1
|
Messina MS, Torrente L, Pezacki AT, Humpel HI, Li EL, Miller SG, Verdejo-Torres O, Padilla-Benavides T, Brady DC, Killilea DW, Killilea AN, Ralle M, Ward NP, Ohata J, DeNicola GM, Chang CJ. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc Natl Acad Sci U S A 2025; 122:e2412816122. [PMID: 39813247 PMCID: PMC11761388 DOI: 10.1073/pnas.2412816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel. Coppermycin-1 reacts selectively with Cu(I) to release puromycin, which is then incorporated into nascent peptides during protein translation, thus leaving a permanent and dose-dependent marker for labile copper that can be visualized with standard immunofluorescence assays. We showcase the utility of this platform for screening labile Cu(I) pools across the National Cancer Institute's 60 (NCI-60) human tumor cell line panel, identifying cell types with elevated basal levels of labile copper. Moreover, we use Coppermycin-1 to show that lung cancer cells with heightened activation of nuclear factor-erythroid 2-related factor 2 (NRF2) possess lower resting labile Cu(I) levels and, as a result, have reduced viability when treated with a copper chelator. This work establishes that methods for labile copper detection can be used to assess cuproplasia, an emerging form of copper-dependent cell growth and proliferation, providing a starting point for broader investigations into the roles of transition metal signaling in biology and medicine.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Hanna I. Humpel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT06459
| | | | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Killilea
- Office of Research, University of California, San Francisco, Oakland, CA94609
| | - Alison N. Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC27695
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Hulsey-Vincent HJ, Cameron EA, Dahlberg CL, Galati DF. Spectral scanning and fluorescence lifetime imaging microscopy (FLIM) enable separation and characterization of C. elegans autofluorescence in the cuticle and gut. Biol Open 2024; 13:bio060613. [PMID: 39714513 PMCID: PMC11708769 DOI: 10.1242/bio.060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Caenorhabditis elegans gut and cuticle produce a disruptive amount of autofluorescence during imaging. Although C. elegans autofluorescence has been characterized, it has not been characterized at high resolution using both spectral and fluorescence lifetime-based approaches. We performed high resolution spectral scans of whole, living animals to characterize autofluorescence of adult C. elegans. By scanning animals at 405 nm, 473 nm, 561 nm, and 647 nm excitations, we produced spectral profiles that confirm the brightest autofluorescence has a clear spectral overlap with the emission of green fluorescent protein (GFP). We then used fluorescence lifetime imaging microscopy (FLIM) to further characterize autofluorescence in the cuticle and the gut. Using FLIM, we were able to isolate and quantify dim GFP signal within the sensory cilia of a single pair of neurons that is often obscured by cuticle autofluorescence. In the gut, we found distinct spectral populations of autofluorescence that could be excited by 405 nm and 473 nm lasers. Further, we found lifetime differences between subregions of this autofluorescence when stimulated at 473 nm. Our results suggest that FLIM can be used to differentiate biochemically unique populations of gut autofluorescence without labeling. Further studies involving C. elegans may benefit from combining high resolution spectral and lifetime imaging to isolate fluorescent protein signal that is mixed with background autofluorescence and to perform useful characterization of subcellular structures in a label-free manner.
Collapse
|
3
|
Li J, Yin Q, Xuan N, Gan Q, Liu C, Zhang Q, Yang M, Yang C. LYSMD proteins promote activation of Rab32-family GTPases for lysosome-related organelle biogenesis. J Cell Biol 2024; 223:e202402016. [PMID: 39078368 PMCID: PMC11289520 DOI: 10.1083/jcb.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Lysosome-related organelles (LROs) are specialized lysosomes with cell type-specific roles in organismal homeostasis. Dysregulation of LROs leads to many human disorders, but the mechanisms underlying their biogenesis are not fully understood. Here, we identify a group of LYSMD proteins as evolutionarily conserved regulators of LROs. In Caenorhabditis elegans, mutations of LMD-2, a LysM domain-containing protein, reduce the levels of the Rab32 GTPase ortholog GLO-1 on intestine-specific LROs, the gut granules, leading to their abnormal enlargement and defective biogenesis. LMD-2 interacts with GLO-3, a subunit of GLO-1 guanine nucleotide exchange factor (GEF), thereby promoting GLO-1 activation. Mammalian homologs of LMD-2, LYSMD1, and LYSMD2 can functionally replace LMD-2 in C. elegans. In mammals, LYSMD1/2 physically interact with the HPS1 subunit of BLOC-3, the GEF of Rab32/38, thus promoting Rab32 activation. Inactivation of both LYSMD1 and LYSMD2 reduces Rab32 activation, causing melanosome enlargement and decreased melanin production in mouse melanoma cells. These findings provide important mechanistic insights into LRO biogenesis and functions.
