1
|
Ma C, Yang Q, Yu G, Li A, Tu C, Wang J, Zhang W, Chen L, Teng D, Wang Q, Shao Y, Zhang Y, Zhang W. RNF157 targets RIG-I/DDX58 to promote proliferation in liver cancer. BMC Cancer 2025; 25:816. [PMID: 40312343 PMCID: PMC12044747 DOI: 10.1186/s12885-025-14224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Liver cancer is one of the most common malignant tumours in humans, and a large proportion of patients are diagnosed at an advanced stage due to rapid growth and distant metastasis; thus, there is an urgent need to identify critical genes involved in the development of liver cancer. In this study, we investigated the role of RING finger protein 157 (RNF157) in liver cancer proliferation and the related mechanisms. First, we used bioinformatics counting for database mining of RNF157 expression in hepatocellular carcinoma and paracancerous tissues and its relationship with prognosis. We detected the expression level of RNF157 in human samples and different liver cancer cell lines via fluorescence quantitative polymerase chain reaction (Q-PCR), Western blot, and immunohistochemistry (IHC). Subsequently, virus transfection was used to construct knockdown and overexpressed stably transfected cell lines to test the effect of RNF157 on the proliferation of liver cancer. Immunoprecipitation (Co-IP) was used to verify the binding and regulatory relationship between RNF157 and RIG-I/DDX58. We found that RNF157 expression was significantly upregulated in liver cancer tissues and correlated with poor prognosis. In addition, knockdown of RNF157 expression inhibited liver cancer cell proliferation and overexpression of RNF157 promoted liver cancer cell proliferation. Co-IP results revealed that RNF157 binds to and downregulates the expression level of RIG-I/DDX58, further suggesting that RNF157 binds to and ubiquitinates RIG-I/DDX58 at residue 48 of the lysine, which leads to a significant increase in the expression level of RIG-I/DDX58. In this study, we found that RNF157 is a tumour-promoting ubiquitin ligase that promotes liver cancer growth by targeting RIG-I/DDX58 for degradation. Thus, RNF157 has the potential to be a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Changsong Ma
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Qingsong Yang
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Gaoyuan Yu
- Department of Thyroid and Breast Surgery, Anhui Provincial Hospital Affiliated With Anhui Medical University, Hefei, 230001, China
| | - Ao Li
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Congyin Tu
- Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Jian Wang
- Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Wei Zhang
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Lin Chen
- Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Da Teng
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Qinweng Wang
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China
| | - Yongjun Shao
- Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Wengjun Zhang
- Hepatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, No.369 Zuiweng West Road, Nanqiao District, Chuzhou, 239000, China.
| |
Collapse
|
2
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
3
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
4
|
Zou D, Cai Y, Jin M, Zhang M, Liu Y, Chen S, Yang S, Zhang H, Zhu X, Huang C, Zhu Y, Miao X, Wei Y, Yang X, Tian J. A genetic variant in the immune-related gene ERAP1 affects colorectal cancer prognosis. Chin Med J (Engl) 2024; 137:431-440. [PMID: 37690994 PMCID: PMC10876254 DOI: 10.1097/cm9.0000000000002845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION No. NCT00454519 ( https://clinicaltrials.gov/ ).
