1
|
Rampy J, Torres-Manzo AP, Hoffsmith K, Loberg MA, Sheng Q, Salas-Lucia F, Bianco AC, Arrojo E Drigo R, Wang H, Weiss VL, Carrasco N. Overnutrition directly impairs thyroid hormone biosynthesis and utilization, causing hypothyroidism, despite remarkable thyroidal adaptations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645596. [PMID: 40236234 PMCID: PMC11996416 DOI: 10.1101/2025.03.31.645596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Thyroid hormones (THs: T 3 and T 4 ) are key regulators of metabolic rate and nutrient metabolism. They are controlled centrally and peripherally in a coordinated manner to elegantly match T 3 -mediated energy expenditure (EE) to energy availability. Hypothyroidism reduces EE and has long been blamed for obesity; however, emerging evidence suggests that, instead, obesity may drive thyroid dysfunction. Thus, we used a mouse model of diet-induced obesity to determine its direct effects on thyroid histopathology and function, deiodinase activity, and T 3 action. Strikingly, overnutrition induced hypothyroidism within 3 weeks. Levels of thyroidal THs and their precursor protein thyroglobulin decreased, and ER stress was induced, indicating that thyroid function was directly impaired. We also observed pronounced histological and vascular expansion in the thyroid. Overnutrition additionally suppressed T 4 activation, rendering the mice resistant to T 4 and reducing EE. Our findings collectively show that overnutrition deals a double strike to TH biosynthesis and action, despite large efforts to adapt-but, fortunately, thyroid dysfunction in mice can be reversed by weight loss. In humans, BMI correlated with thyroidal vascularization, importantly demonstrating initial translatability. These studies lay the groundwork for novel obesity therapies that tackle hypothyroidism-which are much-needed, as no current obesity treatment works for everyone.
Collapse
|
2
|
Liu Y, Li Z, Chen X, Cui X, Gao Z, Jiang R. INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation. Nat Commun 2025; 16:1247. [PMID: 39893190 PMCID: PMC11787322 DOI: 10.1038/s41467-025-56535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Recent advances in spatial epigenomic techniques have given rise to spatial assay for transposase-accessible chromatin using sequencing (spATAC-seq) data, enabling the characterization of epigenomic heterogeneity and spatial information simultaneously. Integrative analysis of multiple spATAC-seq samples, for which no method has been developed, allows for effective identification and elimination of unwanted non-biological factors within the data, enabling comprehensive exploration of tissue structures and providing a holistic epigenomic landscape, thereby facilitating the discovery of biological implications and the study of regulatory processes. In this article, we present INSTINCT, a method for multi-sample INtegration of Spatial chromaTIN accessibility sequencing data via stochastiC domain Translation. INSTINCT can efficiently handle the high dimensionality of spATAC-seq data and eliminate the complex noise and batch effects of samples through a stochastic domain translation procedure. We demonstrate the superiority and robustness of INSTINCT in integrating spATAC-seq data across multiple simulated scenarios and real datasets. Additionally, we highlight the advantages of INSTINCT in spatial domain identification, visualization, spot-type annotation, and various downstream analyses, including motif enrichment analysis, expression enrichment analysis, and partitioned heritability analysis.
Collapse
Affiliation(s)
- Yuyao Liu
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xuejian Cui
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Dalkılıç S, Kadıoğlu Dalkılıç L, Uygur L, Timurkaan M, Gültürk B, Kaplan M. Bioinformatics analysis of colorectal cancer transcriptomic data reveals novel prognostic signature and potential biomarker genes. Scand J Gastroenterol 2025; 60:42-53. [PMID: 39644158 DOI: 10.1080/00365521.2024.2437437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a type of digestive system cancer. At the molecular level, some factors, including genetic and epigenetic factors, as well as various signaling pathways such as oxidative stress and inflammation, play an active role in the onset of CRC. Genetic and epigenetic mutations, particularly in oncogenes and tumor suppressor genes, occur during colorectal adenocarcinoma development as a result of a change in gastrointestinal epithelial cell proliferation and self-renewal rates. This study aimed to determine the genes and molecular mechanisms that play a role in the emergence of this disease by analyzing the CRC data. MATERIAL AND METHODS Microarray data selected for bioinformatics analysis is Gene Expression data stored with the code GSE110224 in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Gene expression analysis, functional clustering analysis, enrichment analysis, and pathway analysis were performed using this data set. RESULTS Analysis of raw transcriptomic data revealed 1770 common DEGs in CRC. While the expression level of 769 of these genes increased, the expression level of 1001 genes decreased. A Protein-protein interaction (PPI) network was created from the first 25 genes with increased expression levels and 11 signature genes were identified. Increased expression of REG1A, MMP3, FOXQ1 and CEMIP genes and decreased expression of AQP8, CA1, CLDN8, PYY, CA4, CEACAM7 and SLC30A10 genes were observed. CONCLUSIONS This approach revealed a CRC-specific molecular profile and may provide some guidance for further investigation of potential biomarkers for diagnosis and prognosis prediction of CRC patients.