Collapse
Affiliation(s)
- Jinglin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Nan Xuan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiwen Gan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chaolian Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Rodriguez P, Kalia V, Fenollar-Ferrer C, Gibson CL, Gichi Z, Rajoo A, Matier CD, Pezacki AT, Xiao T, Carvelli L, Chang CJ, Miller GW, Khamoui AV, Boerner J, Blakely RD. Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2320611121. [PMID: 39288174 PMCID: PMC11441482 DOI: 10.1073/pnas.2320611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, MD20892
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Chelsea L. Gibson
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
- Oak Ridge Institute for Science and Education, Oak Ridge, TN37830
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| | - Andre Rajoo
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Lucia Carvelli
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Andy V. Khamoui
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL33431
| | - Jana Boerner
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| |
Collapse
|
5
|
Tan CH, Wang TY, Park H, Lomenick B, Chou TF, Sternberg PW. Single-tissue proteomics in Caenorhabditis elegans reveals proteins resident in intestinal lysosome-related organelles. Proc Natl Acad Sci U S A 2024; 121:e2322588121. [PMID: 38861598 PMCID: PMC11194598 DOI: 10.1073/pnas.2322588121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
6
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
8
|
Mendoza AD, Dietrich N, Tan CH, Herrera D, Kasiah J, Payne Z, Cubillas C, Schneider DL, Kornfeld K. Lysosome-related organelles contain an expansion compartment that mediates delivery of zinc transporters to promote homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2307143121. [PMID: 38330011 PMCID: PMC10873617 DOI: 10.1073/pnas.2307143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
Collapse
Affiliation(s)
- Adelita D. Mendoza
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Herrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Zachary Payne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
9
|
Weishaupt AK, Lamann K, Tallarek E, Pezacki AT, Matier CD, Schwerdtle T, Aschner M, Chang CJ, Stürzenbaum SR, Bornhorst J. Dysfunction in atox-1 and ceruloplasmin alters labile Cu levels and consequently Cu homeostasis in C. elegans. Front Mol Biosci 2024; 11:1354627. [PMID: 38389896 PMCID: PMC10882093 DOI: 10.3389/fmolb.2024.1354627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Copper (Cu) is an essential trace element, however an excess is toxic due to its redox properties. Cu homeostasis therefore needs to be tightly regulated via cellular transporters, storage proteins and exporters. An imbalance in Cu homeostasis has been associated with neurodegenerative disorders such as Wilson's disease, but also Alzheimer's or Parkinson's disease. In our current study, we explored the utility of using Caenorhabditis elegans (C. elegans) as a model of Cu dyshomeostasis. The application of excess Cu dosing and the use of mutants lacking the intracellular Cu chaperone atox-1 and major Cu storage protein ceruloplasmin facilitated the assessment of Cu status, functional markers including total Cu levels, labile Cu levels, Cu distribution and the gene expression of homeostasis-related genes. Our data revealed a decrease in total Cu uptake but an increase in labile Cu levels due to genetic dysfunction, as well as altered gene expression levels of Cu homeostasis-associated genes. In addition, the data uncovered the role ceruloplasmin and atox-1 play in the worm's Cu homeostasis. This study provides insights into suitable functional Cu markers and Cu homeostasis in C. elegans, with a focus on labile Cu levels, a promising marker of Cu dysregulation during disease progression.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | | | | | - Aidan T Pezacki
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Carson D Matier
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Tanja Schwerdtle
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| |
Collapse
|
10
|
Catalano F, O’Brien TJ, Mekhova AA, Sepe LV, Elia M, De Cegli R, Gallotta I, Santonicola P, Zampi G, Ilyechova EY, Romanov AA, Samuseva PD, Salzano J, Petruzzelli R, Polishchuk EV, Indrieri A, Kim BE, Brown AEX, Puchkova LV, Di Schiavi E, Polishchuk RS. A new Caenorhabditis elegans model to study copper toxicity in Wilson disease. Traffic 2024; 25:e12920. [PMID: 37886910 PMCID: PMC10841361 DOI: 10.1111/tra.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.