Collapse
Affiliation(s)
- Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
5
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. Toxoplasma gondii F-Box Protein L2 Silences Feline-Restricted Genes Necessary for Sexual Commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572150. [PMID: 38187549 PMCID: PMC10769283 DOI: 10.1101/2023.12.18.572150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages requires substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct nuclear sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNA seq data show that TgFBXL2 conditional depletion induces the expression of genes necessary for sexual commitment. We suggest that TgFBXL2 is a latent guardian of sexual stage development in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of sexual development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| |
Collapse
|
6
|
Wang P, Zhao J, Tan Y, Sheng J, He S, Chen Y, Nie D, You X, Luo J, Zhang Y, Hu S. RNF157 attenuates CD4 + T cell-mediated autoimmune response by promoting HDAC1 ubiquitination and degradation. Theranostics 2023; 13:3509-3523. [PMID: 37441600 PMCID: PMC10334825 DOI: 10.7150/thno.86307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background: CD4+ T cells play an important role in body development and homeostasis. Quantitative and functional changes in CD4+ T cells result in abnormal immune responses, which lead to inflammation, cancer, or autoimmune diseases, such as multiple sclerosis (MS). Ubiquitination plays an essential role in the differentiation and functioning of CD4+ T cells. However, the function of several E3 ubiquitin ligases in CD4+ T cell differentiation and T cell-mediated pathological diseases remains unclear. Methods: RNA sequencing data were analyzed to identify the E3 ubiquitin ligases that participate in the pathogenesis of MS. Furthermore, conditional knockout mice were generated. Specifically, flow cytometry, qPCR, western blot, CO-IP and cell transfer adoptive experiments were performed. Results: In this study, we identified The RING finger 157 (RNF157) as a vital regulator of CD4+ T cell differentiation; it promoted Th1 differentiation but attenuated Th17 differentiation and CCR4 and CXCR3 expressions in CD4+ T cells, thereby limiting experimental autoimmune encephalomyelitis development. Mechanistically, RNF157 in CD4+ T cells targeted HDAC1 for K48-linked ubiquitination and degradation. Notably, RNF157 expression was significantly decreased and showed a significant negative correlation with RORγt expression in patients with MS. Conclusions: Our study highlights the critical role of RNF157 in regulating CD4+ T cell functions in autoimmune diseases and suggests RNF157 as a potential target in adaptive immune responses against MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunke Tan
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Shitong He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jinmei Luo
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhang
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengfeng Hu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
8
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
9
|
Guan H, Mao L, Wang J, Wang S, Yang S, Wu H, Sun W, Chen Z, Chen M. Exosomal RNF157 mRNA from prostate cancer cells contributes to M2 macrophage polarization through destabilizing HDAC1. Front Oncol 2022; 12:1021270. [PMID: 36263220 PMCID: PMC9573993 DOI: 10.3389/fonc.2022.1021270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background Exosomes have been identified to mediate the transmission of RNAs among different cells in tumor microenvironment, thus affecting the progression of different diseases. However, exosomal messenger RNAs (mRNAs) have been rarely explored. RNF157 mRNA has been found to be up-regulated in PCa patients’ exosomes, but the role of exosomal RNF157 mRNA in PCa development remains unclear. Methods Online databases were utilized for predicting gene expression and binding correlation between different factors. RT-qPCR and western blot assays were respectively done to analyze RNA and protein expressions. Flow cytometry analysis was implemented to analyze M2 polarization. Results RNF157 expression was high in PCa tissues and cells. M2 polarization of macrophages was enhanced after co-culture with PCa cells or with exosomes released by PCa cells. Upon RNF157 knockdown in PCa cells, the extracted exosomes could not lead to the facilitated M2 polarization. Mechanistically, RNF157 could bind to HDAC1 and contribute to HDAC1 ubiquitination, which led to HDAC1 degradation and resulting in promoting M2 polarization of macrophages. Animal experiments validated that exosomal RNF157 accelerated PCa tumor growth through facilitating macrophage M2 polarization. Conclusion Exosome-mediated RNF157 mRNA from PCa cells results in M2 macrophage polarization via destabilizing HDAC1, consequently promoting PCa tumor progression.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jinfeng Wang