Collapse
Affiliation(s)
- Semih Dalkılıç
- Department of Biology and Molecular Biology and Genetics Program, Faculty of Science, Fırat University, Elazig, Türkiye
| | | | - Lütfü Uygur
- Department of Biology and Molecular Biology and Genetics Program, Faculty of Science, Fırat University, Elazig, Türkiye
| | - Mustafa Timurkaan
- Department of Internal Medicine, Fethi Sekin City Hospital, Elazig, Turkey
| | - Barış Gültürk
- Department of General Surgery, Medikal Hospital, Elazig, Turkey
| | - Mustafa Kaplan
- Department of Medical Parasitology, Faculty of Medicine, Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
4
|
Hutchens S, Melkote A, Jursa T, Shawlot W, Trasande L, Smith DR, Mukhopadhyay S. Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. Metallomics 2024; 16:mfae029. [PMID: 38866719 PMCID: PMC11216084 DOI: 10.1093/mtomcs/mfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - William Shawlot
- Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics and Departments of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Wagner School of Public Service, New York, NY, USA
- New York University College of Global Public Health, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Gurol KC, Jursa T, Cho EJ, Fast W, Dalby KN, Smith DR, Mukhopadhyay S. PHD2 enzyme is an intracellular manganese sensor that initiates the homeostatic response against elevated manganese. Proc Natl Acad Sci U S A 2024; 121:e2402538121. [PMID: 38905240 PMCID: PMC11214094 DOI: 10.1073/pnas.2402538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.
Collapse
Affiliation(s)
- Kerem C. Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Eun Jeong Cho
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
| | - Walter Fast
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Kevin N. Dalby
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
6
|
Aschner M, Martins AC, Oliveira-Paula GH, Skalny AV, Zaitseva IP, Bowman AB, Kirichuk AA, Santamaria A, Tizabi Y, Tinkov AA. Manganese in autism spectrum disorder and attention deficit hyperactivity disorder: The state of the art. Curr Res Toxicol 2024; 6:100170. [PMID: 38737010 PMCID: PMC11088232 DOI: 10.1016/j.crtox.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Anatoly V. Skalny
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Anatoly A. Kirichuk
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Alexey A. Tinkov
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
7
|
Prajapati M, Zhang JZ, Chiu L, Chong GS, Mercadante CJ, Kowalski HL, Delaney B, Anderson JA, Guo S, Aghajan M, Bartnikas TB. Hepatic HIF2 is a key determinant of manganese excess and polycythemia in SLC30A10 deficiency. JCI Insight 2024; 9:e169738. [PMID: 38652538 PMCID: PMC11141921 DOI: 10.1172/jci.insight.169738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Grace S. Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Bradley Delaney
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jessica A. Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Hutchens S, Jursa TP, Melkote A, Grant SM, Smith DR, Mukhopadhyay S. Hepatic and intestinal manganese excretion are both required to regulate brain manganese during elevated manganese exposure. Am J Physiol Gastrointest Liver Physiol 2023; 325:G251-G264. [PMID: 37461848 PMCID: PMC10511180 DOI: 10.1152/ajpgi.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Thomas P Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Ashvini Melkote
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Stephanie M Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
10
|
Akhtar M, Trombetta LD. Low Level Mancozeb Exposure Causes Copper Bioaccumulation in the Renal Cortex of Rats Leading to Tubular Injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104148. [PMID: 37182728 DOI: 10.1016/j.etap.2023.104148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Mancozeb is a widely-used, broad-spectrum contact dithiocarbamate fungicide. Dithiocarbamates are known to trans-chelate metals. This study was designed to evaluate the potential of Mancozeb to mobilize and bioaccumulate essential trace metals in various tissues. Long-Evans rats were orally gavaged with 0, 50, or 100mg/kg/day of Mancozeb for 28 days. Mancozeb caused a significant increase in copper and manganese in the hippocampus and manganese in the liver. Exceedingly higher level of copper was detected in the renal cortex using ICP-OES in both dose groups. This was confirmed histologically in the tubular epithelial cells. In addition, copper-associated protein levels were also increased. Copper bioaccumulation in the renal cortex was accompanied by oxidative damage and tubular insult indicated by increased 4-HNE, KIM-1, and NGAL immunoreactivity. These findings demonstrate that low-dose Mancozeb exposure is a potential risk for kidney injury due to copper overload and warrants further in vivo and human population-based investigations.