Collapse
Affiliation(s)
- Federico Catalano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Thomas J O’Brien
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Aleksandra A Mekhova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | | | | | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Gallotta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso (IGB-ABT), National Research Council (CNR), Napoli, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Ekaterina Y Ilyechova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| | - Aleksei A Romanov
- Department of applied mathematics, Institute of applied mathematics and mechanics, Peter the Great Polytechnic University, St. Petersburg, Russia
| | - Polina D Samuseva
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | - Josephine Salzano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Elena V. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - André EX Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Ludmila V Puchkova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso (IGB-ABT), National Research Council (CNR), Napoli, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
11
|
Fodor I, Yañez-Guerra LA, Kiss B, Büki G, Pirger Z. Copper-transporting ATPases throughout the animal evolution - From clinics to basal neuron-less animals. Gene 2023; 885:147720. [PMID: 37597707 DOI: 10.1016/j.gene.2023.147720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Copper-transporting ATPases are a group of heavy metal-transporting proteins and which can be found in all living organisms. In animals, they are generally referred to as ATP7 proteins and are involved in many different physiological processes including the maintaining of copper homeostasis and the supply of copper to cuproenzymes. A single ATP7 gene is present in non-chordate animals while it is divided into ATP7A and ATP7B in chordates. In humans, dysfunction of ATP7 proteins can lead to severe genetic disorders, such as, Menkes disease and Wilson's disease, which are characterized by abnormal copper transport and accumulation, causing significant health complications. Therefore, there is a substantial amount of research on ATP7 genes and ATP7 proteins in humans and mice to understand pathophysiological conditions and find potential therapeutic interventions. Copper-transporting ATPases have also been investigated in some non-mammalian vertebrates, protostomes, single-cellular eukaryotes, prokaryotes, and archaea to gain useful evolutionary insights. However, ATP7 function in many animals has been somewhat neglected, particularly in non-bilaterians. Previous reviews on this topic only broadly summarized the available information on the function and evolution of ATP7 genes and ATP7 proteins and included only the classic vertebrate and invertebrate models. Given this, and the fact that a considerable amount of new information on this topic has been published in recent years, the present study was undertaken to provide an up-to-date, comprehensive summary of ATP7s/ATP7s and give new insights into their evolutionary relationships. Additionally, this work provides a framework for studying these genes and proteins in non-bilaterians. As early branching animals, they are important to understand the evolution of function of these proteins and their important role in copper homeostasis and neurotransmission.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary.
| | | | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| |
Collapse
|
12
|
Tan CH, Ding K, Zhang MG, Sternberg PW. Fluorescence dynamics of lysosomal-related organelle flashing in the intestinal cells of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562538. [PMID: 37904973 PMCID: PMC10614822 DOI: 10.1101/2023.10.16.562538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The biological roles of the autofluorescent lysosome-related organelles ("gut granules") in the intestinal cells of many nematodes, including Caenorhabditis elegans, have been shown to play an important role in metabolic and signaling processes, but they have not been fully characterized. We report here a previously undescribed phenomenon in which the autofluorescence of these granules increased and then decreased in a rapid and dynamic manner that may be associated with nutrient availability. We observed that two distinct types of fluorophores are likely present in the gut granules. One displays a "flashing" phenomenon, in which fluorescence decrease is preceded by a sharp increase in fluorescence intensity that expands into the surrounding area, while the other simply decreases in intensity. Gut granule flashing was observed in the different life stages of C. elegans and was also observed in Steinernema hermaphroditum, an evolutionarily distant nematode. We hypothesize that the "flashing" fluorophore is pH-sensitive, and the fluorescence intensity change results from the fluorophore being released from the lysosome-related organelles into the relatively higher pH environment of the cytosol. The visually spectacular dynamic fluorescence phenomenon we describe might provide a handle on the biochemistry and genetics of these lysosome-related organelles.
