1
|
Tian M, Wang X, Zhang M, Li C, Xu Y, Chen X, Chen C, Wei Z, Li X, Ding G, Zhang L, Wang H, Gan H. DEAD-box protein 21 promotes renal fibrosis via p21-dependent cell cycle arrest in proximal tubular epithelial cells. Cell Signal 2025; 128:111654. [PMID: 39938704 DOI: 10.1016/j.cellsig.2025.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Renal interstitial fibrosis is the final common outcome of various chronic kidney diseases (CKD). Renal tubular epithelial cells (TECs) G2/M cell cycle arrest play a pivotal role in renal fibrosis. Although RNA-binding proteins (RBPs) are implicated in organ fibrosis, the underlying mechanisms remain poorly understood. Here, we identify DEAD-box protein 21 (DDX21), a representative RBP, as highly expressed in fibrotic renal tissues, especially in TECs. Moreover, DDX21 expression is positively correlated with renal function decline in CKD patients, underscoring its role in disease progression. TECs-specific deletion of Ddx21 alleviates cell cycle arrest in G2/M, and attenuates fibrotic responses. Mechanistically, silencing DDX21 reduces p21 expression at both the mRNA and protein levels and decreases cell apoptosis, indicating that DDX21 promotes G2/M cell cycle arrest by regulating the p21 signaling pathway. This study suggests that DDX21 may serve as a promising therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Maoqing Tian
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaofei Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhan Xu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinghua Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan 430060, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan 430060, China
| | - Zhongping Wei
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan 430060, China
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan 430060, China.
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan 430060, China.
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Sharma P, McFadden JR, Frost FG, Markello TC, Grange DK, Introne WJ, Gahl WA, Malicdan MCV. Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features. Hum Genet 2024; 143:1445-1457. [PMID: 39453476 PMCID: PMC11576897 DOI: 10.1007/s00439-024-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jason R McFadden
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - F Graeme Frost
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Winstone L, Jung Y, Wu Y. DDX41: exploring the roles of a versatile helicase. Biochem Soc Trans 2024; 52:395-405. [PMID: 38348889 PMCID: PMC10903454 DOI: 10.1042/bst20230725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
DDX41 is a DEAD-box helicase and is conserved across species. Mutations in DDX41 have been associated with myeloid neoplasms, including myelodysplastic syndrome and acute myeloid leukemia. Though its pathogenesis is not completely known, DDX41 has been shown to have many cellular roles, including in pre-mRNA splicing, innate immune sensing, ribosome biogenesis, translational regulation, and R-loop metabolism. In this review, we will summarize the latest understandings regarding the various roles of DDX41, as well as highlight challenges associated with drug development to target DDX41. Overall, understanding the molecular and cellular mechanisms of DDX41 could help develop novel therapeutic options for DDX41 mutation-related hematologic malignancies.
Collapse
Affiliation(s)
- Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yohan Jung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Naineni SK, Robert F, Nagar B, Pelletier J. Targeting DEAD-box RNA helicases: The emergence of molecular staples. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1738. [PMID: 35581936 DOI: 10.1002/wrna.1738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/29/2022]
Abstract
RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, Matsui H. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 2023; 117:876-888. [PMID: 36780110 DOI: 10.1007/s12185-023-03558-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.