Collapse
Affiliation(s)
- Mumtaz Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
11
|
Taylor CA, Grant SM, Jursa T, Melkote A, Fulthorpe R, Aschner M, Smith DR, Gonzales RA, Mukhopadhyay S. SLC30A10 manganese transporter in the brain protects against deficits in motor function and dopaminergic neurotransmission under physiological conditions. Metallomics 2023; 15:mfad021. [PMID: 36990693 PMCID: PMC10103839 DOI: 10.1093/mtomcs/mfad021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephanie M Grant
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Fulthorpe
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rueben A Gonzales
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Schneider SA, Tschaidse L, Reisch N. Thyroid Disorders and Movement Disorders-A Systematic Review. Mov Disord Clin Pract 2023; 10:360-368. [PMID: 36949803 PMCID: PMC10026317 DOI: 10.1002/mdc3.13656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Background There is overlap between movement disorders and neuroendocrine abnormalities. Objectives and methods To provide a systematic review on the association of thyroid dysfunction and movement disorders. Thyroid physiological function and classical thyroid disorders highlighting typical and atypical manifestations including movement disorders, as well as diagnostic procedures, and treatments are discussed. Results Hypothyroidism may be associated with hypokinetic and hyperkinetic disorders. There is debate whether their concomitance reflects a causal link, is coincidence, or the result of one unmasking the other. Hypothyroidism-associated parkinsonism may resemble idiopathic Parkinson's disease. Hypothyroidism-associated hyperkinetic disorders mainly occur in the context of steroid-responsive encephalopathy with autoimmune thyroiditis, that is, Hashimoto disease, mostly manifesting with tremor, myoclonus, and ataxia present in 28-80%, 42-65% and 33-65% in larger series. Congenital hypothyroidism manifesting with movement disorders, mostly chorea and dystonia, due to Mendelian genetic disease are rare.Hyperthyroidism on the other hand mostly manifests with hyperkinetic movement disorders, typically tremor (present in three quarters of patients). Chorea (present in about 2% of hyperthyroid patients), dystonia, myoclonus, ataxia and paroxysmal movement disorders, as well as parkinsonism have also been reported, with correlation between movement intensity and thyroid hormone levels.On a group level, studies on the role of thyroid dysfunction as a risk factor for the development of PD remain non-conclusive. Conclusions In view of the treatability of movement disorders associated with thyroid disease, accurate diagnosis is important. The pathophysiology remains poorly understood. More detailed case documentation and systematic studies, along with experimental studies are needed.