- Department of Urology, Yancheng No. 3 People’s Hospital, Yancheng, China
| | - Sheng Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongliang Wu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenyan Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Chen
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Ming Chen, ; Zhijun Chen,
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
- *Correspondence: Ming Chen, ; Zhijun Chen,
| |
Collapse
|
10
|
Qi T, Jing R, Ma B, Hu C, Wen C, Shao Y, Pei C. The E3 Ligase RNF157 Inhibits Lens Epithelial Cell Apoptosis by Negatively Regulating p53 in Age-Related Cataracts. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 35435923 PMCID: PMC9034709 DOI: 10.1167/iovs.63.4.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose Age-related cataract (ARC) is a major cause of vision impairment worldwide. The E3 ubiquitin ligase RING finger protein 157 (RNF157) is involved in regulating cell survival and downregulated in human cataractous lens samples. However, the function of RNF157 in cataracts remains unclear. This study aimed to determine the role of RNF157 in ARC. Methods Real-time polymerase chain reaction (PCR) and Western blotting were used to analyze the expression of RNF157 in clinical lens capsules, rat cataract models, and oxidative stress cell models. Western blot analysis and flow cytometry were used to evaluate cell apoptosis. Co-IP assay, protein stability assay, and ubiquitination assay were used to detect the interaction between RNF157 and its substrate p53. Results The expression of RNF157 was downregulated in human cataract samples, UVB-induced rat cataract model, and H2O2-treated human lens epithelial cells (LECs). Ectopic expression of RNF157 protected LECs from H2O2-induced apoptosis. In contrast, knockdown of RNF157 enhanced oxidative stress-induced apoptotic cell death. Moreover, silence of RNF157 in the rat ex vivo lens model exacerbated lens opacity. Mechanistically, RNF157 causes ubiquitination and degradation of the tumor antigen p53. Overexpression of p53 eliminated the antiapoptotic effects of RNF157, whereas p53 knockdown rescued RNF157 silencing-induced cell death. Conclusions Our findings revealed that reduced RNF157 expression promoted LEC apoptosis by upregulating p53 in cataracts, suggesting that the regulation of RNF157 expression may serve as a potential therapeutic strategy for cataracts.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Lu L, Cao L, Liu Y, Chen Y, Fan J, Yin Y. Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)). Bioengineered 2021; 12:10823-10836. [PMID: 34872449 PMCID: PMC8809921 DOI: 10.1080/21655979.2021.1967035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To verify whether Ang-(1-7) produces an antagonistic effect on Ang II-mediated atrial remodeling. Ang II–induced HL-1 cell model and a rat model of Ang II–induced atrial remodeling were constructed and intervened with Ang II Ang-(1-7), AngII +Ang-(1-7), Ang II+ c-Src specific inhibitor (SU6656), and Ang II + Ang-(1-7) + SSG (SHP-1/2 specific inhibitor, stibogluconate), respectively. The systolic blood pressure of the rat caudal artery was detected. And trial fibrosis was detected by Picrosirius red staining and Masson’s trichrome staining. Expressions of transforming growth factor-β (TGF-β), tissue inhibitor of metalloproteinases 1 (TIMP1), Matrix metalloproteinase 2 (MMP-2), connective tissue growth factor (CTGF), galectin-3, α-smooth muscle actin (α-SMA), and collagen I/III were subjected to qPCR and western blot. Furthermore, SHP-1 binding to c-Src was verified by co-immunoprecipitation (Co-IP). Results showed that the expressions of TGF-β, TIMP1, MMP-2, CTGF, α-SMA, galectin-3, and collagen I were increased markedly in the Ang II intervention group, and the expressions of p-ERK1/2, p-Akt, and p-p38MAPK were also increased dramatically. Ang-(1-7) or SU6656 addition could inhibit the action of Ang II factor, thereby minimizing the expressions of the previously described genes and proteins. Simultaneously, SSG supplement reversed the antagonistic effect of Ang-(1-7) on Ang II, and the latter elevated the blood pressure and induced atrial fibrosis in rats. Ang-(1-7) could reverse the changes related to Ang II–induced atrial fibrosis in rats. In conclusion, Ang-(1-7) antagonized Ang II–induced atrial remodeling by regulating SHP-1 and c-Src, thereby affecting the MAPKs/Akt signaling pathway.
