1
|
Yin Q, Yang Y, Qu Z, Ouchari M, Zeng L, Tang S, Zheng J, Zhang S, Ma H, Chen Y, Wang J, Shi L, Zheng X. Unraveling the Multifaceted Roles of Atypical Chemokine Receptors in Breast Cancer. J Interferon Cytokine Res 2025; 45:43-52. [PMID: 39526942 DOI: 10.1089/jir.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Breast cancer (BC) remains one of the most prevalent and deadly malignancies among women globally. A deeper understanding of the molecular mechanisms driving BC progression and metastasis is essential for the development of effective therapeutic strategies. While traditional chemokine receptors are well known for their roles in immune cell migration and positioning, atypical chemokine receptors (ACKRs) have recently gained attention as key modulators in cancer-related processes. Unlike conventional receptors, ACKRs-comprising ACKR1, ACKR2, ACKR3, and ACKR4-primarily function by scavenging chemokines, regulating their availability, and modulating receptor signaling in a ligand-independent manner. This review aims to elucidate the roles of ACKRs in BC, focusing on their influence on the tumor microenvironment (TME), cancer cell proliferation, survival, metastasis, and angiogenesis. Additionally, we will explore the potential of ACKRs as diagnostic and prognostic markers and assess their viability as therapeutic targets. By synthesizing recent research findings and highlighting future research directions, this review seeks to provide a comprehensive understanding of the significance of ACKRs in BC and underscore the need for continued investigation into their therapeutic potential.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yisha Yang
- Department of Finance and Management, Henan Vocational College of Agriculture at Luoyang, Luoyang, China
| | - Zhifeng Qu
- Radiology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Mouna Ouchari
- Laboratory of Translational Redox Medicine (TRx Med), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Siya Tang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Shunshun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Youyou Chen
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayi Wang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Yang Y, Zhang S, Yang J, Yao C, Li X, Dai W, Liu J. The aqueous extract of Armadillidium vulgare Latreille alleviates neuropathic pain via inhibiting neuron-astrocyte crosstalk mediated by the IL-12-IFN-γ-IFNGR-CXCL10 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119173. [PMID: 39617087 DOI: 10.1016/j.jep.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Armadillidium vulgare Latreille (AV), the dried body of pillbug, was originally described in Shennong's Classic of Materia Medica. As a common analgesic in animal-based traditional Chinese medicine, it is mainly used to relieve pain, promoting diuresis, relieving fatigue and so on. Our work demonstrated that AV could alleviate various types of acute and chronic pain including neuropathic pain (NP). And transcriptome sequencing analysis revealed that AV could suppress CXCL10 to alleviate NP, however, the upstream mechanisms governing CXCL10 synthesis remain vague. AIM OF THE STUDY The research's goal was to identify the mechanism via which AV regulates CXCL10 to ameliorate NP. MATERIALS AND METHODS Chronic constriction injury (CCI) to the sciatic nerve was used to induce the NP model 14 days following surgery. To identify cell signaling pathways, various approaches were used, including transcriptome sequencing, western blotting, immunofluorescence, as well as ELISA. The in vitro assay involved the cultivation of neuron PC12 cells and astrocyte C6 cells. RESULTS Both in vivo and in vitro results demonstrated that IL-12/IL-18 enhanced IFN-γ production in spinal neurons, which acted on IFN-γ receptors on neurons and astrocytes to upregulate CXCL10 expression in these cells, illustrating the pivotal role of IL-12 in the crosstalk between neurons and astrocytes. The role of IL-12 in pain regulation was elucidated for the first time within the nervous system. Additionally, its synergistic interaction with IL-18 on the downstream IFN-γ-CXCL10 pathway dramatically altered the activation of neurons and astrocytes. And AV could suppress CXCL10 to alleviate NP by mediating the IL-12-IFN-γ-IFNGR signaling pathway. CONCLUSIONS We explored a new target for NP by regulating neuron-astrocyte crosstalk and provided a theoretical basis for AV in clinical use.
Collapse
Affiliation(s)
- Yujie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changheng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Pfersdorf F, Romanazzi L, Rosenkilde MM, Gustavsson M. Regulation of the chemokine receptors CXCR4 and ACKR3 by receptor activity-modifying proteins. J Biol Chem 2025; 301:108055. [PMID: 39662834 PMCID: PMC11760809 DOI: 10.1016/j.jbc.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
The chemokine CXCL12 and its two cognate receptors-CXCR4 and ACKR3-are key players in various homeostatic and pathophysiological processes, including embryonic development, autoimmune diseases, tissue repair, and cancer. Recent reports identified an interaction of CXCR4 and ACKR3 with receptor activity-modifying proteins (RAMPs), and RAMP3 has been shown to facilitate ACKR3's recycling properties. Yet, the functional effects of RAMPs on the CXCL12 signaling axis remain largely elusive. Here, we characterize the effects of RAMPs on CXCR4 and ACKR3 function. We show that, in the absence of a ligand, RAMPs do not affect the cell membrane localization or constitutive internalization of the two receptors. RAMP3 inhibits ligand-stimulated internalization of ACKR3, which retains the receptor at the membrane and inhibits its ability to scavenge CXCL12. In addition, while cAMP inhibition by CXCR4 is unaffected by RAMPs, basal and ligand-stimulated β-arrestin recruitment to both CXCR4 and ACKR3 is reduced in the presence of RAMP3 due to complex formation at the cell surface. The effects on ACKR3 are observed for chemokine, small molecule, and peptide agonists as well as for a N-terminal truncated receptor variant, suggesting that RAMP regulation involves contacts with the transmembrane domain of the receptor. Taken together, our results show that RAMPs regulate the CXCL12 signaling axis by directly interfering with receptor function. These findings could have direct implications for the interplay between receptors in vivo as well as future drug design in the therapeutic targeting of the CXCL12 signaling axis.