Collapse
Affiliation(s)
| | - Lea Tschaidse
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenMunichGermany
| | - Nicole Reisch
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenMunichGermany
| |
Collapse
|
13
|
Prajapati M, Zhang JZ, Mercadante CJ, Kowalski HL, Delaney B, Anderson JA, Guo S, Aghajan M, Bartnikas TB. Hypoxia-inducible factor 2 is a key determinant of manganese excess and polycythemia in SLC30A10 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529270. [PMID: 36865210 PMCID: PMC9980069 DOI: 10.1101/2023.02.20.529270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to severe manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess, but the basis of erythropoietin excess in SLC30A10 deficiency has yet to be established. Here we demonstrate that erythropoietin expression is increased in liver but decreased in kidneys in Slc30a10-deficient mice. Using pharmacologic and genetic approaches, we show that liver expression of hypoxia-inducible factor 2 (Hif2), a transcription factor that mediates the cellular response to hypoxia, is essential for erythropoietin excess and polycythemia in Slc30a10-deficient mice, while hypoxia-inducible factor 1 (HIF1) plays no discernible role. RNA-seq analysis determined that Slc30a10-deficient livers exhibit aberrant expression of a large number of genes, most of which align with cell cycle and metabolic processes, while hepatic Hif2 deficiency attenuates differential expression of half of these genes in mutant mice. One such gene downregulated in Slc30a10-deficient mice in a Hif2-dependent manner is hepcidin, a hormonal inhibitor of dietary iron absorption. Our analyses indicate that hepcidin downregulation serves to increase iron absorption to meet the demands of erythropoiesis driven by erythropoietin excess. Finally, we also observed that hepatic Hif2 deficiency attenuates tissue manganese excess, although the underlying cause of this observation is not clear at this time. Overall, our results indicate that HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Bradley Delaney
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Jessica A. Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
14
|
Gurol KC, Li D, Broberg K, Mukhopadhyay S. Manganese efflux transporter SLC30A10 missense polymorphism T95I associated with liver injury retains manganese efflux activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G78-G88. [PMID: 36414535 PMCID: PMC9829465 DOI: 10.1152/ajpgi.00213.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The activity of the manganese (Mn) efflux transporter SLC30A10 in the liver and intestines is critical for Mn excretion and preventing Mn toxicity. Homozygous loss-of-function mutations in SLC30A10 are a well-established cause of hereditary Mn toxicity. But, the relationship between more common SLC30A10 polymorphisms, Mn homeostasis, and disease is only recently emerging. In 2021, the first coding SNP in SLC30A10 (T95I) was associated with liver disease raising the hypothesis that the T95I substitution may induce disease by inhibiting the Mn efflux function of SLC30A10. Here, we test this hypothesis using structural, viability, and metal quantification approaches. Analyses of a predicted structure of SLC30A10 revealed that the side chain of T95 pointed away from the putative Mn-binding cavity, raising doubts about the impact of the T95I substitution on SLC30A10 function. In HeLa or HepG2 cells, overexpression of SLC30A10-WT or T95I resulted in comparable reductions of intracellular Mn levels and protection against Mn-induced cell death. Furthermore, ΔSLC30A10 HepG2 cells, generated using CRISPR/Cas9, exhibited elevated Mn levels and heightened sensitivity to Mn-induced cell death, and these phenotypic changes were similarly rescued by expression of SLC30A10-WT or T95I. Finally, turnover rates of SLC30A10-WT or T95I were also comparable. In summary, our results indicate that the Mn transport activity of SLC30A10-T95I is essentially comparable to the WT protein. Our findings imply that SLC30A10-T95I either has a complex association with liver injury that extends beyond the simple reduction in SLC30A10 activity or alternatively the T95I mutation lacks a causal role in liver disease.NEW & NOTEWORTHY This study demonstrates that the T95I polymorphism in the manganese transporter SLC30A10, which has been associated with liver disease in human GWAS studies, does not impact transporter function in cell culture. These findings raise doubts about the causal relationship of the T95I polymorphism with human disease and highlight the importance of validating GWAS findings using mechanistic approaches.
Collapse
Affiliation(s)
- Kerem C Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Danyang Li
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
15
|
Garg D, Yoganathan S, Shamim U, Mankad K, Gulati P, Bonifati V, Botre A, Kalane U, Saini AG, Sankhyan N, Srivastava K, Gowda VK, Juneja M, Kamate M, Padmanabha H, Panigrahi D, Pachapure S, Udani V, Kumar A, Pandey S, Thomas M, Danda S, Iqbalahmed SA, Subramanian A, Pemde H, Singh V, Faruq M, Sharma S. Clinical Profile and Treatment Outcomes of Hypermanganesemia with Dystonia 1 and 2 among 27 Indian Children. Mov Disord Clin Pract 2022; 9:886-899. [PMID: 36247901 PMCID: PMC9547147 DOI: 10.1002/mdc3.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Hypermanganesemia with dystonia 1 and 2 (HMNDYT1 and 2) are rare, inherited disorders of manganese transport. Objectives We aimed to describe clinical, laboratory features, and outcomes among children with HMNDYT. Methods We conducted a retrospective multicenter study involving tertiary centers across India. We enrolled children between 1 month to 18 years of age with genetically confirmed/clinically probable HMNDYT. Clinical, laboratory profile, genetic testing, treatment details, and outcomes scored by treating physicians on a Likert scale were recorded. Results We enrolled 27 children (19 girls). Fourteen harbored SLC30A10 mutations; nine had SLC39A14 mutations. The SLC39A14 cohort had lower median age at onset (1.3 [interquartile range (IQR), 0.7-5.5] years) versus SLC30A10 cohort (2.0 [IQR, 1.5-5.1] years). The most frequent neurological features were dystonia (100%; n = 27), gait abnormality (77.7%; n = 21), falls (66.7%; n = 18), and parkinsonism (59.3%; n = 16). Median serum manganese (Mn) levels among SLC39A14 (44.9 [IQR, 27.3-147.7] mcg/L) cohort were higher than SLC30A10 (29.4 [17.1-42.0] mcg/L); median hemoglobin was higher in SLC30A10 (16.3 [IQR, 15.2-17.5] g/dL) versus SLC39A14 cohort (12.5 [8.8-13.2] g/dL). Hepatic involvement and polycythaemia were observed exclusively in SLC30A10 variants. A total of 26/27 children underwent chelation with disodium calcium edetate. Nine demonstrated some improvement, three stabilized, two had marked improvement, and one had normalization. Children with SLC39A14 mutations had poorer response. Two children died and nine were lost to follow-up. Conclusions We found female predominance. Children with SLC39A14 mutations presented at younger age and responded less favorably to chelation compared to SLC30A10 mutations. There is emerging need to better define management strategies, especially in low resource settings.