Collapse
Affiliation(s)
- Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yihao Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer's disease. Sci Rep 2021; 11:13704. [PMID: 34211065 PMCID: PMC8249453 DOI: 10.1038/s41598-021-93085-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's mechanism from machine learning (ML) is so far unrealized, majorly due to the lack of needed data density. To harness the AD mechanism's knowledge from the expression profiles of postmortem prefrontal cortex samples of 310 AD and 157 controls, we used seven predictive operators or combinations of RapidMiner Studio operators to establish predictive models from the input matrix and to assign a weight to each attribute. Besides, conventional fold-change methods were also applied as controls. The identified genes were further submitted to enrichment analysis for KEGG pathways. The average accuracy of ML models ranges from 86.30% to 91.22%. The overlap ratio of the identified genes between ML and conventional methods ranges from 19.7% to 21.3%. ML exclusively identified oxidative phosphorylation genes in the AD pathway. Our results highlighted the deficiency of oxidative phosphorylation in AD and suggest that ML should be considered as complementary to the conventional fold-change methods in transcriptome studies.
Collapse
Affiliation(s)
- Jack Cheng
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| | - Hsin-Ping Liu
- grid.254145.30000 0001 0083 6092Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan
| | - Wei-Yong Lin
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092Brain Diseases Research Center, China Medical University, Taichung, 40402 Taiwan
| | - Fuu-Jen Tsai
- grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory and Biotechnology, Asia University, Taichung, 41354 Taiwan ,grid.254145.30000 0001 0083 6092Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung, 40447 Taiwan
| |
Collapse
|
13
|
Chantzichristos D, Svensson PA, Garner T, Glad CA, Walker BR, Bergthorsdottir R, Ragnarsson O, Trimpou P, Stimson RH, Borresen SW, Feldt-Rasmussen U, Jansson PA, Skrtic S, Stevens A, Johannsson G. Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial. eLife 2021; 10:62236. [PMID: 33821793 PMCID: PMC8024021 DOI: 10.7554/elife.62236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Glucocorticoids are among the most commonly prescribed drugs, but there is no biomarker that can quantify their action. The aim of the study was to identify and validate circulating biomarkers of glucocorticoid action. Methods: In a randomized, crossover, single-blind, discovery study, 10 subjects with primary adrenal insufficiency (and no other endocrinopathies) were admitted at the in-patient clinic and studied during physiological glucocorticoid exposure and withdrawal. A randomization plan before the first intervention was used. Besides mild physical and/or mental fatigue and salt craving, no serious adverse events were observed. The transcriptome in peripheral blood mononuclear cells and adipose tissue, plasma miRNAomic, and serum metabolomics were compared between the interventions using integrated multi-omic analysis. Results: We identified a transcriptomic profile derived from two tissues and a multi-omic cluster, both predictive of glucocorticoid exposure. A microRNA (miR-122-5p) that was correlated with genes and metabolites regulated by glucocorticoid exposure was identified (p=0.009) and replicated in independent studies with varying glucocorticoid exposure (0.01 ≤ p≤0.05). Conclusions: We have generated results that construct the basis for successful discovery of biomarker(s) to measure effects of glucocorticoids, allowing strategies to individualize and optimize glucocorticoid therapy, and shedding light on disease etiology related to unphysiological glucocorticoid exposure, such as in cardiovascular disease and obesity. Funding: The Swedish Research Council (Grant 2015-02561 and 2019-01112); The Swedish federal government under the LUA/ALF agreement (Grant ALFGBG-719531); The Swedish Endocrinology Association; The Gothenburg Medical Society; Wellcome Trust; The Medical Research Council, UK; The Chief Scientist Office, UK; The Eva Madura’s Foundation; The Research Foundation of Copenhagen University Hospital; and The Danish Rheumatism Association. Clinical trial number: NCT02152553. Several diseases, including asthma, arthritis, some skin conditions, and cancer, are treated with medications called glucocorticoids, which are synthetic versions of human hormones. These drugs are also used to treat people with a condition call adrenal insufficiency who do not produce enough of an important