Collapse
Affiliation(s)
- Saruul Tungalag
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
6
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
7
|
Kobatake K, Ikeda K, Nakata Y, Yamasaki N, Kanai A, Sekino Y, Takemoto K, Fukushima T, Babasaki T, Kitano H, Goto K, Hayashi T, Sentani K, Teishima J, Kaminuima O, Hinata N. DDX41 expression is associated with tumor necrosis in clear cell renal cell carcinoma and in cooperation with VHL loss leads to worse prognosis. Urol Oncol 2022; 40:456.e9-456.e18. [DOI: 10.1016/j.urolonc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
|
8
|
Wang J, Wang Y, Wang J, Zhang S, Yu Z, Zheng K, Fu Z, Wang C, Huang W, Chen J. DEAD-box helicase 56 functions as an oncogene promote cell proliferation and invasion in gastric cancer via the FOXO1/p21 Cip1/c-Myc signaling pathway. Bioengineered 2022; 13:13970-13985. [PMID: 35723050 PMCID: PMC9275944 DOI: 10.1080/21655979.2022.2084235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
DEAD-box helicase (DDX) family exerts a critical effect on cancer initiation and progression through alternative splicing, transcription and ribosome biogenesis. Increasing evidence has demonstrated that DEAD-box helicase 56 (DDX56) is over-expressed in several cancers, which plays an oncogenic role. Till the present, the impact of DDX56 on gastric cancer (GC) remains unclear. We conducted high-throughput sequencing (RNA-seq) to demonstrate aberrant DDX56 levels within 10 GC and matched non-carcinoma tissue samples. DDX56 levels were detected through qRT-PCR, western blotting (WB) and immunochemical staining in GC patients. We conducted gain- and loss-of-function studies to examine DDX56's biological role in GC development. In vitro, we carried out 5‑Ethynyl‑2‑deoxyuridine (EdU), scratch, Transwell, and flow cytometry (FCM) assays for detecting GC cell growth, invasion, migration and apoptosis. Additionally, gene set enrichment analysis (GSEA), WB assay, and Encyclopedia of RNA Interactomes (ENCORI) were carried out for analyzing DDX56-regulated downstream genes and signaling pathways. In vivo, tumor xenograft experiment was performed for investigating how DDX56 affected GC development within BALB/c nude mice. Functionally, DDX56 knockdown arrested cell cycle at G1 phase, invasion and migration of AGS and MKN28 cells, and enhanced their apoptosis. Ectopic DDX56 expression enhanced the cell growth, migration and invasion, and inhibited apoptosis. Knockdown of DDX56 suppressed GC growth in the tumor models of BALB/c nude mice. Mechanistically, DDX56 post-transcriptionally suppressed FOXO1/p21 Cip1 protein expression, which could activate its downstream cyclin E1/CDK2/c-Myc signaling pathways. This sheds lights on the GC pathogenic mechanism and offers a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junfu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Congjun Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Wang X, Kokabee L, Kokabee M, Conklin DS. Bruton's Tyrosine Kinase and Its Isoforms in Cancer. Front Cell Dev Biol 2021; 9:668996. [PMID: 34307353 PMCID: PMC8297165 DOI: 10.3389/fcell.2021.668996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a soluble tyrosine kinase with central roles in the development, maturation, and signaling of B cells. BTK has been found to regulate cell proliferation, survival, and migration in various B-cell malignancies. Targeting BTK with recently developed BTK inhibitors has been approved by the Food and Drug Administration (FDA) for the treatment of several hematological malignancies and has transformed the treatment of several B-cell malignancies. The roles that BTK plays in B cells have been appreciated for some time. Recent studies have established that BTK is expressed and plays pro-tumorigenic roles in several epithelial cancers. In this review, we focus on novel isoforms of the BTK protein expressed in epithelial cancers. We review recent work on the expression, function, and signaling of these isoforms and their value as potential therapeutic targets in epithelial tumors.
Collapse
Affiliation(s)
- Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Leila Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Mostafa Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| |
Collapse
|
11
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
12
|
Sergeeva O, Zatsepin T. RNA Helicases as Shadow Modulators of Cell Cycle Progression. Int J Mol Sci 2021; 22:2984. [PMID: 33804185 PMCID: PMC8001981 DOI: 10.3390/ijms22062984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
13
|
Wang HT, Hur S. Substrate recognition by TRIM and TRIM-like proteins in innate immunity. Semin Cell Dev Biol 2021; 111:76-85. [PMID: 33092958 PMCID: PMC7572318 DOI: 10.1016/j.semcdb.2020.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
TRIM (Tripartite motif) and TRIM-like proteins have emerged as an important class of E3 ligases in innate immunity. Their functions range from activation or regulation of innate immune signaling pathway to direct detection and restriction of pathogens. Despite the importance, molecular mechanisms for many TRIM/TRIM-like proteins remain poorly characterized, in part due to challenges of identifying their substrates. In this review, we discuss several TRIM/TRIM-like proteins in RNA sensing pathways and viral restriction functions. We focus on those containing PRY-SPRY, the domain most frequently used for substrate recognition, and discuss emerging mechanisms that are commonly utilized by several TRIM/TRIM-like proteins to tightly control their interaction with the substrates.
Collapse
Affiliation(s)
- Hai-Tao Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol Cell 2021; 81:599-613.e8. [PMID: 33373584 PMCID: PMC8183676 DOI: 10.1016/j.molcel.2020.11.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.