Collapse
Affiliation(s)
| | - Keke Ding
- Present address: Innoland biosciences, Hangzhou, 310000, China
| | | | | |
Collapse
|
13
|
Sharma AK, Finney L, Vogt S, Vatamaniuk OK, Kim S. Cadmium alters whole animal ionome and promotes the re-distribution of iron in intestinal cells of Caenorhabditis elegans. Front Physiol 2023; 14:1258540. [PMID: 37822680 PMCID: PMC10562743 DOI: 10.3389/fphys.2023.1258540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
The chronic exposure of humans to the toxic metal cadmium (Cd), either occupational or from food and air, causes various diseases, including neurodegenerative conditions, dysfunction of vital organs, and cancer. While the toxicology of Cd and its effect on the homeostasis of biologically relevant elements is increasingly recognized, the spatial distribution of Cd and other elements in Cd toxicity-caused diseases is still poorly understood. Here, we use Caenorhabditis elegans as a non-mammalian multicellular model system to determine the distribution of Cd at the tissue and cellular resolution and its effect on the internal levels and the distribution of biologically relevant elements. Using inductively coupled plasma-mass spectrophotometry (ICP-MS), we show that exposure of worms to Cd not only led to its internal accumulation but also significantly altered the C. elegans ionome. Specifically, Cd treatment was associated with increased levels of toxic elements such as arsenic (As) and rubidium (Rb) and a decreased accumulation of essential elements such as zinc (Zn), copper (Cu), manganese (Mn), calcium (Ca), cobalt (Co) and, depending on the Cd-concentration used in the assay, iron (Fe). We regarded these changes as an ionomic signature of Cd toxicity in C. elegans. We also show that supplementing nematode growth medium with Zn but not Cu, rescues Cd toxicity and that mutant worms lacking Zn transporters CDF-1 or SUR-7, or both are more sensitive to Cd toxicity. Finally, using synchrotron X-Ray fluorescence Microscopy (XRF), we showed that Cd significantly alters the spatial distribution of mineral elements. The effect of Cd on the distribution of Fe was particularly striking: while Fe was evenly distributed in intestinal cells of worms grown without Cd, in the presence of Cd, Fe, and Cd co-localized in punctum-like structures in the intestinal cells. Together, this study advances our understanding of the effect of Cd on the accumulation and distribution of biologically relevant elements. Considering that C. elegans possesses the principal tissues and cell types as humans, our data may have important implications for future therapeutic developments aiming to alleviate Cd-related pathologies in humans.
Collapse
Affiliation(s)
- Anuj Kumar Sharma
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Olena K. Vatamaniuk
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sungjin Kim
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Guo B, Li T, Wang L, Liu F, Chen B. Long non-coding RNAs regulate heavy metal-induced apoptosis in embryo-derived cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121956. [PMID: 37271361 DOI: 10.1016/j.envpol.2023.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Heavy metal pollution has been a worldwide prevalent problem, and particularly a threat to ecosystem integrity and animals' health. Previous studies on the mechanisms of heavy metal toxicity have focused on protein-coding genes, whereas most genomic transcripts are long non-coding RNAs (lncRNAs). Although lncRNAs are known to play important regulatory roles in biological processes, their role in heavy metal stress regulation is still not fully understood. We here developed an insect embryo cell model for studying metal toxicity and the underlying regulatory mechanisms. We performed genome-wide screening and functional characterization of lncRNAs induced by two essential and two non-essential heavy metals in Drosophila embryo-derived S2 cells. We identified 4894 lncRNAs, of which 1410 were novel. Forty-one lncRNAs, together with 328 mRNAs, were induced by all the four heavy metals. LncRNA-mRNA co-expression network and pathway enrichment analysis showed that detoxification metabolism, circadian rhythm, and apoptosis regulation pathways were activated in response to heavy metal stress. LncRNA CR44138 was remarkably upregulated in cells exposed to the four heavy metals and was associated with the apoptosis pathway. Expression interference confirmed that CR44138 aggravated cytotoxicity-induced apoptosis in cells under heavy metals stress. This study highlights the important role of lncRNAs in regulating the cellular response to heavy metals. This study also lays the foundation for discovering the novel regulatory mechanisms and developing diagnostic biomarkers of the toxic effects of heavy metal pollutants on organisms.
Collapse
Affiliation(s)
- Boyang Guo
- College of Life Science, Hebei University, Baoding 071002, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, Shandong Province, China
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Williams RTP, King DC, Mastroianni IR, Hill JL, Apenes NW, Ramirez G, Miner EC, Moore A, Coleman K, Nishimura EO. Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network. Genetics 2023; 224:iyad088. [PMID: 37183501 PMCID: PMC10411582 DOI: 10.1093/genetics/iyad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20-50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.