hormone called cortisol. Use of glucocorticoids is very common, the proportion of people in a given country taking them can range from 0.5% to 21% of the population depending on the duration of the treatment. But, like any medication, glucocorticoids have both benefits and risks: people who take glucocorticoids for a long time have an increased risk of diabetes, obesity, cardiovascular disease, and death. Because of the risks associated with taking glucocorticoids, it is very important for physicians to tailor the dose to each patient’s needs. Doing this can be tricky, because the levels of glucocorticoids in a patient’s blood are not a good indicator of the medication’s activity in the body. A test that can accurately measure the glucocorticoid activity could help physicians personalize treatment and reduce harmful side effects. As a first step towards developing such a test, Chantzichristos et al. identified a potential way to measure glucocorticoid activity in patient’s blood. In the experiments, blood samples were collected from ten patients with adrenal insufficiency both when they were on no medication, and when they were taking a glucocorticoid to replace their missing hormones. Next, the blood samples were analyzed to determine which genes were turned on and off in each patient with and without the medication. They also compared small molecules in the blood called metabolites and tiny pieces of genetic material called microRNAs that turn genes on and off. The experiments revealed networks of genes, metabolites, and microRNAs that are associated with glucocorticoid activity, and one microRNA called miR-122-5p stood out as a potential way to measure glucocorticoid activity. To verify this microRNA’s usefulness, Chantzichristos et al. looked at levels of miR-122-5p in people participating in three other studies and confirmed that it was a good indicator of the glucocorticoid activity. More research is needed to confirm Chantzichristos et al.’s findings and to develop a test that can be used by physicians to measure glucocorticoid activity. The microRNA identified, miR-122-5p, has been previously linked to diabetes, so studying it further may also help scientists understand how taking glucocorticoids may increase the risk of developing diabetes and related diseases.
Collapse
Affiliation(s)
- Dimitrios Chantzichristos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Terence Garner
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Camilla Am Glad
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Brian R Walker
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ragnhildur Bergthorsdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oskar Ragnarsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Penelope Trimpou
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roland H Stimson
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stina W Borresen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanko Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Innovation Strategies and External Liaison, Pharmaceutical Technologies and Development, Gothenburg, Sweden
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
15
|
Karpov DS, Spirin PV, Zheltukhin AO, Tutyaeva VV, Zinovieva OL, Grineva EN, Matrosova VA, Krasnov GS, Snezhkina AV, Kudryavtseva AV, Prassolov VS, Mashkova TD, Lisitsyn NA. LINC00973 Induces Proliferation Arrest of Drug-Treated Cancer Cells by Preventing p21 Degradation. Int J Mol Sci 2020; 21:ijms21218322. [PMID: 33171937 PMCID: PMC7664178 DOI: 10.3390/ijms21218322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Pavel V. Spirin
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Andrey O. Zheltukhin
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Vera V. Tutyaeva
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Olga L. Zinovieva
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
| | - Evgenia N. Grineva
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
| | - Vera A. Matrosova
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
| | - George S. Krasnov
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Anastasiya V. Snezhkina
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Vladimir S. Prassolov
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhard Institute of Molecular Biology, 111991 Moscow, Russia
| | - Tamara D. Mashkova
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
| | - Nikolai A. Lisitsyn
- Engelhard Institute of Molecular Biology, Russian Academy of Sciences, 111991 Moscow, Russia; (D.S.K.); (P.V.S.); (A.O.Z.); (V.V.T.); (O.L.Z.); (E.N.G.); (V.A.M.); (G.S.K.); (A.V.S.); (A.V.K.); (V.S.P.); (T.D.M.)