Collapse
MESH Headings
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/ultrastructure
- Epitopes
- Evolution, Molecular
- HEK293 Cells
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/ultrastructure
- Models, Molecular
- Phylogeny
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/ultrastructure
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/ultrastructure
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Qin K, Jian D, Xue Y, Cheng Y, Zhang P, Wei Y, Zhang J, Xiong H, Zhang Y, Yuan X. DDX41 regulates the expression and alternative splicing of genes involved in tumorigenesis and immune response. Oncol Rep 2021; 45:1213-1225. [PMID: 33650667 PMCID: PMC7859996 DOI: 10.3892/or.2021.7951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
DEAD‑box helicase 41 (DDX41) is an RNA helicase and accumulating evidence has suggested that DDX41 is involved in pre‑mRNA splicing during tumor development. However, the role of DDX41 in tumorigenesis remains unclear. In order to determine the function of DDX41, the human DDX41 gene was cloned and overexpressed in HeLa cells. The present study demonstrated that DDX41 overexpression inhibited proliferation and promoted apoptosis in HeLa cells. RNA‑sequencing analysis of the transcriptomes in overexpressed and normal control samples. DDX41 regulated 959 differentially expressed genes compared with control cells. Expression levels of certain oncogenes were also regulated by DDX41. DDX41 selectively regulated the alternative splicing of genes in cancer‑associated pathways including the EGFR and FGFR signaling pathways. DDX41 selectively upregulated the expression levels of five antigen processing and presentation genes (HSPA1A, HSPA1B, HSPA6, HLA‑DMB and HLA‑G) and downregulated other immune‑response genes in HeLa cells. Additionally, DDX41‑regulated oncogenes and antigen processing and presentation genes were associated with patient survival rates. Moreover, DDX41 expression was associated with immune infiltration in cervical and endocervical squamous cancer. The present findings showed that DDX41 regulated the cancer cell transcriptome at both the transcriptional and alternative splicing levels. The DDX41 regulatory network predicted the biological function of DDX41 in suppressing tumor cell growth and regulating cancer immunity, which may be important for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Danni Jian
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
16
|
An J, Luo Z, An W, Cao D, Ma J, Liu Z. Identification of spliceosome components pivotal to breast cancer survival. RNA Biol 2020; 18:833-842. [PMID: 32965163 DOI: 10.1080/15476286.2020.1822636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer cells employ alternative splicing (AS) to acquire splicing isoforms favouring their survival. However, the causes of aberrant AS in breast cancer are poorly understood. In this study, the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) data were analysed with univariate feature selection. Of 122 analysed spliceosome components, U2SURP, PUF60, DDX41, HNRNPAB, EIF4A3, and PPIL3 were significantly associated with breast cancer survival. The top 4 four genes, U2SURP, PUF60, DDX41, and HNRNPAB, were chosen for further analyses. Their expression was significantly associated with cancer molecular subtype, tumour stage, tumour grade, overall survival (OS), and cancer-specific survival in the METABRIC data. These results were verifiable using other cohorts. The Cancer Genome Atlas data unveiled the elevated expression of PUF60, DDX41, and HNRNPAB in tumours compared with the normal tissue and confirmed the differential expression of the four genes among cancer molecular subtypes, as well as the associations of U2SURP, PUF60, and DDX41 expression with tumour stage. A meta-analysis data verified the associations of U2SURP, PUF60, and HNRNPAB expression with tumour grade, the associations of PUF60, DDX41, and HNRNPAB expression with OS and distant metastasis-free survival, and the associations of U2SURP and HNRNPAB expression with relapse-free survival. Experimentally, we demonstrated that inhibiting the expression of the four genes separately suppressed cell colony formation and slowed down cell growth considerably in breast cancer cells, but not in immortal breast epithelial cells. In conclusion, we have identified U2SURP, PUF60, DDX41, and HNRNPAB are spliceosome-related genes pivotal for breast cancer survival.