Collapse
Affiliation(s)
- Divyani Garg
- Department of NeurologyLady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | | | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Parveen Gulati
- Department of RadiodiagnosisDoctor Gulati Imaging InstituteNew DelhiIndia
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | | | - Umesh Kalane
- Department of PediatricsDeenanath Mangeshkar HospitalPuneIndia
| | - Arushi Gahlot Saini
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Naveen Sankhyan
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kavita Srivastava
- Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Vykuntaraju K. Gowda
- Division of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - Monica Juneja
- Department of Pediatrics, Lok Nayak Hospital, Maulana Azad Medical CollegeUniversity of DelhiNew DelhiIndia
| | - Mahesh Kamate
- Child Development and Pediatric Neurology Division, Department of PediatricsKAHER's J N Medical CollegeBelgaumIndia
| | - Hansashree Padmanabha
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | - Shaila Pachapure
- Department of Pediatrics, KAHER's J N Medical CollegeBelgaumIndia
| | - Vrajesh Udani
- Department of Child NeurologyPD Hinduja Hospital and Medical Research CentreMumbaiIndia
| | - Atin Kumar
- Department of RadiodiagnosisAll India Institute of Medical SciencesNew DelhiIndia
| | - Sanjay Pandey
- Department of NeurologyGovind Ballabh Pant Institute of Postgraduate medical education and researchNew DelhiIndia
| | - Maya Thomas
- Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Sumita Danda
- Department of Clinical GeneticsChristian Medical CollegeVelloreIndia
| | | | | | - Harish Pemde
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Varinder Singh
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Suvasini Sharma
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| |
Collapse
|
16
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
17
|
Błażewicz A, Grywalska E, Macek P, Mertowska P, Mertowski S, Wojnicka J, Durante N, Makarewicz A. Research into the Association of Cadmium and Manganese Excretion with Thyroid Function and Behavioral Areas in Adolescents with Autism Spectrum Disorders. J Clin Med 2022; 11:jcm11030579. [PMID: 35160030 PMCID: PMC8837100 DOI: 10.3390/jcm11030579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Thyroid dysfunction and toxic metal exposure have been linked to the increased risk of autism spectrum disorders (ASD); however, the relationship between those factors remains unclear. We aimed to evaluate the relationship between the serum level of hormones, namely thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), and urinary cadmium (U-Cd) and urinary manganese (U-Mn), in patients with ASD. The study group consisted of 129 adolescents with ASD, and the control group consisted of 86 healthy persons. Ion chromatography with spectrophotometric detection (IC-UV/ViS) was used to quantitatively determine Cd and Mn in all 24-h urine samples. These results indicate that severity of certain symptoms in autism is associated with thyroid function. Correlation analysis between Childhood Autism Rating Scale (CARS) results and the content of both U-Mn and U-Cd as well as fT3, fT4 and TSH values in ASD patients showed significantly positive correlation of CARS7 (visual reaction) with fT3 and fT4 and a negative correlation with TSH for the whole study group. In the group of adolescents over 14 years of age, it was also observed that CARS10 (anxiety reaction) negatively correlates with serum TSH levels, and among younger individuals, CARS9 (near receptor responsiveness, taste, smell) positively correlates with TSH.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (N.D.)