Collapse
Affiliation(s)
- Fabian Pfersdorf
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Romanazzi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Gustavsson
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
5
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
6
|
Zarca AM, Adlere I, Viciano CP, Arimont-Segura M, Meyrath M, Simon IA, Bebelman JP, Laan D, Custers HGJ, Janssen E, Versteegh KL, Buzink MCML, Nesheva DN, Bosma R, de Esch IJP, Vischer HF, Wijtmans M, Szpakowska M, Chevigné A, Hoffmann C, de Graaf C, Zarzycka BA, Windhorst AD, Smit MJ, Leurs R. Pharmacological Characterization and Radiolabeling of VUF15485, a High-Affinity Small-Molecule Agonist for the Atypical Chemokine Receptor ACKR3. Mol Pharmacol 2024; 105:301-312. [PMID: 38346795 DOI: 10.1124/molpharm.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this β-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based β-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.
Collapse
Affiliation(s)
- Aurelien M Zarca
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Ilze Adlere
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Cristina P Viciano
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Max Meyrath
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Icaro A Simon
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Jan Paul Bebelman
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Dennis Laan
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Hans G J Custers
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Elwin Janssen
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Kobus L Versteegh
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maurice C M L Buzink
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Desislava N Nesheva
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Reggie Bosma
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Iwan J P de Esch
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Henry F Vischer
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maikel Wijtmans
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martyna Szpakowska
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Andy Chevigné
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Carsten Hoffmann
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Chris de Graaf
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Barbara A Zarzycka
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Albert D Windhorst
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martine J Smit
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Rob Leurs
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| |
Collapse
|
7
|
Hopkins BE, Masuho I, Ren D, Iyamu ID, Lv W, Malik N, Martemyanov KA, Schiltz GE, Miller RJ. Effects of Small Molecule Ligands on ACKR3 Receptors. Mol Pharmacol 2022; 102:128-138. [PMID: 35809897 PMCID: PMC9393849 DOI: 10.1124/molpharm.121.000295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical "biased" receptor because it does not appear to signal through G proteins and, instead, signals solely through the β-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian G α isoforms and have generated a comprehensive map of the G α activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit β-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation. SIGNIFICANCE STATEMENT: We are interested in the signaling produced by the G protein coupled receptor atypical chemokine receptor 3 (ACKR3), which signals atypically. In this study, novel selective ligands for ACKR3 were discovered and the site of interactions between these small molecules and ACKR3 was defined. This work will help to better understand the unique signaling roles of ACKR3.
Collapse
Affiliation(s)
- Brittany E Hopkins
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Ikuo Masuho
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Dongjun Ren
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Iredia D Iyamu
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Wei Lv
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Neha Malik
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Kirill A Martemyanov
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Gary E Schiltz
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Richard J Miller
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| |
Collapse
|
8
|
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. SCIENCE ADVANCES 2022; 8:eabn8063. [PMID: 35857509 PMCID: PMC9278869 DOI: 10.1126/sciadv.abn8063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward β-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie A. Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pawel K. Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Penglie Zhang
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Thomas J. Schall
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
de Lima WP, Andrade ADO, Cavalcante RB, Nogueira RLM, Alves PM, Nonaka CFW, Gordón-Núñez MA. Immunoexpression of CXCL12 and CXCR4 in sporadic and Gorlin-Goltz syndrome-related odontogenic keratocysts. J Clin Exp Dent 2022; 14:e426-e432. [PMID: 35582358 PMCID: PMC9094726 DOI: 10.4317/jced.59561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Differences in the pathogenesis and biological behavior of sporadic and Gorlin-Goltz syndrome-related odontogenic keratocysts (OKCs) have been reported, but the underlying mechanisms are not fully elucidated. Chemokine CXCL12 and its main receptor CXCR4 regulate important events in the pathogenesis of several lesions. Material and Methods This study evaluated the immunoexpression of CXCL12 and CXCR4 in sporadic and syndromic OKCs. Twenty-two sporadic OKCs and 22 syndromic OKCs were subjected to immunohistochemistry. The percentages of cytoplasmic (CXCL12 and CXCR4) and nuclear (CXCR4) staining in epithelial and fibrous capsule cells were determined. The results were analyzed statistically using the nonparametric Mann-Whitney test and Spearman correlation test (p<0.05). Results Higher cytoplasmic expression of CXCL12 was observed in the epithelial lining and fibrous capsule of sporadic OKCs compared to syndromic OKCs (p<0.001). No statistically significant differences in the cytoplasmic expression of CXCR4 were observed between syndromic OKCs and sporadic OKCs (p>0.05). Compared to syndromic OKCs, sporadic OKCs exhibited higher nuclear expression of CXCR4 in the epithelial lining and lower immunoexpression in the fibrous capsule (p<0.05). In the epithelial lining of syndromic OKCs, positive correlation was observed between cytoplasmic and nuclear expressions of CXCR4 (p=0.003). In the fibrous capsule of syndromic OKCs and sporadic OKCs, cytoplasmic and nuclear expressions of CXCR4 were positively correlated (p<0.001). Conclusions The results suggest a potential participation of CXCL12 and CXCR4 in the development of OKCs. The heterogeneous expression of these proteins in syndromic and sporadic OKCs may reflect differences in their pathogenesis and biological behavior. Key words:Odontogenic keratocyst, CXCL12, CXCR4, Immunohistochemistry.
