement differences for total repetitions completed. Baseline lactate changes (∆) were significantly elevated from POST0 to POST30 and from POST30 to POST3H (p < 0.05), whereby HL additionally demonstrated significantly higher ∆Lactate versus LL-BFR (p < 0.001) at POST3H. Although serum ∆GH was not significantly impacted by supplement or condition, serum ∆IGF-1 was significantly (p = 0.042) higher in BET versus PLA and serum ∆HCY was greater in HL relative to LL-BFR (p = 0.044). Although these data fail to support a BFR-betaine synergy, they otherwise support betaine’s anabolic potential.
Collapse
|
34
|
Silva CC, Bichara CNC, Carneiro FRO, Palacios VRDCM, den Berg AVSV, Quaresma JAS, Magno Falcão LF. Muscle dysfunction in the long coronavirus disease 2019 syndrome: Pathogenesis and clinical approach. Rev Med Virol 2022; 32:e2355. [PMID: 35416359 PMCID: PMC9111061 DOI: 10.1002/rmv.2355] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
Abstract
In long coronavirus disease 2019 (long COVID-19), involvement of the musculoskeletal system is characterised by the persistence or appearance of symptoms such as fatigue, muscle weakness, myalgia, and decline in physical and functional performance, even at 4 weeks after the onset of acute symptoms of COVID-19. Muscle injury biomarkers are altered during the acute phase of the disease. The cellular damage and hyperinflammatory state induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to the persistence of symptoms, hypoxaemia, mitochondrial damage, and dysregulation of the renin-angiotensin system. In addition, the occurrence of cerebrovascular diseases, involvement of the peripheral nervous system, and harmful effects of hospitalisation, such as the use of drugs, immobility, and weakness acquired in the intensive care unit, all aggravate muscle damage. Here, we review the multifactorial mechanisms of muscle tissue injury, aggravating conditions, and associated sequelae in long COVID-19.
Collapse
Affiliation(s)
- Camilla Costa Silva
- Center for Biological and Health SciencesState University of ParaBelémBrazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee SM, Kim YH, Kim YR, Lee BR, Shin S, Kim JY, Jung IC, Lee MY. Anti-fatigue potential of Pinus koraiensis leaf extract in an acute exercise-treated mouse model. Biomed Pharmacother 2022; 153:113501. [DOI: 10.1016/j.biopha.2022.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
36
|
Tumor Microenvironment: Lactic Acid Promotes Tumor Development. J Immunol Res 2022; 2022:3119375. [PMID: 35733921 PMCID: PMC9207018 DOI: 10.1155/2022/3119375] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022] Open
Abstract
Lactic acid is a "metabolic waste" product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells' effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors.
Collapse
|
37
|
Identifying Novel Osteoarthritis-Associated Genes in Human Cartilage Using a Systematic Meta-Analysis and a Multi-Source Integrated Network. Int J Mol Sci 2022; 23:ijms23084395. [PMID: 35457215 PMCID: PMC9030814 DOI: 10.3390/ijms23084395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis, the most common joint disorder, is characterised by deterioration of the articular cartilage. Many studies have identified potential therapeutic targets, yet no effective treatment has been determined. The aim of this study was to identify and rank osteoarthritis-associated genes and micro-RNAs to prioritise those most integral to the disease. A systematic meta-analysis of differentially expressed mRNA and micro-RNAs in human osteoarthritic cartilage was conducted. Ingenuity pathway analysis identified cellular senescence as an enriched pathway, confirmed by a significant overlap (p < 0.01) with cellular senescence drivers (CellAge Database). A co-expression network was built using genes from the meta-analysis as seed nodes and combined with micro-RNA targets and SNP datasets to construct a multi-source information network. This accumulated and connected 1689 genes which were ranked based on node and edge aggregated scores. These bioinformatic analyses were confirmed at the protein level by mass spectrometry of the different zones of human osteoarthritic cartilage (superficial, middle, and deep) compared to normal controls. This analysis, and subsequent experimental confirmation, revealed five novel osteoarthritis-associated proteins (PPIB, ASS1, LHDB, TPI1, and ARPC4-TTLL3). Focusing future studies on these novel targets may lead to new therapies for osteoarthritis.