- Correspondence: ; Tel.: +48-81448-7300
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (P.M.); (S.M.)
| | - Paweł Macek
- Department of Oncology, Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 25-713 Kielce, Poland;
- Department of Epidemiology and Cancer Control, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (P.M.); (S.M.)
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (N.D.)
| | - Nicolo Durante
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (N.D.)
| | - Agata Makarewicz
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland;
| |
Collapse
|
18
|
Gurol KC, Aschner M, Smith DR, Mukhopadhyay S. Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. Am J Physiol Gastrointest Liver Physiol 2022; 322:G79-G92. [PMID: 34786983 PMCID: PMC8714252 DOI: 10.1152/ajpgi.00299.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The essential metal manganese (Mn) induces incurable neurotoxicity at elevated levels that manifests as parkinsonism in adults and fine motor and executive function deficits in children. Studies on Mn neurotoxicity have largely focused on the role and mechanisms of disease induced by elevated Mn exposure from occupational or environmental sources. In contrast, the critical role of excretion in regulating Mn homeostasis and neurotoxicity has received less attention although 1) studies on Mn excretion date back to the 1920s; 2) elegant radiotracer Mn excretion assays in the 1940s to 1960s established the routes of Mn excretion; and 3) studies on patients with liver cirrhosis in the 1990s to 2000s identified an association between decreased Mn excretion and the risk of developing Mn-induced parkinsonism in the absence of elevated Mn exposure. Notably, the last few years have seen renewed interest in Mn excretion largely driven by the discovery that hereditary Mn neurotoxicity due to mutations in SLC30A10 or SLC39A14 is caused, at least in part, by deficits in Mn excretion. Quite remarkably, some of the recent results on SLC30A10 and SLC39A14 provide explanations for observations made ∼40-50 years ago. The goal of the current review is to integrate the historic studies on Mn excretion with more contemporary recent work and provide a comprehensive state-of-the-art overview of Mn excretion and its role in regulating Mn homeostasis and neurotoxicity. A related goal is to discuss the significance of some of the foundational studies on Mn excretion so that these highly consequential earlier studies remain influential in the field.
Collapse
Affiliation(s)
- Kerem C. Gurol
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Michael Aschner
- 2Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Donald R. Smith
- 3Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Somshuvra Mukhopadhyay
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
19
|
Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors defines a homeostatic response to manganese toxicity. Proc Natl Acad Sci U S A 2021; 118:2107673118. [PMID: 34446561 DOI: 10.1073/pnas.2107673118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity-elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.
Collapse
|
20
|
Prajapati M, Conboy HL, Hojyo S, Fukada T, Budnik B, Bartnikas TB. Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14. J Biol Chem 2021; 297:100835. [PMID: 34051234 PMCID: PMC8214222 DOI: 10.1016/j.jbc.2021.100835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown. Here we investigated the role of metal transporters SLC39A14 and SLC30A10 in biliary iron excretion. While SLC39A14 imports manganese into the liver and other organs under physiological conditions, it imports iron under conditions of iron excess. SLC30A10 exports manganese from hepatocytes into the bile. We hypothesized that biliary excretion of excess iron would be impaired by SLC39A14 and SLC30A10 deficiency. We therefore analyzed biliary iron excretion in Slc39a14-and Slc30a10-deficient mice raised on iron-sufficient and -rich diets. Bile was collected surgically from the mice, then analyzed with nonheme iron assays, mass spectrometry, ELISAs, and an electrophoretic assay for iron-loaded ferritin. Our results support a model in which biliary excretion of excess iron requires iron import into hepatocytes by SLC39A14, followed by iron export into the bile predominantly as ferritin, with iron export occurring independently of SLC30A10. To our knowledge, this is the first report of a molecular determinant of mammalian iron excretion and can serve as basis for future investigations into mechanisms of iron excretion and relevance to iron homeostasis.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L Conboy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Toshiyuki Fukada
- Department of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
21
|
Wu Y, Wei G, Zhao N. Restriction of Manganese Intake Prevents the Onset of Brain Manganese Overload in Zip14-/- Mice. Int J Mol Sci 2021; 22:ijms22136773. [PMID: 34202493 PMCID: PMC8268934 DOI: 10.3390/ijms22136773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
As a newly identified manganese transport protein, ZIP14 is highly expressed in the small intestine and liver, which are the two principal organs involved in regulating systemic manganese homeostasis. Loss of ZIP14 function leads to manganese overload in both humans and mice. Excess manganese in the body primarily affects the central nervous system, resulting in irreversible neurological disorders. Therefore, to prevent the onset of brain manganese accumulation becomes critical. In this study, we used Zip14−/− mice as a model for ZIP14 deficiency and discovered that these mice were born without manganese loading in the brain, but started to hyper-accumulate manganese within 3 weeks after birth. We demonstrated that decreasing manganese intake in Zip14−/− mice was effective in preventing manganese overload that typically occurs in these animals. Our results provide important insight into future studies that are targeted to reduce the onset of manganese accumulation associated with ZIP14 dysfunction in humans.