Collapse
Affiliation(s)
- Wliana-Pontes de Lima
- Universidade Estadual da Paraíba - UEPB, Department of Dentistry, Campina Grande, PB, Brazil
| | | | | | | | - Pollianna-Muniz Alves
- Universidade Estadual da Paraíba - UEPB, Department of Dentistry, Campina Grande, PB, Brazil
| | | | | |
Collapse
|
10
|
Dalit L, Alvarado C, Küijper L, Kueh AJ, Weir A, D’Amico A, Herold MJ, Vince JE, Nutt SL, Groom JR. CXCL11 expressing C57BL/6 mice have intact adaptive immune responses to viral infection. Immunol Cell Biol 2022; 100:312-322. [PMID: 35233830 PMCID: PMC9542850 DOI: 10.1111/imcb.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
The chemokine receptor CXCR3 is expressed on immune cells to co‐ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro‐inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady‐state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.
Collapse
Affiliation(s)
- Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Lisan Küijper
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Ashley Weir
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Angela D’Amico
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - James E Vince
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| |
Collapse
|
11
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
12
|
Aguilera-Durán G, Romo-Mancillas A. Behavior of Chemokine Receptor 6 (CXCR6) in Complex with CXCL16 Soluble form Chemokine by Molecular Dynamic Simulations: General Protein‒Ligand Interaction Model and 3D-QSAR Studies of Synthetic Antagonists. Life (Basel) 2021; 11:life11040346. [PMID: 33920834 PMCID: PMC8071165 DOI: 10.3390/life11040346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
The CXCR6‒CXCL16 axis is involved in several pathological processes, and its overexpression has been detected in different types of cancer, such as prostate, breast, ovary, and lung cancer, along with schwannomas, in which it promotes invasion and metastasis. Moreover, this axis is involved in atherosclerosis, type 1 diabetes, primary immune thrombocytopenia, vitiligo, and other autoimmune diseases, in which it is responsible for the infiltration of different immune system cells. The 3D structure of CXCR6 and CXCL16 has not been experimentally resolved; therefore, homology modeling and molecular dynamics simulations could be useful for the study of this signaling axis. In this work, a homology model of CXCR6 and a soluble form of CXCL16 (CXCR6‒CXCL16s) are reported to study the interactions between CXCR6 and CXCL16s through coarse-grained molecular dynamics (CG-MD) simulations. CG-MD simulations showed the two activation steps of CXCR6 through a decrease in the distance between the chemokine and the transmembrane region (TM) of CXCR6 and transmembrane rotational changes and polar interactions between transmembrane segments. The polar interactions between TM3, TM5, and TM6 are fundamental to functional conformation and the meta-active state of CXCR6. The interactions between D77-R280 and T243-TM7 could be related to the functional conformation of CXCR6; alternatively, the interaction between Q195-Q244 and N248 could be related to an inactive state due to the loss of this interaction, and an arginine cage broken in the presence of CXCL16s allows the meta-active state of CXCR6. A general protein‒ligand interaction supports the relevance of TM3‒TM5‒TM6 interactions, presenting three relevant pharmacophoric features: HAc (H-bond acceptor), HDn (H-bond donator), and Hph (hydrophobic), distributed around the space between extracellular loops (ECLs) and TMs. The HDn feature is close to TM3 and TM6; likewise, the HAc and Hph features are close to ECL1 and ECL2 and could block the rotation and interactions between TM3‒TM6 and the interactions of CXCL16s with the ECLs. Tridimensional quantitative structure-activity relationships (3D-QSAR) models show that the positive steric (VdW) and electrostatic fields coincide with the steric and positive electrostatic region of the exo-azabicyclo[3.3.1]nonane scaffold in the best pIC50 ligands. This substructure is close to the E274 residue and therefore relevant to the activity of CXCR6. These data could help with the design of new molecules that inhibit chemokine binding or antagonize the receptor based on the activation mechanism of CXCR6 and provoke a decrease in chemotaxis caused by the CXCR6‒CXCL16 axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
- Correspondence:
| |
Collapse
|
13
|
Aguilera-Durán G, Romo-Mancillas A. Computational Study of C-X-C Chemokine Receptor (CXCR)3 Binding with Its Natural Agonists Chemokine (C-X-C Motif) Ligand (CXCL)9, 10 and 11 and with Synthetic Antagonists: Insights of Receptor Activation towards Drug Design for Vitiligo. Molecules 2020; 25:E4413. [PMID: 32992956 PMCID: PMC7582348 DOI: 10.3390/molecules25194413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is a hypopigmentary skin pathology resulting from the death of melanocytes due to the activity of CD8+ cytotoxic lymphocytes and overexpression of chemokines. These include CXCL9, CXCL10, and CXCL11 and its receptor CXCR3, both in peripheral cells of the immune system and in the skin of patients diagnosed with vitiligo. The three-dimensional structure of CXCR3 and CXCL9 has not been reported experimentally; thus, homology modeling and molecular dynamics could be useful for the study of this chemotaxis-promoter axis. In this work, a homology model of CXCR3 and CXCL9 and the structure of the CXCR3/Gαi/0βγ complex with post-translational modifications of CXCR3 are reported for the study of the interaction of chemokines with CXCR3 through all-atom (AA-MD) and coarse-grained molecular dynamics (CG-MD) simulations. AA-MD and CG-MD simulations showed the first activation step of the CXCR3 receptor with all chemokines and the second activation step in the CXCR3-CXCL10 complex through a decrease in the distance between the chemokine and the transmembrane region of CXCR3 and the separation of the βγ complex from the α subunit in the G-protein. Additionally, a general protein-ligand interaction model was calculated, based on known antagonists binding to CXCR3. These results contribute to understanding the activation mechanism of CXCR3 and the design of new molecules that inhibit chemokine binding or antagonize the receptor, provoking a decrease of chemotaxis caused by the CXCR3/chemokines axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| |