Collapse
|
38
|
Casanova-Vallve N, Duglan D, Vaughan ME, Pariollaud M, Handzlik MK, Fan W, Yu RT, Liddle C, Downes M, Delezie J, Mello R, Chan AB, Westermark PO, Metallo CM, Evans RM, Lamia KA. Daily running enhances molecular and physiological circadian rhythms in skeletal muscle. Mol Metab 2022; 61:101504. [PMID: 35470095 PMCID: PMC9079800 DOI: 10.1016/j.molmet.2022.101504] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Exercise is a critical component of a healthy lifestyle and a key strategy for the prevention and management of metabolic disease. Identifying molecular mechanisms underlying adaptation in response to chronic physical activity is of critical interest in metabolic physiology. Circadian rhythms broadly modulate metabolism, including muscle substrate utilization and exercise capacity. Here, we define the molecular and physiological changes induced across the daily cycle by voluntary low intensity daily exercise. Methods Wildtype C57BL6/J male and female mice were housed with or without access to a running wheel for six weeks. Maximum running speed was measured at four different zeitgeber times (ZTs, hours after lights on) using either electrical or manual stimulation to motivate continued running on a motorized treadmill. RNA isolated from plantaris muscles at six ZTs was sequenced to establish the impact of daily activity on genome-wide transcription. Patterns of gene expression were analyzed using Gene Set Enrichment Analysis (GSEA) and Detection of Differential Rhythmicity (DODR). Blood glucose, lactate, and ketones, and muscle and liver glycogen were measured before and after exercise. Results We demonstrate that the use of mild electrical shocks to motivate running negatively impacts maximum running speed in mice, and describe a manual method to motivate running in rodent exercise studies. Using this method, we show that time of day influences the increase in exercise capacity afforded by six weeks of voluntary wheel running: when maximum running speed is measured at the beginning of the nighttime active period in mice, there is no measurable benefit from a history of daily voluntary running, while maximum increase in performance occurs at the end of the night. We show that daily voluntary exercise dramatically remodels the murine muscle circadian transcriptome. Finally, we describe daily rhythms in carbohydrate metabolism associated with the time-dependent response to moderate daily exercise in mice. Conclusions Collectively, these data indicate that chronic nighttime physical activity dramatically remodels daily rhythms of murine muscle gene expression, which in turn support daily fluctuations in exercise performance. Daily voluntary running dramatically remodels the mouse muscle circadian transcriptome. Daily voluntary running maximally increases mouse running speed in the late active period. Muscle and liver glycogen content exhibit robust daily rhythms in laboratory mice. Use of mild electric shocks to motivate running in mice impairs maximum running speed.
Collapse
Affiliation(s)
| | - Drew Duglan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Megan E Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Marie Pariollaud
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and University of Sydney School of Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julien Delezie
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Rebecca Mello
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Alanna B Chan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Pål O Westermark
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christian M Metallo
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Park JS, Saeed K, Jo MH, Kim MW, Lee HJ, Park CB, Lee G, Kim MO. LDHB Deficiency Promotes Mitochondrial Dysfunction Mediated Oxidative Stress and Neurodegeneration in Adult Mouse Brain. Antioxidants (Basel) 2022; 11:antiox11020261. [PMID: 35204143 PMCID: PMC8868245 DOI: 10.3390/antiox11020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Age-related decline in mitochondrial function and oxidative stress plays a critical role in neurodegeneration. Lactate dehydrogenase-B (LDHB) is a glycolytic enzyme that catalyzes the conversion of lactate, an important brain energy substrate, into pyruvate. It has been reported that the LDHB pattern changes in the brain during ageing. Yet very little is known about the effect of LDHB deficiency on brain pathology. Here, we have used Ldhb knockout (Ldhb−/−) mice to test the hypothesis that LDHB deficiency plays an important role in oxidative stress-mediated neuroinflammation and neurodegeneration. LDHB knockout (Ldhb−/−) mice were generated by the ablation of the Ldhb gene using the Cre/loxP-recombination system in the C57BL/6 genetic background. The Ldhb−/− mice were treated with either osmotin (15 μg/g of the body; intraperitoneally) or vehicle twice a week for 5-weeks. After behavior assessments, the mice were sacrificed, and the cortical and hippocampal brain regions were analyzed through biochemical and morphological analysis. Ldhb−/− mice displayed enhanced