Collapse
Affiliation(s)
- Robert T P Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Izabella R Mastroianni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicolai W Apenes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Ramirez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - E Catherine Miner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Moore
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karissa Coleman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
17
|
Yuan S, Korolnek T, Kim BE. Oral Elesclomol Treatment Alleviates Copper Deficiency in Animal Models. Front Cell Dev Biol 2022; 10:856300. [PMID: 35433682 PMCID: PMC9010564 DOI: 10.3389/fcell.2022.856300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu) is an essential trace element for key biochemical reactions. Dietary or genetic copper deficiencies are associated with anemia, cardiomyopathy, and neurodegeneration. The essential requirement for copper in humans is illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by mutations in the ATP7A copper transporter. Recent groundbreaking studies have demonstrated that a copper delivery small molecule compound, elesclomol (ES), is able to substantially ameliorate pathology and lethality in a mouse model of Menkes disease when injected as an ES-Cu2+ complex. It is well appreciated that drugs administered through oral means are more convenient with better efficacy than injection methods. Here we show, using genetic models of copper-deficient C. elegans and mice, that dietary ES supplementation fully rescues copper deficiency phenotypes. Worms lacking either the homolog of the CTR1 copper importer or the ATP7 copper exporter showed normal development when fed ES. Oral gavage with ES rescued intestine-specific Ctr1 knockout mice from early postnatal lethality without additional copper supplementation. Our findings reveal that ES facilitates copper delivery from dietary sources independent of the intestinal copper transporter CTR1 and provide insight into oral administration of ES as an optimal therapeutic for Menkes disease and possibly other disorders of copper insufficiency.
Collapse
Affiliation(s)
- Sai Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tamara Korolnek
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
- Biological Sciences Graduate Program, College Park, MD, United States
- *Correspondence: Byung-Eun Kim,
| |
Collapse
|
18
|
Shafer CM, Tseng A, Allard P, McEvoy MM. Strength of Cu-efflux response in E. coli coordinates metal resistance in C. elegans and contributes to the severity of environmental toxicity. J Biol Chem 2021; 297:101060. [PMID: 34375643 PMCID: PMC8424214 DOI: 10.1016/j.jbc.2021.101060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022] Open
Abstract
Without effective homeostatic systems in place, excess copper (Cu) is universally toxic to organisms. While increased utilization of anthropogenic Cu in the environment has driven the diversification of Cu-resistance systems within enterobacteria, little research has focused on how this change in bacterial architecture impacts host organisms that need to maintain their own Cu homeostasis. Therefore, we utilized a simplified host–microbe system to determine whether the efficiency of one bacterial Cu-resistance system, increasing Cu-efflux capacity via the ubiquitous CusRS two-component system, contributes to the availability and subsequent toxicity of Cu in host Caenorhabditis elegans nematode. We found that a fully functional Cu-efflux system in bacteria increased the severity of Cu toxicity in host nematodes without increasing the C. elegans Cu-body burden. Instead, increased Cu toxicity in the host was associated with reduced expression of a protective metal stress-response gene, numr-1, in the posterior pharynx of nematodes where pharyngeal grinding breaks apart ingested bacteria before passing into the digestive tract. The spatial localization of numr-1 transgene activation and loss of bacterially dependent Cu-resistance in nematodes without an effective numr-1 response support the hypothesis that numr-1 is responsive to the bacterial Cu-efflux capacity. We propose that the bacterial Cu-efflux capacity acts as a robust spatial determinant for a host’s response to chronic Cu stress.
Collapse
Affiliation(s)
- Catherine M Shafer
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
| | - Ashley Tseng
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.