Collapse
|
14
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
White CW, Caspar B, Vanyai HK, Pfleger KDG, Hill SJ. CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes. Cell Chem Biol 2020; 27:499-510.e7. [PMID: 32053779 PMCID: PMC7242902 DOI: 10.1016/j.chembiol.2020.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors are a major class of membrane receptors that mediate physiological and pathophysiological cellular signaling. Many aspects of receptor activation and signaling can be investigated using genetically encoded luminescent fusion proteins. However, the use of these biosensors in live cell systems requires the exogenous expression of the tagged protein of interest. To maintain the normal cellular context here we use CRISPR/Cas9-mediated homology-directed repair to insert luminescent tags into the endogenous genome. Using NanoLuc and bioluminescence resonance energy transfer we demonstrate fluorescent ligand binding at genome-edited chemokine receptors. We also demonstrate that split-NanoLuc complementation can be used to investigate conformational changes and internalization of CXCR4 and that recruitment of β-arrestin2 to CXCR4 can be monitored when both proteins are natively expressed. These results show that genetically encoded luminescent biosensors can be used to investigate numerous aspects of receptor function at native expression levels.
Collapse
Affiliation(s)
- Carl W White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Birgit Caspar
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Hannah K Vanyai
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, WA 6009, Australia
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia.
| |
Collapse
|
16
|
Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol 2020; 107:1123-1135. [PMID: 32374043 DOI: 10.1002/jlb.2ma0320-383rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.
Collapse
Affiliation(s)
- Agnieszka Jaracz-Ros
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | | | - Pasquale Cutolo
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Carmen Gallego
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, Paris, France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Angélique Levoye
- Université de Paris, PARCC, INSERM, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
17
|
Quinn KE, Matson BC, Caron KM. Deletion of atypical chemokine receptor 3 (ACKR3) increases immune cells at the fetal-maternal interface. Placenta 2020; 95:18-25. [PMID: 32452398 DOI: 10.1016/j.placenta.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022]
Abstract
Establishment of immune cell populations and adaptations in immune cells are critical aspects during pregnancy that lead to protection of the semi-allogenic fetus. Appropriate immune cell activation and trophoblast migration are regulated in part by chemokines, the availability of which can be fine-tuned by decoy receptors. Atypical chemokine receptor 3 (ACKR3), previously named C-X-C chemokine receptor 7 (CXCR7), is a chemokine decoy receptor expressed in placenta, but little is known about how this receptor affects placental development. In this study, we investigated the phenotypic characteristics of placentas from Ackr3-/- embryos to determine how Ackr3 contributes to early placentation. In placentas from Ackr3-/- embryos, we observed an increase in decidual compaction and in the size of the uterine natural killer cell population. Ackr3 knockdown in trophoblast cells led to a decrease in trophoblast migration. These findings suggest that this decoy receptor may therefore be an important factor in normal placentation.
Collapse
Affiliation(s)
- Kelsey E Quinn
- Department of Cell Biology and Physiology, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB# 7545, Chapel Hill, NC, 27599, USA.
| | - Brooke C Matson
- Department of Cell Biology and Physiology, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB# 7545, Chapel Hill, NC, 27599, USA.
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB# 7545, Chapel Hill, NC, 27599, USA; Department of Genetics, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB# 7545, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB# 7545, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Whitman MC, Miyake N, Nguyen EH, Bell JL, Matos Ruiz PM, Chan WM, Di Gioia SA, Mukherjee N, Barry BJ, Bosley TM, Khan AO, Engle EC. Decreased ACKR3 (CXCR7) function causes oculomotor synkinesis in mice and humans. Hum Mol Genet 2020; 28:3113-3125. [PMID: 31211835 DOI: 10.1093/hmg/ddz137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/17/2023] Open
Abstract
Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Noriko Miyake
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Elaine H Nguyen
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Paola M Matos Ruiz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nisha Mukherjee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Brenda J Barry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - T M Bosley
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
19
|
Neves M, Fumagalli A, van den Bor J, Marin P, Smit MJ, Mayor F. The Role of ACKR3 in Breast, Lung, and Brain Cancer. Mol Pharmacol 2019; 96:819-825. [PMID: 30745320 DOI: 10.1124/mol.118.115279] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Recent reports regarding the significance of chemokine receptors in disease have put a spotlight on atypical chemokine receptor 3 (ACKR3). This atypical chemokine receptor is overexpressed in numerous cancer types and has been involved in the modulation of tumor cell proliferation and migration, tumor angiogenesis, or resistance to drugs, thus contributing to cancer progression and metastasis occurrence. Here, we focus on the clinical significance and potential mechanisms underlying the pathologic role of ACKR3 in breast, lung, and brain cancer and discuss its possible relevance as a prognostic factor and potential therapeutic target in these contexts.