Collapse
|
22
|
Prajapati M, Pettiglio MA, Conboy HL, Mercadante CJ, Hojyo S, Fukada T, Bartnikas TB. Characterization of in vitro models of SLC30A10 deficiency. Biometals 2021; 34:573-588. [PMID: 33713241 DOI: 10.1007/s10534-021-00296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux transporter. To explore the function of SLC30A10 in vitro, the current study used CRISPR/Cas9 gene editing to develop a stable SLC30A10 mutant Hep3B hepatoma cell line and collagenase perfusion in live mice to isolate primary hepatocytes deficient in Slc30a10. We also compared phenotypes of primary vs. non-primary cell lines to determine if they both serve as reliable in vitro models for the known physiological roles of SLC30A10. Mutant SLC30A10 Hep3B cells had increased Mn levels and decreased viability when exposed to excess Mn. Transport studies indicated a reduction of 54Mn import and export in mutant cells. While impaired 54Mn export was hypothesized given the essential role for SLC30A10 in cellular Mn export, impaired 54Mn import was unexpected. Whole genome sequencing did not identify any additional mutations in known Mn transporters in the mutant Hep3B mutant cell line. We then evaluated 54Mn transport in primary hepatocytes cultures isolated from genetically altered mice with varying liver Mn levels. Based on results from these experiments, we suggest that the effects of SLC30A10 deficiency on Mn homeostasis can be interrogated in vitro but only in specific types of cell lines.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.
| | - Michael A Pettiglio
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.,Vor Biopharma, Cambridge, MA, USA
| | - Heather L Conboy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Courtney J Mercadante
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.,Sanofi-Bioverativ, Waltham, MA, USA
| | - Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, 10117, Berlin, Germany.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
23
|
Kapoor D, Garg D, Sharma S, Goyal V. Inherited Manganese Disorders and the Brain: What Neurologists Need to Know. Ann Indian Acad Neurol 2021; 24:15-21. [PMID: 33911374 PMCID: PMC8061520 DOI: 10.4103/aian.aian_789_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/04/2022] Open
Abstract
Although acquired manganese neurotoxicity has been widely reported since its first description in 1837 and is popularly referred to as "manganism," inherited disorders of manganese homeostasis have received the first genetic signature as recently as 2012. These disorders, predominantly described in children and adolescents, involve mutations in three manganese transporter genes, i.e., SLC30A10 and SLC39A14 which lead to manganese overload, and SLC39A8, which leads to manganese deficiency. Both disorders of inherited hypermanganesemia typically exhibit dystonia and parkinsonism with relatively preserved cognition and are differentiated by the occurrence of polycythemia and liver involvement in the SLC30A10-associated condition. Mutations in SLC39A8 lead to a congenital disorder of glycosylation which presents with developmental delay, failure to thrive, intellectual impairment, and seizures due to manganese deficiency. Chelation with iron supplementation is the treatment of choice in inherited hypermanganesemia. In this review, we highlight the pathognomonic clinical, laboratory, imaging features and treatment modalities for these rare disorders.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Vinay Goyal
- Institute of Neurosciences, Medanta Medicity, Gurgaon, Haryana, India
| |
Collapse
|
24
|
Li S, De La Cruz J, Hutchens S, Mukhopadhyay S, Criss ZK, Aita R, Pellon-Cardenas O, Hur J, Soteropoulos P, Husain S, Dhawan P, Verlinden L, Carmeliet G, Fleet JC, Shroyer NF, Verzi MP, Christakos S. Analysis of 1,25-Dihydroxyvitamin D 3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol Cell Biol 2020; 41:e00372-20. [PMID: 33139494 PMCID: PMC7849401 DOI: 10.1128/mcb.00372-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rohit Aita
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Joseph Hur
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
25
|
Iron and manganese transport in mammalian systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118890. [PMID: 33091506 DOI: 10.1016/j.bbamcr.2020.118890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Studies in recent years have significantly expanded, refined, and redefined the repertoire of transporters and other proteins involved in iron and manganese (Mn) transport and homeostasis. In this review, we discuss highlights of the recent literature on iron and Mn transport, focusing on the roles of membrane transporters and related proteins. Studies are considered from the vantage point of main organs, tissues, and cell types that actively control whole-body iron or Mn homeostasis, with emphasis on studies in which in vivo metal transport was measured directly or implicated by using knockout mouse models. Overviews of whole-body and cellular iron and Mn homeostasis are also provided to give physiological context for key transporters and to highlight how they participate in the uptake, intracellular trafficking, and efflux of each metal. Important similarities and differences in iron and Mn transport are noted, and future research opportunities and challenges are identified.