reactive oxygen species (ROS) and lipid peroxidation (LPO) production, and they revealed depleted stores of cellular ATP, GSH:GSSG enzyme ratio, and downregulated expression of Nrf2 and HO-1 proteins, when compared to WT littermates. Importantly, the Ldhb−/− mice showed upregulated expression of apoptosis mediators (Bax, Cytochrome C, and caspase-3), and revealed impaired p-AMPK/SIRT1/PGC-1alpha signaling. Moreover, LDHB deficiency-induced gliosis increased the production of inflammatory mediators (TNF-α, Nf-ĸB, and NOS2), and revealed cognitive deficits. Treatment with osmotin, an adipoR1 natural agonist, significantly increased cellular ATP production by increasing mitochondrial function and attenuated oxidative stress, neuroinflammation, and neuronal apoptosis, probably, by upregulating p-AMPK/SIRT1/PGC-1alpha signaling in Ldhb−/− mice. In brief, LDHB deficiency may lead to brain oxidative stress-mediated progression of neurodegeneration via regulating p-AMPK/SIRT1/PGC-1alpha signaling, while osmotin could improve mitochondrial functions, abrogate oxidative stress and alleviate neuroinflammation and neurodegeneration in adult Ldhb−/− mice.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Kamran Saeed
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
| | - Chan-Bae Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; or
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.S.P.); (K.S.); (M.H.J.); (M.W.K.); (H.J.L.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
40
|
Yu X, Xu M, Meng X, Li S, Liu Q, Bai M, You R, Huang S, Yang L, Zhang Y, Jia Z, Zhang A. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci Transl Med 2021; 12:12/543/eaay7591. [PMID: 32404507 DOI: 10.1126/scitranslmed.aay7591] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is a worldwide public health problem with no specific and satisfactory therapies in clinic. The nuclear pregnane X receptor (PXR) is involved in the progression of multiple diseases, including metabolic diseases, atherosclerosis, hypertension, liver injury, etc. However, its role in kidney injury remains to be understood. In this study, we have investigated the role of PXR in AKI and underlying mechanism(s) involved in its function. PXR was robustly down-regulated and negatively correlated with renal dysfunction in human and animal kidneys with AKI. Silencing PXR in rats enhanced cisplatin-induced AKI and induced severe mitochondrial abnormalities, whereas activating PXR protected against AKI. Using luciferase reporter assays, genomic manipulation, and proteomics data analysis on the kidneys of PXR-/- rats, we determined that PXR targeted Aldo-keto reductase family 1, member B7 (AKR1B7) to improve mitochondrial function, thereby ameliorating AKI. We confirmed the protective role of PXR against kidney injury using genomic and pharmacologic approaches in an ischemia/reperfusion model of AKI. These findings demonstrate that disabling the PXR/AKR1B7/mitochondrial metabolism axis is an important factor that can contribute to AKI, whereas reestablishing this axis can be useful for treating AKI.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Man Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xia Meng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shumin Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Ran You
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Li Yang
- Department of Nephrology, Peking University First Hospital, Beijing 100034, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
Coconut inflorescence sap enhances exercise performance and plasma antioxidant status in young active men. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Xiao L, Liu J, Sun Z, Yin Y, Mao Y, Xu D, Liu L, Xu Z, Guo Q, Ding C, Sun W, Yang L, Zhou Z, Zhou D, Fu T, Zhou W, Zhu Y, Chen XW, Li JZ, Chen S, Xie X, Gan Z. AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genet 2021; 17:e1009488. [PMID: 33780446 PMCID: PMC8031738 DOI: 10.1371/journal.pgen.1009488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness. Mitochondria provide an essential source of energy to drive cellular processes and the function of mitochondria is particularly important in skeletal muscle, a metabolically demanding tissue that depends critically on mitochondria, accounting for ~40% of total body mass. In this study, we discovered an essential function of adaptor protein FNIP1 in the coordinated regulation of the mitochondrial and structural programs controlling muscle fitness. Using both gain-of-function and loss-of-function strategies in mice and muscle cells, we provide clear genetic data that demonstrate FNIP1-dependent signaling is crucial for muscle mitochondrial remodeling as well as type I muscle fiber specification. We also uncover that FNIP1 exerts control upon muscle mitochondrial program through AMPK but not mTORC1 signaling. Furthermore, we demonstrate that FNIP1 acts independently of PGC-1α to regulate fiber type specification. Hence, our study emphasizes FNIP1 as a dominant factor that coordinates mitochondrial and muscle fiber type programs that govern muscle fitness.