Collapse
Affiliation(s)
- Maria Neves
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Amos Fumagalli
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Jelle van den Bor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Philippe Marin
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Martine J Smit
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| |
Collapse
|
20
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|
21
|
Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019; 96:778-793. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.
Collapse
Affiliation(s)
- Joyce Heuninck
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Cristina Perpiñá Viciano
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Ali Işbilir
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Birgit Caspar
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Davide Capoferri
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Briddon
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Thierry Durroux
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Hill
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Martin J Lohse
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Graeme Milligan
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Jean-Philippe Pin
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Carsten Hoffmann
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| |
Collapse
|
22
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
23
|
Quinn KE, Mackie DI, Caron KM. Emerging roles of atypical chemokine receptor 3 (ACKR3) in normal development and physiology. Cytokine 2019; 109:17-23. [PMID: 29903572 DOI: 10.1016/j.cyto.2018.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the paradigm of chemokine receptors and their roles in modulating chemotactic responses. The ACKR family has grown over the years, with discovery of new functions and roles in a variety of pathophysiological conditions. However, the extent to which these receptors regulate normal physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) has proven to be an important receptor in mediating normal biological functions, including cardiac development and migration of cortical neurons. In this review, we illustrate the versatile and intriguing role of ACKR3 in physiology.
Collapse
Affiliation(s)
- K E Quinn
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - D I Mackie
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - K M Caron
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
24
|
Gustavsson M, Dyer DP, Zhao C, Handel TM. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding. Sci Signal 2019; 12:12/598/eaaw3657. [PMID: 31506383 DOI: 10.1126/scisignal.aaw3657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemokines bind to membrane-spanning chemokine receptors, which signal through G proteins and promote cell migration. However, atypical chemokine receptor 3 (ACKR3) does not appear to couple to G proteins, and instead of directly promoting cell migration, it regulates the extracellular concentration of chemokines that it shares with the G protein-coupled receptors (GPCRs) CXCR3 and CXCR4, thereby influencing the responses of these receptors. Understanding how these receptors bind their ligands is important for understanding these different processes. Here, we applied association and dissociation kinetic measurements coupled to β-arrestin recruitment assays to investigate ACKR3:chemokine interactions. Our results showed that CXCL12 binding is unusually slow and driven by the interplay between multiple binding epitopes. We also found that the amino terminus of the receptor played a key role in chemokine binding and activation by preventing chemokine dissociation. It was thought that chemokines initially bind receptors through interactions between the globular domain of the chemokine and the receptor amino terminus, which then guides the chemokine amino terminus into the transmembrane pocket of the receptor to initiate signaling. On the basis of our kinetic data, we propose an alternative mechanism in which the amino terminus of the chemokine initially forms interactions with the extracellular loops and transmembrane pocket of the receptor, which is followed by the receptor amino terminus wrapping around the core of the chemokine to prolong its residence time. These data provide insight into how ACKR3 competes and cooperates with canonical GPCRs in its function as a scavenger receptor.
Collapse
Affiliation(s)
- Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0684, USA
| | - Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0684, USA
| | - Chunxia Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0684, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0684, USA.
| |
Collapse
|
25
|
Gentilini A, Caligiuri A, Raggi C, Rombouts K, Pinzani M, Lori G, Correnti M, Invernizzi P, Rovida E, Navari N, Di Matteo S, Alvaro D, Banales JM, Rodrigues P, Raschioni C, Donadon M, Di Tommaso L, Marra F. CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2246-2256. [PMID: 31059778 DOI: 10.1016/j.bbadis.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Center for Autoimmune Liver Diseases IRCCS Istituto Clinico Humanitas, Rozzano, MI, Italy.
| | - Krista Rombouts
- University College London (UCL), Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.
| | - Massimo Pinzani
- University College London (UCL), Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases IRCCS Istituto Clinico Humanitas, Rozzano, MI, Italy.
| | | | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy.
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Sabina Di Matteo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, CIBERehd, Ikerbasque, San Sebastian, Spain.
| | - Pedro Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, CIBERehd, Ikerbasque, San Sebastian, Spain.
| | - Carlotta Raschioni
- Oncology Experimental Therapeutics, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Matteo Donadon
- Department of Pathology, IRCCS Humanitas Clinical Institute, Rozzano, MI, Italy.
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, MI, Italy.
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
26
|
Ou X, Zhang GT, Tian PK, Chen JS, Lin ZW, Xie Y, Wang AH, Liu XP, Liu JK. Forkhead box P3 gene silencing inhibits the expression of chemokines and chemokine receptors associated with cell growth, migration, and apoptosis in hepatocellular carcinoma cells. Exp Ther Med 2019; 18:1091-1098. [PMID: 31316604 PMCID: PMC6601415 DOI: 10.3892/etm.2019.7658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/02/2019] [Indexed: 01/23/2023] Open
Abstract
The aberrant expression of forkhead box P3 (FOXP3) leads to the formation of malignant tumors. FOXP3 expression levels are also elevated in hepatocellular carcinoma (HCC). The aim of the present study was to investigate the effects of FOXP3 silencing on cell proliferation, migration, apoptosis and chemokine/chemokine receptor expression in the MHCC-97H HCC cell line. Three FOXP3 short hairpin (sh)RNA constructs were designed: Sh-FOXP3-1-pGreenPuro, sh-FOXP3-2-pGreenPuro, and sh-FOXP3-3-pGreenPuro. MHCC-97H cells were transfected with shRNA-FOXP3, and the mRNA and protein expression levels of C-X-C motif chemokine (CXC) ligand 12 (CXCL12), CXCL11, CXC receptor 4 (CXCR4) and CXCR7 were measured. Cell Counting Kit-8, terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling and Transwell assays were used to evaluate cell proliferation, apoptosis and migration, respectively. Of the three FOXP3 lentivirus carriers constructed, sh-FOXP3-1 significantly reduced FOXP3 expression levels and was chosen for further experiments. sh-FOXP3-1 inhibited cell proliferation, promoted apoptosis and inhibited cell migration compared with the negative control. The mRNA and protein expression levels of CXCL12, CXCL11, CXCR4 and CXCR7 were decreased significantly in response to FOXP3 silencing. FOXP3 silencing may therefore inhibit cell growth, induce apoptosis and inhibit migration in HCC cells, possibly by impairing the chemokine/chemokine receptor axes.