- Correspondence: ; Tel.: +7-916-531-2672
| |
Collapse
|
16
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
17
|
Wang K, Tang J, Liu X, Wang Y, Chen W, Zheng R. UBR5 regulates proliferation and radiosensitivity in human laryngeal carcinoma via the p38/MAPK signaling pathway. Oncol Rep 2020; 44:685-697. [PMID: 32468011 PMCID: PMC7336417 DOI: 10.3892/or.2020.7620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Laryngeal carcinoma (LCC) is a common malignant tumor with low radiosensitivity and generally poor response rates. The ubiquitin protein ligase E3 component n-recognin 5 (UBR5) has prognostic implications in several neoplasms; however, its role in LCC and radiotherapy sensitivity remains unknown. Immunohistochemistry and bioinformatics analyses were performed to measure UBR5 protein and mRNA expression in LCC and adjacent non-tumor tissues. The gene and protein expression of UBR5 in LCC and HuLa-PC cell lines were measured using quantitative PCR and western blot analyses. Following transfection with small interfering RNA or UBR5 overexpression plasmid in LCC cells, the proliferation, cell cycle distribution, invasion, migration and radiosensitivity of LCC cells were analyzed. UBR5-related lncRNA, targeted miRNA and protein-protein interaction networks were analyzed using bioinformatics. Finally, the expression of the p38/mitogen-activated protein kinase (MAPK) pathway was evaluated following UBR5 silencing in M2E cells treated with radiation. Increased UBR5 expression was observed in LCC tissues compared with adjacent non-tumor tissues, and it was correlated with poor overall survival of LCC patients. After overexpression or silencing of UBR5 in M2E and M4E LCC cells, cell proliferation and radiosensitivity were significantly increased or decreased, respectively, compared with the control groups. The percentage of S phase cells decreased in the UBR5 si-RNA group compared with that in the control group, while overexpression of UBR5 exerted no effect on the cell cycle. In addition, the expression of Bcl-2 and p38 was decreased in the si-UBR5 combined with radiation groups. The level of phosphorylated p38 expression was increased after combination of si-UBR5 with radiation. The small molecule inhibitor of p38/MAPK signaling, SB203580, decreased the viability of UBR5-overexpressing cells and the survival fraction when cells were exposed to radiation. These findings demonstrated that UBR5 may be involved in regulating cell proliferation and sensitivity to radiotherapy in LCC via the p38/MAPK pathway, thereby highlighting its possible value for the development of new therapeutic strategies and targets for the treatment of this disease.
Collapse
Affiliation(s)
- Kai Wang
- Department of Otorhinolaryngology‑Head and Neck Surgery, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Jun Tang
- Department of Otorhinolaryngology‑Head and Neck Surgery, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Xiaolei Liu
- Department of Radiation Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yuejian Wang
- Department of Otorhinolaryngology‑Head and Neck Surgery, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Weixiong Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Rui Zheng
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
18
|
Li JX, Wei CY, Cao SG, Xia MW. Elevated nuclear auto-antigenic sperm protein promotes melanoma progression by inducing cell proliferation. Onco Targets Ther 2019; 12:2105-2113. [PMID: 30962692 PMCID: PMC6433116 DOI: 10.2147/ott.s197813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Nuclear auto-antigenic sperm protein (NASP) has been implicated in tumorigenesis. However, its role in melanoma is still unclear. Materials and methods In the present study, we detected the mRNA and protein level of NASP in melanoma cell lines and tissues. Then the role of NASP was investigated by transfecting with NASP siRNAs. Finally, the prognosis of NASP was analyzed in 100 melanoma patients through Cox regression and Kaplan-Meier analyses. Results We showed that NASP was significantly overexpressed in melanoma tissues, and unregulated NASP promoted melanoma cell proliferation via promoting cell cycle G1/S phase transition. Additionally, the expression of NASP was closely related to proliferating cell nuclear antigen, a widely accepted biomarker for cell proliferation. Clinically, we found that a high level of NASP predicated poor overall survival and high cumulative recurrence rates. Multivariate analysis revealed that NASP was a risk biomarker for predicting the prognosis of melanoma patients. Conclusion Elevated NASP plays an important role in melanoma cell proliferation and tumor progression, and it can be used as an independent prognostic biomarker for melanoma patients.
Collapse
Affiliation(s)
- Jia-Xia Li
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, People's Republic of China,
| | - Chuan-Yuan Wei
- Department of Plastic Surgery, Fudan University, Shanghai 200032, People's Republic of China
| | - Shu-Gang Cao
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, People's Republic of China,
| | - Ming-Wu Xia
- Department of Neurology, Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, People's Republic of China,
| |
Collapse
|