| | - Megan M McEvoy
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA; Department of Microbiology, Immunology and Molecular Genetics. University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
19
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Abstract
RNA interference is a powerful tool for dissecting gene function. In Caenorhabditis elegans, ingestion of double stranded RNA causes strong, systemic knockdown of target genes. Further insight into gene function can be revealed by tissue-specific RNAi techniques. Currently available tissue-specific C. elegans strains rely on rescue of RNAi function in a desired tissue or cell in an otherwise RNAi deficient genetic background. We attempted to assess the contribution of specific tissues to polyunsaturated fatty acid (PUFA) synthesis using currently available tissue-specific RNAi strains. We discovered that rde-1 (ne219), a commonly used RNAi-resistant mutant strain, retains considerable RNAi capacity against RNAi directed at PUFA synthesis genes. By measuring changes in the fatty acid products of the desaturase enzymes that synthesize PUFAs, we found that the before mentioned strain, rde-1 (ne219) and the reported germline only RNAi strain, rrf-1 (pk1417) are not appropriate genetic backgrounds for tissue-specific RNAi experiments. However, the knockout mutant rde-1 (ne300) was strongly resistant to dsRNA induced RNAi, and thus is more appropriate for construction of a robust tissue-specific RNAi strains. Using newly constructed strains in the rde-1(null) background, we found considerable desaturase activity in intestinal, epidermal, and germline tissues, but not in muscle. The RNAi-specific strains reported in this study will be useful tools for C. elegans researchers studying a variety of biological processes.
Collapse
|
21
|
Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118882. [PMID: 33017595 DOI: 10.1016/j.bbamcr.2020.118882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
C. elegans is a powerful model for studies of zinc biology. Here we review recent discoveries and emphasize the advantages of this model organism. Methods for manipulating and measuring zinc levels have been developed in or adapted to the worm. The C. elegans genome encodes highly conserved zinc transporters, and their expression and function are beginning to be characterized. Homeostatic mechanisms have evolved to respond to high and low zinc conditions. The pathway for high zinc homeostasis has been recently elucidated based on the discovery of the master regulator of high zinc homeostasis, HIZR-1. A parallel pathway for low zinc homeostasis is beginning to emerge based on the discovery of the Low Zinc Activation promoter element. Zinc has been established to play a role in two cell fate determination events, and accumulating evidence suggests zinc may function as a second messenger signaling molecule during vulval cell development and sperm activation.
Collapse
Affiliation(s)
- Brian J Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Adelita D Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America.
| |
Collapse
|
22
|
Zhang X, Blockhuys S, Devkota R, Pilon M, Wittung-Stafshede P. The Caenorhabditis elegans homolog of human copper chaperone Atox1, CUC-1, aids in distal tip cell migration. Biometals 2020; 33:147-157. [PMID: 32506305 PMCID: PMC7295847 DOI: 10.1007/s10534-020-00239-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/01/2022]
Abstract
Cell migration is a fundamental biological process involved in for example embryonic development, immune system and wound healing. Cell migration is also a key step in cancer metastasis and the human copper chaperone Atox1 was recently found to facilitate this process in breast cancer cells. To explore the role of the copper chaperone in other cell migration processes, we here investigated the putative involvement of an Atox1 homolog in Caenorhabditis elegans, CUC-1, in distal tip cell migration, which is a key process during the development of the C. elegans gonad. Using knock-out worms, in which the cuc-1 gene was removed by CRISPR-Cas9 technology, we probed life span, brood size, as well as distal tip cell migration in the absence or presence of supplemented copper. Upon scoring of gonads, we found that cuc-1 knock-out, but not wild-type, worms exhibited distal tip cell migration defects in approximately 10–15% of animals and, had a significantly reduced brood size. Importantly, the distal tip cell migration defect was rescued by a wild-type cuc-1 transgene provided to cuc-1 knock-out worms. The results obtained here for C. elegans CUC-1 imply that Atox1 homologs, in addition to their well-known cytoplasmic copper transport, may contribute to developmental cell migration processes.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Stéphanie Blockhuys
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
23
|
Voss L, Foster OK, Harper L, Morris C, Lavoy S, Brandt JN, Peloza K, Handa S, Maxfield A, Harp M, King B, Eichten V, Rambo FM, Hermann GJ. An ABCG Transporter Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in Caenorhabditis elegans. Genetics 2020; 214:419-445. [PMID: 31848222 PMCID: PMC7017009 DOI: 10.1534/genetics.119.302900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
ABC transporters couple ATP hydrolysis to the transport of substrates across cellular membranes. This protein superfamily has diverse activities resulting from differences in their cargo and subcellular localization. Our work investigates the role of the ABCG family member WHT-2 in the biogenesis of gut granules, a Caenorhabditis elegans lysosome-related organelle. In addition to being required for the accumulation of birefringent material within gut granules, WHT-2 is necessary for the localization of gut granule proteins when trafficking pathways to this organelle are partially disrupted. The role of WHT-2 in gut granule protein targeting is likely linked to its function in Rab GTPase localization. We show that WHT-2 promotes the gut granule association of the Rab32 family member GLO-1 and the endolysosomal RAB-7, identifying a novel function for an ABC transporter. WHT-2 localizes to gut granules where it could play a direct role in controlling Rab localization. Loss of CCZ-1 and GLO-3, which likely function as a guanine nucleotide exchange factor (GEF) for GLO-1, lead to similar disruption of GLO-1 localization. We show that CCZ-1, like GLO-3, is localized to gut granules. WHT-2 does not direct the gut granule association of the GLO-1 GEF and our results point to WHT-2 functioning differently than GLO-3 and CCZ-1 Point mutations in WHT-2 that inhibit its transport activity, but not its subcellular localization, lead to the loss of GLO-1 from gut granules, while other WHT-2 activities are not completely disrupted, suggesting that WHT-2 functions in organelle biogenesis through transport-dependent and transport-independent activities.