Collapse
Affiliation(s)
- Xi Ou
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guang-Tao Zhang
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Pei-Kai Tian
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Jing-Sen Chen
- Department of Breast Surgery, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong 518028, P.R. China
| | - Ze-Wei Lin
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yong Xie
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ai-Hong Wang
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiao-Ping Liu
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ji-Kui Liu
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
27
|
Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 2019; 8:rsob.170207. [PMID: 29386406 PMCID: PMC5795052 DOI: 10.1098/rsob.170207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Recent observations suggest that atypical chemokine receptor (ACKR)3 and chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth muscle function through hetero-oligomerization with α1-adrenoceptors. Here, we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A. We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced inositol trisphosphate (IP3) production in human vascular smooth muscle cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries. Proximity ligation assays, co-immunoprecipitation and bioluminescence resonance energy transfer experiments suggested that recombinant and endogenous ACKR3 and AVPR1A interact on the cell surface. Interference with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues of transmembrane domains of ACKR3 abolished aVP-induced IP3 production. aVP stimulation resulted in β-arrestin 2 recruitment to AVPR1A and ACKR3. While ACKR3 activation failed to cross-recruit β-arrestin 2 to AVPR1A, the presence of ACKR3 reduced the efficacy of aVP-induced β-arrestin 2 recruitment to AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitutively expressed in hVSMC, provide insights into molecular events at the heteromeric receptor complex, and offer a mechanistic basis for interactions between the innate immune and vasoactive neurohormonal systems. Our findings suggest that ACKR3 is a regulator of vascular smooth muscle function and a possible drug target in diseases associated with impaired vascular reactivity.
Collapse
Affiliation(s)
- Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Jonathan M Eby
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| |
Collapse
|
28
|
Zhang S, Tao F, Qing R, Tang H, Skuhersky M, Corin K, Tegler L, Wassie A, Wassie B, Kwon Y, Suter B, Entzian C, Schubert T, Yang G, Labahn J, Kubicek J, Maertens B. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc Natl Acad Sci U S A 2018; 115:E8652-E8659. [PMID: 30154163 PMCID: PMC6140526 DOI: 10.1073/pnas.1811031115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7. We show that QTY code-designed chemokine receptor variants retain their thermostabilities, α-helical structures, and ligand-binding activities in buffer and 50% human serum. CCR5QTY, CXCR4QTY, and CXCR7QTY also bind to HIV coat protein gp41-120. Despite substantial transmembrane domain changes, the detergent-free QTY variants maintain stable structures and retain their ligand-binding activities. We believe the QTY code will be useful for designing water-soluble variants of membrane proteins and other water-insoluble aggregated proteins.
Collapse
Affiliation(s)
- Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Fei Tao
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 200240 Shanghai, China
| | - Rui Qing
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hongzhi Tang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 200240 Shanghai, China
| | - Michael Skuhersky
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Karolina Corin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lotta Tegler
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Asmamaw Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brook Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | | - Ge Yang
- Centre for Structural Systems Biology, Research Center Juelich, D-22607 Hamburg, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology, Research Center Juelich, D-22607 Hamburg, Germany
| | | | | |
Collapse
|
29
|
Borroni EM, Savino B, Bonecchi R, Locati M. Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Semin Immunol 2018; 38:63-71. [DOI: 10.1016/j.smim.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
|
30
|
Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochem Pharmacol 2018. [DOI: 10.1016/j.bcp.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 2018; 8:9631. [PMID: 29941999 PMCID: PMC6018111 DOI: 10.1038/s41598-018-27790-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
Ligand-gating has recently been proposed as a novel mechanism to regulate olfactory receptor sensitivity. TAAR13c, the zebrafish olfactory receptor activated by the death-associated odor cadaverine, appears to possess an allosteric binding site for cadaverine, which was assumed to block progress of the ligand towards the internal orthosteric binding-and-activation site. Here we have challenged the suggested gating mechanism by modeling the entry tunnel for the ligand as well as the ligand path inside the receptor. We report an entry tunnel, whose opening is blocked by occupation of the external binding site by cadaverine, confirming the hypothesized gating mechanism. A multistep docking algorithm suggested a plausible path for cadaverine from the allosteric to the orthosteric binding-and-activation site. Furthermore we have combined a gain-of-function gating site mutation and a loss-of-function internal binding site mutation in one recombinant receptor. This receptor had almost wildtype ligand affinities, consistent with modeling results that showed localized effects for each mutation. A novel mutation of the suggested gating site resulted in increased receptor ligand affinity. In summary both the experimental and the modeling results provide further evidence for the proposed gating mechanism, which surprisingly exhibits pronounced similarity to processes described for some metabotropic neurotransmitter receptors.