Collapse
Affiliation(s)
- Jing An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, China
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, China
| | - Difei Cao
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, China.,Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, China
| |
Collapse
|
17
|
General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Int J Mol Sci 2020; 21:ijms21124402. [PMID: 32575790 PMCID: PMC7352612 DOI: 10.3390/ijms21124402] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Collapse
|
18
|
Insights into the Involvement of Spliceosomal Mutations in Myelodysplastic Disorders from Analysis of SACY-1/DDX41 in Caenorhabditis elegans. Genetics 2020; 214:869-893. [PMID: 32060018 PMCID: PMC7153925 DOI: 10.1534/genetics.119.302973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting spliceosomal proteins are frequently found in hematological malignancies, including myelodysplastic syndromes and acute myeloid leukemia (AML). DDX41/Abstrakt is a metazoan-specific spliceosomal DEAD-box RNA helicase that is recurrently mutated in inherited myelodysplastic syndromes and in relapsing cases of AML. The genetic properties and genomic impacts of disease-causing missense mutations in DDX41 and other spliceosomal proteins have been uncertain. Here, we conduct a comprehensive analysis of the Caenorhabditis elegans DDX41 ortholog, SACY-1 Biochemical analyses defined SACY-1 as a component of the C. elegans spliceosome, and genetic analyses revealed synthetic lethal interactions with spliceosomal components. We used the auxin-inducible degradation system to analyze the consequence of SACY-1 depletion on the transcriptome using RNA sequencing. SACY-1 depletion impacts the transcriptome through splicing-dependent and splicing-independent mechanisms. Altered 3' splice site usage represents the predominant splicing defect observed upon SACY-1 depletion, consistent with a role for SACY-1 in the second step of splicing. Missplicing events appear more prevalent in the soma than the germline, suggesting that surveillance mechanisms protect the germline from aberrant splicing. The transcriptome changes observed after SACY-1 depletion suggest that disruption of the spliceosome induces a stress response, which could contribute to the cellular phenotypes conferred by sacy-1 mutant alleles. Multiple sacy-1 /ddx41 missense mutations, including the R525H human oncogenic variant, confer antimorphic activity, suggesting that their incorporation into the spliceosome is detrimental. Antagonistic variants that perturb the function of the spliceosome may be relevant to the disease-causing mutations, including DDX41, affecting highly conserved components of the spliceosome in humans.
Collapse
|
19
|
Hüsemann LC, Reese A, Radine C, Piekorz RP, Budach W, Sohn D, Jänicke RU. The microtubule targeting agents eribulin and paclitaxel activate similar signaling pathways and induce cell death predominantly in a caspase-independent manner. Cell Cycle 2020; 19:464-478. [PMID: 31959066 DOI: 10.1080/15384101.2020.1716144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are the most effective chemotherapeutics used in cancer therapy to date, but their clinical use is often hampered by the acquisition of resistance. Thereby, elucidation of the molecular signaling pathways activated by novel FDA-approved MTAs such as eribulin is important for future therapeutic applications. In contrast to several reports, we show here that regardless of the presence of caspase-3, clinically relevant concentrations of eribulin and the classical MTA paclitaxel predominantly induce caspase-independent cell death in MCF-7 breast carcinoma cells. On the molecular level, several key proteins involved in apoptosis such as p53, Plk1, caspase-2, and Bim as well as the two MAPKs ERK and JNK were activated by both compounds to a similar extent. However, none of them proved to be important for eribulin- and paclitaxel-induced cytotoxicity, as their siRNA-mediated knockdown or inactivation by small molecule inhibitors did not alter cell death rates. In contrast, knockdown of the anti-apoptotic Bcl-2 protein, which becomes heavily phosphorylated at Ser70 during MTA treatment, resulted surprisingly in a reduction of MTA-mediated cell death. This phenomenon can be most likely explained by our observation that the absence of Bcl-2 slowed down cell cycle progression resulting in fewer cells entering mitosis, thereby delaying the mitotic capability of these MTAs to induce cell death. Taken together, although eribulin and paclitaxel disturb the mitotic spindle differently, they exhibit no functional differences in downstream molecular cell death signaling in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Lisa C Hüsemann
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Synthetic Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
20
|
Radine C, Peters D, Reese A, Neuwahl J, Budach W, Jänicke RU, Sohn D. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53-p21-axis. Cell Death Differ 2019; 27:1274-1285. [PMID: 31511650 DOI: 10.1038/s41418-019-0414-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
In recent years it has become more and more apparent that the regulation of gene expression by RNA-binding proteins (RBPs) is of utmost importance for most cellular signaling pathways. RBPs control several aspects of RNA biogenesis including splicing, localization, stability, and translation efficiency. One of these RBPs is RBM47 that recently has been suggested to function as a tumor suppressor as it was shown to suppress breast and colon cancer progression. Here we demonstrate that RBM47 is an important regulator of basal and DNA damage-induced p53 and p21WAF1/CIP1 protein expression. Knockdown of RBM47 by siRNAs results in a strong reduction in p53 mRNA and protein levels due to an impaired p53 promoter activity. Accordingly, overexpression of Flag-RBM47 enhances p53 promoter activity demonstrating that RBM47 regulates p53 at the transcriptional level. By controlling p53, knockdown of RBM47 concomitantly decreases also p21 expression at the transcriptional level, driving irradiated carcinoma cell lines from different entities into cell death rather than into senescence. Thus, RBM47 represents a novel molecular switch of cell fate decisions that functions as a regulator of the p53/p21-signaling axis.