Collapse
Affiliation(s)
- Liwei Xiao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jing Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zongchao Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujing Yin
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan Mao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhisheng Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chenyun Ding
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Likun Yang
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wenjing Zhou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yuangang Zhu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
43
|
Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021. [PMID: 33806179 DOI: 10.3390/cancers13071518.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
|
44
|
Jeong KY, Sim JJ, Park MH, Kim HM. Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:1518. [PMID: 33806179 PMCID: PMC8037473 DOI: 10.3390/cancers13071518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Jae-Jun Sim
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Min Hee Park
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University 191 Hambangmoe-Ro, Yeonsu-Gu, Incheon 21936, Korea
| |
Collapse
|
45
|
Liu L, Ding C, Fu T, Feng Z, Lee JE, Xiao L, Xu Z, Yin Y, Guo Q, Sun Z, Sun W, Mao Y, Yang L, Zhou Z, Zhou D, Xu L, Zhu Z, Qiu Y, Ge K, Gan Z. Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. J Clin Invest 2021; 130:4710-4725. [PMID: 32544095 DOI: 10.1172/jci136155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle depends on the precise orchestration of contractile and metabolic gene expression programs to direct fiber-type specification and to ensure muscle performance. Exactly how such fiber type-specific patterns of gene expression are established and maintained remains unclear, however. Here, we demonstrate that histone monomethyl transferase MLL4 (KMT2D), an enhancer regulator enriched in slow myofibers, plays a critical role in controlling muscle fiber identity as well as muscle performance. Skeletal muscle-specific ablation of MLL4 in mice resulted in downregulation of the slow oxidative myofiber gene program, decreased numbers of type I myofibers, and diminished mitochondrial respiration, which caused reductions in muscle fatty acid utilization and endurance capacity during exercise. Genome-wide ChIP-Seq and mRNA-Seq analyses revealed that MLL4 directly binds to enhancers and functions as a coactivator of the myocyte enhancer factor 2 (MEF2) to activate transcription of slow oxidative myofiber genes. Importantly, we also found that the MLL4 regulatory circuit is associated with muscle fiber-type remodeling in humans. Thus, our results uncover a pivotal role for MLL4 in specifying structural and metabolic identities of myofibers that govern muscle performance. These findings provide therapeutic opportunities for enhancing muscle fitness to combat a variety of metabolic and muscular diseases.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Leilei Xu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
47
|
Rhim HC, Kim SJ, Park J, Jang KM. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:553-561. [PMID: 33308806 PMCID: PMC7749242 DOI: 10.1016/j.jshs.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/04/2019] [Accepted: 12/30/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Citrulline is one of the non-essential amino acids that is thought to improve exercise performance and reduce post-exercise muscle soreness. We conducted a systematic review and meta-analysis to determine the effect of citrulline supplements on the post-exercise rating of perceived exertion (RPE), muscle soreness, and blood lactate levels. METHODS A random effects model was used to calculate the effect sizes due to the high variability in the study design and study populations of the articles included. A systematic search of PubMed, Web of Science, and ClinicalTrials.gov was performed. Eligibility for study inclusion was limited to studies that were randomized controlled trials involving healthy individuals and that investigated the acute effect of citrulline supplements on RPE, muscle soreness, and blood lactate levels. The supplementation time frame was limited to 2 h before exercise. The types and number of participants, types of exercise tests performed, supplementation protocols for L-citrulline or citrulline malate, and primary (RPE and muscle soreness) and secondary (blood lactate level) study outcomes were extracted from the identified studies. RESULTS The analysis included 13 eligible articles including a total of 206 participants. The most frequent dosage used in the studies was 8 g of citrulline malate. Citrulline supplementation significantly reduced RPE (n = 7, p = 0.03) and muscle soreness 24-h and 48-h after post-exercise (n = 7, p = 0.04; n = 6, p = 0.25, respectively). However, citrulline supplementation did not significantly reduce muscle soreness 72-h post-exercise (n = 4, p = 0.62) or lower blood lactate levels (n = 8, p = 0.17). CONCLUSION Citrulline supplements significantly reduced post-exercise RPE and muscle soreness without affecting blood lactate levels.