Collapse
Affiliation(s)
- Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Olivia K Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Logan Harper
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Sierra Lavoy
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - James N Brandt
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Amanda Maxfield
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Brian King
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | | | - Fiona M Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon
| |
Collapse
|
24
|
Moyson S, Town RM, Vissenberg K, Blust R. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels. PLoS One 2019; 14:e0218929. [PMID: 31237916 PMCID: PMC6592602 DOI: 10.1371/journal.pone.0218929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/12/2019] [Indexed: 11/18/2022] Open
Abstract
The toxicity of zinc (Zn), copper (Cu), and cadmium (Cd) to the nematode Caenorhabditis elegans was characterised under single metal and mixture scenarios at different organisational levels. The effects on population size and body length were investigated at two concentrations corresponding to the 24 h LC5 and LC20 levels. Metal toxicity was dependent on metal concentration, exposure time and mixture composition. Populations exposed to LC20 levels of Cd, ZnCu, CuCd and ZnCuCd plummeted, while for all LC5 concentrations, population size continued to increase, albeit that single metals were less harmful than mixtures. Combinations of the LC20 concentration of Cd with a range of Zn concentrations showed concentration dependent mitigating effects on population size and antagonistic effects on mortality. By combining effects at different organisational levels, more insight into metal toxicity was obtained. Metal effects were more evident on population size than on body length or mortality, suggesting that population size could be considered as a sensitive endpoint. Furthermore, our observations of ZnCd mixture effects at the individual and population levels are consistent with literature data on the dose-dependent expression of the cdf-2 gene, which is involved in mediation of Zn and Cd toxicity.
Collapse
Affiliation(s)
- Sofie Moyson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry & Biotechnology Laboratory, University of Applied Sciences Crete – Technological Educational Institute, Department of Agriculture, School of Agriculture, Food & Nutrition, Stavromenos, Heraklion, Crete, Greece
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Morris C, Foster OK, Handa S, Peloza K, Voss L, Somhegyi H, Jian Y, Vo MV, Harp M, Rambo FM, Yang C, Hermann GJ. Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 2018; 14:e1007772. [PMID: 30419011 PMCID: PMC6268011 DOI: 10.1371/journal.pgen.1007772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cell type-specific modifications of conventional endosomal trafficking pathways lead to the formation of lysosome-related organelles (LROs). C. elegans gut granules are intestinally restricted LROs that coexist with conventional degradative lysosomes. The formation of gut granules requires the Rab32 family member GLO-1. We show that the loss of glo-1 leads to the mistrafficking of gut granule proteins but does not significantly alter conventional endolysosome biogenesis. GLO-3 directly binds to CCZ-1 and they both function to promote the gut granule association of GLO-1, strongly suggesting that together, GLO-3 and CCZ-1 activate GLO-1. We found that a point mutation in GLO-1 predicted to spontaneously activate, and function independently of it guanine nucleotide exchange factor (GEF), localizes to gut granules and partially restores gut granule protein localization in ccz-1(-) and glo-3(-) mutants. CCZ-1 forms a heterodimeric complex with SAND-1(MON1), which does not function in gut granule formation, to activate RAB-7 in trafficking pathways to conventional lysosomes. Therefore, our data suggest a model whereby the function of a Rab GEF can be altered by subunit exchange. glo-3(-) mutants, which retain low levels of GLO-3 activity, generate gut granules that lack GLO-1 and improperly accumulate RAB-7 in a SAND-1 dependent process. We show that GLO-1 and GLO-3 restrict the distribution of RAB-7 to conventional endolysosomes, providing insights into the segregation of pathways leading to conventional lysosomes and LROs.