Collapse
Affiliation(s)
- Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik Peters
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith Neuwahl
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
21
|
Shamloo B, Usluer S. p21 in Cancer Research. Cancers (Basel) 2019; 11:cancers11081178. [PMID: 31416295 PMCID: PMC6721478 DOI: 10.3390/cancers11081178] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and p53 status, have been under scrutiny recently. Basic science and translational studies use precision gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field. In this review, we will focus on targeting p21 in cancer research and its potential in providing novel therapies.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sinem Usluer
- Department of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
22
|
Quesada AE, Routbort MJ, DiNardo CD, Bueso‐Ramos CE, Kanagal‐Shamanna R, Khoury JD, Thakral B, Zuo Z, Yin CC, Loghavi S, Ok CY, Wang SA, Tang Z, Bannon SA, Benton CB, Garcia‐Manero G, Kantarjian H, Luthra R, Medeiros LJ, Patel KP. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol 2019; 94:757-766. [PMID: 30963592 DOI: 10.1002/ajh.25486] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023]
Abstract
Myeloid neoplasms with germline DDX41 mutations have been incorporated into the 2017 WHO classification. Limited studies describing the clinicopathologic features and mutation profile are available. We searched for myeloid neoplasms with a DDX41 gene mutation tested by an 81-gene next-generation sequencing panel over a 7-month period. We identified 34 patients with myeloid neoplasms with DDX41 abnormalities; 26 (76%) men and 8 women (24%) [median age, 70 years], 20 acute myeloid leukemia (AML), 10 myelodysplastic syndrome (MDS), 1 chronic myelomonocytic leukemia (CMML) and 3 myeloproliferative neoplasms (MPN). Fifty-nine DDX41 variants were detected: 27 (46%) appeared somatic and 32 (54%) were presumably germline mutations. The majority of presumed germline mutations were upstream of the Helicase 2 domain (93%) and involved loss of the start codon (30%). The majority of somatic mutations were within the Helicase 2 domain (78%), with the missense mutation p.R525H being most common (67%). There was a significant difference in the location of germline or somatic mutations (P < .0001). Concomitant mutations were detected involving 19 genes, but only TP53 (n = 11, 32%), ASXL1 (n = 8, 24%), and JAK2 (n = 4, 12%) were recurrent. Twenty (59%) patients showed diploid cytogenetics. Twenty-three (68%) patients presented with AML or MDS-EB-2, suggesting an association with high-grade myeloid neoplasm. Patients with myeloid neoplasms carrying DDX41 mutations show male predominance (3:1), higher age at presentation, association with TP53 mutations, and association with high-grade myeloid neoplasms in our cohort at a referral cancer center setting. These findings support the recognition of myeloid neoplasms with DDX41 mutation as unique, need for germline confirmation, and further assessment of family members.