Collapse
|
32
|
Silwedel C, Speer CP, Haarmann A, Fehrholz M, Claus H, Buttmann M, Glaser K. Novel insights into neuroinflammation: bacterial lipopolysaccharide, tumor necrosis factor α, and Ureaplasma species differentially modulate atypical chemokine receptor 3 responses in human brain microvascular endothelial cells. J Neuroinflammation 2018; 15:156. [PMID: 29792190 PMCID: PMC5966865 DOI: 10.1186/s12974-018-1170-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atypical chemokine receptor 3 (ACKR3, synonym CXCR7) is increasingly considered relevant in neuroinflammatory conditions, in which its upregulation contributes to compromised endothelial barrier function and may ultimately allow inflammatory brain injury. While an impact of ACKR3 has been recognized in several neurological autoimmune diseases, neuroinflammation may also result from infectious agents, including Ureaplasma species (spp.). Although commonly regarded as commensals of the adult urogenital tract, Ureaplasma spp. may cause invasive infections in immunocompromised adults as well as in neonates and appear to be relevant pathogens in neonatal meningitis. Nonetheless, clinical and in vitro data on Ureaplasma-induced inflammation are scarce. METHODS We established a cell culture model of Ureaplasma meningitis, aiming to analyze ACKR3 variances as a possible pathomechanism in Ureaplasma-associated neuroinflammation. Non-immortalized human brain microvascular endothelial cells (HBMEC) were exposed to bacterial lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α), and native as well as LPS-primed HBMEC were cultured with Ureaplasma urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). ACKR3 responses were assessed via qRT-PCR, RNA sequencing, flow cytometry, and immunocytochemistry. RESULTS LPS, TNF-α, and Ureaplasma spp. influenced ACKR3 expression in HBMEC. LPS and TNF-α significantly induced ACKR3 mRNA expression (p < 0.001, vs. control), whereas Ureaplasma spp. enhanced ACKR3 protein expression in HBMEC (p < 0.01, vs. broth control). Co-stimulation with LPS and either Ureaplasma isolate intensified ACKR3 responses (p < 0.05, vs. LPS). Furthermore, stimulation wielded a differential influence on the receptor's ligands. CONCLUSIONS We introduce an in vitro model of Ureaplasma meningitis. We are able to demonstrate a pro-inflammatory capacity of Ureaplasma spp. in native and, even more so, in LPS-primed HBMEC, underlining their clinical relevance particularly in a setting of co-infection. Furthermore, our data may indicate a novel role for ACKR3, with an impact not limited to auto-inflammatory diseases, but extending to infection-related neuroinflammation as well. AKCR3-induced blood-brain barrier breakdown might constitute a potential common pathomechanism.
Collapse
Affiliation(s)
- Christine Silwedel
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Axel Haarmann
- Department of Neurology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080, Wuerzburg, Germany
| | - Markus Fehrholz
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080, Wuerzburg, Germany.,Department of Neurology, Caritas Hospital, Uhlandstr. 7, 97980, Bad Mergentheim, Germany
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| |
Collapse
|
33
|
Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, Gao YJ. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018; 14:1744806918777401. [PMID: 29712506 PMCID: PMC5967156 DOI: 10.1177/1744806918777401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li-Na He
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bao-Chun Jiang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xue-Qiang Bai
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Wen Zhang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
Sekiguchi H, Kuroyanagi T, Rhainds D, Kobayashi K, Kobayashi Y, Ohno H, Heveker N, Akaji K, Fujii N, Oishi S. Structure-Activity Relationship Study of Cyclic Pentapeptide Ligands for Atypical Chemokine Receptor 3 (ACKR3). J Med Chem 2018; 61:3745-3751. [PMID: 29608300 DOI: 10.1021/acs.jmedchem.8b00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atypical chemokine receptor 3 (ACKR3)/CXC chemokine receptor 7 (CXCR7) recognizes stromal cell-derived factor 1 (SDF-1)/CXCL12 and is involved in a number of physiological and pathological processes. Here, we investigated the SAR of the component amino acids in an ACKR3-selective ligand, FC313 [ cyclo(-d-Tyr-l-Arg-l-MeArg-l-Nal(2)-l-Pro-)], for the development of highly active ACKR3 ligands. Notably, modification at the l-Pro position with a bulky hydrophobic side chain led to improved bioactivity toward ACKR3.
Collapse
Affiliation(s)
- Haruka Sekiguchi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Tomoko Kuroyanagi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - David Rhainds
- Département de Biochimie , Université de Montréal , Montréal H3T 1J4 , Canada.,Research Centre , Sainte-Justine Hospital, University of Montreal , Montréal H3T 1C5 , Canada
| | - Kazuya Kobayashi
- Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8412 , Japan
| | - Yuka Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Nikolaus Heveker
- Département de Biochimie , Université de Montréal , Montréal H3T 1J4 , Canada.,Research Centre , Sainte-Justine Hospital, University of Montreal , Montréal H3T 1C5 , Canada
| | - Kenichi Akaji
- Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8412 , Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
35
|
Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018; 175:1419-1438. [PMID: 29272550 DOI: 10.1111/bph.14132] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemokines and their receptors form an intricate interaction and signalling network that plays critical roles in various physiological and pathological cellular processes. The high promiscuity and apparent redundancy of this network makes probing individual chemokine/receptor interactions and functional effects, as well as targeting individual receptor axes for therapeutic applications, challenging. Despite poor sequence identity, the N-terminal regions of chemokines, which play a key role in their activity and selectivity, contain several conserved features. Thus far little is known regarding the molecular basis of their interactions with typical and atypical chemokine receptors or the conservation of their contributions across chemokine-receptor pairs. EXPERIMENTAL APPROACH We used a broad panel of chemokine variants and modified peptides derived from the N-terminal region of chemokines CXCL12, CXCL11 and vCCL2, to compare the contributions of various features to binding and activation of their shared receptors, the two typical, canonical G protein-signalling receptors, CXCR4 and CXCR3, as well as the atypical scavenger receptor CXCR7/ACKR3, which shows exclusively arrestin-dependent activity. KEY RESULTS We provide molecular insights into the plasticity of the ligand-binding pockets of these receptors, their chemokine binding modes and their activation mechanisms. Although the chemokine N-terminal region is a critical determinant, neither the most proximal residues nor the N-loop are essential for binding and activation of ACKR3, as distinct from binding and activation of CXCR4 and CXCR3. CONCLUSION AND IMPLICATIONS These results suggest a different interaction mechanism between this atypical receptor and its ligands and illustrate its strong propensity to activation.