Collapse
Affiliation(s)
- Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Olivia K. Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Hannah Somhegyi
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Youli Jian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - My Van Vo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Fiona M. Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Chonglin Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Greg J. Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
26
|
Moyson S, Town RM, Joosen S, Husson SJ, Blust R. The interplay between chemical speciation and physiology determines the bioaccumulation and toxicity of Cu(II) and Cd(II) toCaenorhabditis elegans. J Appl Toxicol 2018; 39:282-293. [DOI: 10.1002/jat.3718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sofie Moyson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven Joosen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven J. Husson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| |
Collapse
|
27
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
28
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Yuan S, Sharma AK, Richart A, Lee J, Kim BE. CHCA-1 is a copper-regulated CTR1 homolog required for normal development, copper accumulation, and copper-sensing behavior in Caenorhabditis elegans. J Biol Chem 2018; 293:10911-10925. [PMID: 29784876 DOI: 10.1074/jbc.ra118.003503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 01/11/2023] Open
Abstract
Copper plays key roles in catalytic and regulatory biochemical reactions essential for normal growth, development, and health. Dietary copper deficiencies or mutations in copper homeostasis genes can lead to abnormal musculoskeletal development, cognitive disorders, and poor growth. In yeast and mammals, copper is acquired through the activities of the CTR1 family of high-affinity copper transporters. However, the mechanisms of systemic responses to dietary or tissue-specific copper deficiency remain unclear. Here, taking advantage of the animal model Caenorhabditis elegans for studying whole-body copper homeostasis, we investigated the role of a C. elegans CTR1 homolog, CHCA-1, in copper acquisition and in worm growth, development, and behavior. Using sequence homology searches, we identified 10 potential orthologs to mammalian CTR1 Among these genes, we found that chca-1, which is transcriptionally up-regulated in the intestine and hypodermis of C. elegans during copper deficiency, is required for normal growth, reproduction, and maintenance of systemic copper balance under copper deprivation. The intestinal copper transporter CUA-1 normally traffics to endosomes to sequester excess copper, and we found here that loss of chca-1 caused CUA-1 to mislocalize to the basolateral membrane under copper overload conditions. Moreover, animals lacking chca-1 exhibited significantly reduced copper avoidance behavior in response to toxic copper conditions compared with WT worms. These results establish that CHCA-1-mediated copper acquisition in C. elegans is crucial for normal growth, development, and copper-sensing behavior.
Collapse
Affiliation(s)
- Sai Yuan
- From the Department of Animal and Avian Sciences and
| | | | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences and .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742 and
| |
Collapse
|
30
|
Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi MK, Imperial J, González-Guerrero M. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2018; 218:696-709. [PMID: 29349810 DOI: 10.1111/nph.14992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Igor Kryvoruchko
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano, 115 bis, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
31
|
Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection. Infect Immun 2017; 85:IAI.00351-17. [PMID: 28652309 DOI: 10.1128/iai.00351-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7aLysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7aLysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7aLysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7aLysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection.
Collapse
|
32
|
Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J Biol Inorg Chem 2017; 22:765-774. [PMID: 28516214 DOI: 10.1007/s00775-017-1467-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
There is much interest in understanding the mechanisms by which platinum-based anticancer agents enter cells, and the copper transporter CTR1 has been the focus of many recent studies. While there is a clinical correlation between CTR1 levels and platinum efficacy, cellular studies have provided conflicting evidence relating to the relationship between cisplatin and CTR1. We report here our studies of the relationship between cisplatin and copper homeostasis in human colon cancer cells. While the accumulation of copper and platinum do not appear to compete with each other, we did observe that cisplatin perturbs CTR1 distribution within 10 min, a far shorter incubation time than commonly employed in cellular studies of cisplatin. Furthermore, on these short time-scales, cisplatin caused an increase in the cytoplasmic labile copper pool. While the predominant focus of studies to date has been on CTR1, these studies highlight the importance of investigating the interaction of cisplatin with other copper proteins.
Collapse
|