Collapse
Affiliation(s)
- Andrés E. Quesada
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Mark J. Routbort
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Carlos E. Bueso‐Ramos
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Rashmi Kanagal‐Shamanna
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Joseph D. Khoury
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Beenu Thakral
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Zhuang Zuo
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - C. Cameron Yin
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sanam Loghavi
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Chi Y. Ok
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sa A. Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Zhenya Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sarah A. Bannon
- Department of Clinical Cancer GeneticsThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Christopher B. Benton
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Hagop Kantarjian
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Rajyalakshmi Luthra
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - L. Jeffrey Medeiros
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur P. Patel
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
23
|
Comparative Proteomic Profiling of Tumor-Associated Proteins in Human Gastric Cancer Cells Treated with Pectolinarigenin. Nutrients 2018; 10:nu10111596. [PMID: 30380781 PMCID: PMC6265996 DOI: 10.3390/nu10111596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
Pectolinarigenin (PEC), a natural flavonoid that is present in citrus fruits, has been reported to exhibit antitumor effects in several cancers. Though the mechanism of PEC-induced cytotoxicity effects has been documented, the proteomic changes that are associated with the cellular response to this flavonoid are poorly understood in gastric cancer cells. In this study, a comparative proteomic analysis was performed to identify proteins associated with PEC-induced cell death in two human gastric cancer cell lines: AGS and MKN-28. Two-dimensional gel electrophoresis (2-DE) revealed a total of 29 and 56 protein spots with significant alteration were screened in AGS and MKN-28 cells respectively. In total, 13 (AGS) and 39 (MKN28) proteins were successfully identified by mass spectrometry from the differential spots and they are known to be involved in signal transduction, apoptosis, transcription and translation, cell structural organization, and metabolism, as is consistent with multiple effects of PEC on tumor cells. Notably, novel target proteins like Probable ATP-dependent RNA helicase DDX4 (DDX4) and E3 ubiquitin-protein ligase LRSAM1 (LRSAM1) along with the commonly differential expressed proteins on both the cell lines that are treated with PEC were confirmed by immunoblotting. The DDX4 accelerates cell cycle progression by abrogating the G2 checkpoint when overexpressed in cancer cells, while the aberrant expression of LRSAM1 may be involved in the cancer pathology. Thus, proteomic analysis provides vital information about target proteins that are important for PEC-induced cell death in gastric cancer cells.
Collapse
|
24
|
Diness BR, Risom L, Frandsen TL, Hansen B, Andersen MK, Schmiegelow K, Wadt KAW. Putative new childhood leukemia cancer predisposition syndrome caused by germline bi-allelic missense mutations in DDX41. Genes Chromosomes Cancer 2018; 57:670-674. [PMID: 30144193 DOI: 10.1002/gcc.22680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
DDX41 has recently been identified as a new autosomal dominantly inherited cancer predisposition syndrome causing increased risk of adult onset acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). We report for the first time compound heterozygote germline missense DDX41 mutations located in the DEAD-box domain, identified in two siblings by exome sequencing. Both siblings have slight dysmorphic findings, psychomotor delays and intellectual disability, and one developed blastic plasmacytoid dendritic cell neoplasm (BPDCN) at age five. RNA-sequencing of bone marrow showed DDX41 expression including both mutations. However, the allele fraction of p.Pro321Leu accounted for 96% in the RNA-sequencing indicating this mutation to be the more significant variant. Exome sequencing of the leukemic blasts identified no additional known driver mutations. There is no pattern indicating autosomal dominantly inherited cancer predisposition in the family, but the father has sarcoidosis, which has been associated with heterozygous DDX41 mutation. We propose that bi-allelic mutations in DDX41 could potentially be a new cancer predisposition syndrome associated with delayed psychomotor development.
Collapse
Affiliation(s)
- Birgitte R Diness
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas L Frandsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bente Hansen
- Department of Pediatrics, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mette K Andersen
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
STING signaling in tumorigenesis and cancer therapy: A friend or foe? Cancer Lett 2017; 402:203-212. [PMID: 28602976 DOI: 10.1016/j.canlet.2017.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) is a DNA sensor and an important cytoplasmic adaptor for other DNA sensors, such as Z-DNA binding protein 1 (DAI), DEAD-box helicase 41 (DDX41), and interferon-γ-inducible protein 16 (IFI16). The activation of STING signaling leads to the production of type I interferons and some other pro-inflammatory cytokines, which are critical for host defense against viral infection. Recent accumulating evidences suggest that STING is also involved in tumor development. However, the role of STING signaling in tumorigenesis is complicated, and a comprehensive review is still lacking. In this paper, we provided an overview of the dual role of STING signaling in tumor development from clinical significance to fundamental mechanisms, as well as its pre-clinical application in cancer therapy.
Collapse
|
26
|
Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017; 106:163-174. [PMID: 28547672 DOI: 10.1007/s12185-017-2260-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|