Collapse
Affiliation(s)
- Hye Chang Rhim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Sung Jong Kim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Jewel Park
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Ki-Mo Jang
- College of Medicine, Korea University, Seoul 02842, Republic of Korea; Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
48
|
Wei X, Franke J, Ost M, Wardelmann K, Börno S, Timmermann B, Meierhofer D, Kleinridders A, Klaus S, Stricker S. Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. J Cachexia Sarcopenia Muscle 2020; 11:1758-1778. [PMID: 33078583 PMCID: PMC7749575 DOI: 10.1002/jcsm.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. METHODS To dissect the function of Nf1 in muscle, we created muscle-specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. RESULTS Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue. CONCLUSIONS Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Kristina Wardelmann
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andre Kleinridders
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
49
|
Swim therapy-induced tissue specific metabolic responses in male rats. Life Sci 2020; 262:118516. [PMID: 33011220 DOI: 10.1016/j.lfs.2020.118516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023]
Abstract
Swim therapy in the form of moderate physical activity has general health benefits. Regular exercise prevents the progression of chronic diseases affecting the different bodily systems. The metabolic alterations associated with following such lifestyle remain not fully understood. The aim of the present study was to elucidate the metabolic changes following prolonged swim therapy. Twenty-four Sprague Dawley rats were divided into sedentary and exercise groups. Our results revealed that regular exercise significantly increased the serum levels of growth hormone (GH), glucagon and corticosterone. A reduction in the circulating levels of irisin and insulin hormones, and glucose were noticed alongside with an upregulation in the mRNA expression levels of FNDC5, PGC-1α, GLUT-4 and preptin receptors with downregulation in the expression of Enho gene in the heart of exercised rats. Liver of the exercised rats showed elevation in the transcriptional levels of Enho gene, PPARα, and preptin with reduction in the transcriptional levels of preptin receptors. Exercise induced an increase in the pancreatic mRNA of Enho gene, preptin and preptin receptors, and a reduction in FNDC5, PPARα and PGC-1α. An elevation in the gastrocnemius muscle PGC-1α mRNA expression and a decline in the soleus muscle Enho mRNA were found. Exercise diminishes the activities of SOD, CAT and GPx in the gastrocnemius muscle, liver and pancreas. Myogenin expression increased in all examined skeletal muscles. This study takes into account the complex crosstalk between different signaling pathways in skeletal muscles, heart, liver and pancreas as well as the metabolic alterations in response to regular exercise.
Collapse
|
50
|
Fan S, Wu K, Zhao M, Yuan J, Ma S, Zhu E, Chen Y, Ding H, Yi L, Chen J. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy 2020; 17:2305-2324. [PMID: 32924761 DOI: 10.1080/15548627.2020.1823123] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular metabolism caters to the energy and metabolite needs of cells. Although the role of the terminal metabolic enzyme LDHB (lactate dehydrogenase B) in the glycolysis pathway has been widely studied in cancer cells, its role in viral infection is relatively unknown. In this study, we found that CSFV (classical swine fever virus) infection reduces pyruvate levels while promotes lactate release in pigs and in PK-15 cells. Moreover, using a yeast two-hybrid screening system, we identified LDHB as a novel interacting partner of CSFV non-structural protein NS3. These results were confirmed via co-immunoprecipitation, glutathione S-transferase and confocal assays. Furthermore, knockdown of LDHB via interfering RNA induced mitochondrial fission and mitophagy, as detected reduced mitochondrial mass. Upon inhibition of LDHB, expression of the mitophagy proteins TOMM20 and VDAC1 decreased and the ubiquitination of MFN2, a mitochondrial fusion mediator, was promoted. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of autophagosomes to lysosomes in LDHB inhibition cells. Furthermore, LDHB inhibition promoted NFKB signaling, which was regulated by mitophagy; meanwhile, infection with CSFV negated these NFKB anti-viral responses. Inhibition of LDHB also inhibited apoptosis, providing an environment conducive to persistent viral infection. Finally, we demonstrated that LDHB inhibition promoted CSFV growth via mitophagy, whereas its overexpression decreased CSFV replication. Our data revealed a novel mechanism through which LDHB, a metabolic enzyme, mediates CSFV infection, and provides new avenues for the development of anti-viral strategies.Abbreviations: 3-MA:3-methyladenine; CCCP:carbonyl cyanide 3-chlorophenylhydrazone; CCK-8:cell counting kit-8; CSFV:classical swine fever virus; DAPI:4',6-diamidino-2-phenylindole; DMSO:dimethyl sulfoxide; EGFP:enhanced green fluorescent protein; FBS:fetal bovine serum; FITC:fluorescein isothiocyanate; GST:glutathione-S-transferase; HCV:hepatitis C virus; IFN:interferon; LDH:lactate dehydrogenase; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MFN2:mitofusin 2; MOI:multiplicity of infection; NFKB:nuclear factor kappa B subunit 1; NFKBIA:nuclear factor inhibitor alpha; NS3:nonstructural protein 3; NKIRAS2:NFKB inhibitor interacting Ras like 2; PRKN:parkin E3 ubiquitin protein ligase; PBS:phosphate-buffered saline; qRT-PCR:real-time quantitative reverse transcriptase polymerase chain reaction; RELA:RELA proto-oncogene, NF-kB subunit; shRNA: short hairpin RNA; siRNA: small interfering RNA; TCID50:50% tissue culture infectious doses; TEM:transmission electron microscopy; TNF:tumor necrosis factor; TOMM20:translocase of outer mitochondrial membrane 20; VDAC1:voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|