Collapse
Affiliation(s)
- Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - David Rhainds
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Thomas D'huys
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - François Guité-Vinet
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geneviève St-Onge
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
36
|
CXCR7/ACKR3-targeting ligands interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 2018; 4:e00557. [PMID: 29560468 PMCID: PMC5857896 DOI: 10.1016/j.heliyon.2018.e00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. Furthermore, we uncovered anti-CXCR7 monoclonal antibodies, small molecule CXCR7 inhibitors and the natural CXCR7 chemokine ligands as potent inhibitors of CXCR7 receptor-mediated HIV entry and replication. Even though the clinical relevance of CXCR7-mediated HIV infection remains poorly understood, our data suggest that divergent HIV-1 and HIV-2 strains can quickly adapt their coreceptor usage depending on the cellular environment, which warrants further investigation.
Collapse
|
37
|
Montpas N, St-Onge G, Nama N, Rhainds D, Benredjem B, Girard M, Hickson G, Pons V, Heveker N. Ligand-specific conformational transitions and intracellular transport are required for atypical chemokine receptor 3-mediated chemokine scavenging. J Biol Chem 2017; 293:893-905. [PMID: 29180449 PMCID: PMC5777261 DOI: 10.1074/jbc.m117.814947] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The atypical chemokine receptor ACKR3 contributes to chemotaxis by binding, internalizing, and degrading the chemokines CXCL11 and CXCL12 to shape and terminate chemotactic gradients during development and immune responses. Although unable to trigger G protein activation, both ligands activate G protein-independent ACKR3 responses and prompt arrestin recruitment. This offers a model to specifically study ligand-specific receptor conformations leading to G protein-independent signaling and to functional parameters such as receptor transport and chemokine degradation. We here show chemokine specificity in arrestin recruitment, by different effects of single amino acid substitutions in ACKR3 on arrestin in response to CXCL12 or CXCL11. Chemokine specificity in receptor transport was also observed, as CXCL11 induced faster receptor internalization, slower recycling, and longer intracellular sojourn of ACKR3 than CXCL12. Internalization and recycling rates of the ACKR3 R1423.50A substitution in response to each chemokine were similar; however, ACKR3 R1423.50A degraded only CXCL12 and not CXCL11. This suggests that ligand-specific intracellular receptor transport is required for chemokine degradation. Remarkably, the failure of ACKR3 R1423.50A to degrade CXCL11 was not caused by the lack of arrestin recruitment; rather, arrestin was entirely dispensable for scavenging of either chemokine. This suggests the involvement of another, yet unidentified, ACKR3 effector in scavenging. In summary, our study correlates ACKR3 ligand-specific conformational transitions with chemokine-dependent receptor transport dynamics and points toward unexpected ligand specificity in the mechanisms of chemokine degradation.
Collapse
Affiliation(s)
- Nicolas Montpas
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada.,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - Geneviève St-Onge
- the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - Nassr Nama
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada.,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - David Rhainds
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada.,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - Besma Benredjem
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada.,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - Mélanie Girard
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada.,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| | - Gilles Hickson
- the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada.,the Department of Pathology and Cell Biology, University of Montréal, Montréal, Quebec H3T 1J4, Canada, and
| | - Véronique Pons
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, F-31432 Toulouse, France
| | - Nikolaus Heveker
- From the Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Quebec H3T 1J4, Canada, .,the Research Centre, Saint-Justine Hospital, University of Montréal, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
38
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
39
|
Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017; 60:4735-4779. [PMID: 28165741 PMCID: PMC5483895 DOI: 10.1021/acs.jmedchem.6b01309] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
This
review focuses on the construction and application of structural chemokine
receptor models for the elucidation of molecular determinants of chemokine
receptor modulation and the structure-based discovery and design of
chemokine receptor ligands. A comparative analysis of ligand binding
pockets in chemokine receptors is presented, including a detailed
description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures,
and their implication for modeling molecular interactions of chemokine
receptors with small-molecule ligands, peptide ligands, and large
antibodies and chemokines. These studies demonstrate how the integration
of new structural information on chemokine receptors with extensive
structure–activity relationship and site-directed mutagenesis
data facilitates the prediction of the structure of chemokine receptor–ligand
complexes that have not been crystallized. Finally, a review of structure-based
ligand discovery and design studies based on chemokine receptor crystal
structures and homology models illustrates the possibilities and challenges
to find novel ligands for chemokine receptors.
Collapse
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shan-Liang Sun
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Martine Smit
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|