Collapse
|
26
|
Santhakumar S, Lukas J, Unnikrishnan G, Thomas B, Kesavadas C. Treatable Hereditary Manganese Transport Disorder: Novel SLC30A10 Mutation and its Characteristic Neuroimaging Appearance in Two Siblings. J Pediatr Genet 2020; 10:305-310. [PMID: 34849276 DOI: 10.1055/s-0040-1713853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Hypermanganesemia with dystonia and polycythemia along with liver cirrhosis is a rare syndromic complex that is associated with a characteristic genetic mutation and a typical appearance in the T1-weighted noncontrast image. In this article, we reported the neuroimaging findings of two siblings affected by this syndrome. There are few reported cases in literature with similar findings. Diagnosing this problem will help in improving the outcomes as the condition is treatable. We reviewed the clinical and imaging findings of this condition and the differential diagnosis related to it.
Collapse
Affiliation(s)
- Senthilvelan Santhakumar
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Jospaul Lukas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Bejoy Thomas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Chandrasekharan Kesavadas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
27
|
Ahmad TR, Higuchi S, Bertaggia E, Hung A, Shanmugarajah N, Guilz NC, Gamarra JR, Haeusler RA. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J Biol Chem 2020; 295:12545-12558. [PMID: 32690612 DOI: 10.1074/jbc.ra120.012792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) comprise heterogenous amphipathic cholesterol-derived molecules that carry out physicochemical and signaling functions. A major site of BA action is the terminal ileum, where enterocytes actively reuptake BAs and express high levels of BA-sensitive nuclear receptors. BA pool size and composition are affected by changes in metabolic health, and vice versa. One of several factors that differentiate BAs is the presence of a hydroxyl group on C12 of the steroid ring. 12α-Hydroxylated BAs (12HBAs) are altered in multiple disease settings, but the consequences of 12HBA abundance are incompletely understood. We employed mouse primary ileum organoids to investigate the transcriptional effects of varying 12HBA abundance in BA pools. We identified Slc30a10 as one of the top genes differentially induced by BA pools with varying 12HBA abundance. SLC30A10 is a manganese efflux transporter critical for whole-body manganese excretion. We found that BA pools, especially those low in 12HBAs, induce cellular manganese efflux and that Slc30a10 induction by BA pools is driven primarily by lithocholic acid signaling via the vitamin D receptor. Administration of lithocholic acid or a vitamin D receptor agonist resulted in increased Slc30a10 expression in mouse ileum epithelia. These data demonstrate a previously unknown role for BAs in intestinal control of manganese homeostasis.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sei Higuchi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Enrico Bertaggia
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Allison Hung
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Nicole C Guilz
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jennifer R Gamarra
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA .,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Taylor CA, Shawlot W, Ren JX, Mukhopadhyay S. Generation and Validation of Tissue-Specific Knockout Strains for Toxicology Research. ACTA ACUST UNITED AC 2020; 81:e86. [PMID: 31529798 DOI: 10.1002/cptx.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue-specific knockout mice are widely used throughout scientific research. A principle method for generating tissue-specific knockout mice is the Cre-loxP system. Here, we give a detailed description of the steps required to generate and validate tissue-specific knockout mice using the Cre-loxP system. The first protocol describes how to use gene targeting in mouse embryonic stem cells to generate mice with conditional alleles. Subsequent protocols describe how to recover Cre transgenic mice from cryopreserved sperm using in vitro fertilization and present a breeding strategy for obtaining tissue-specific knockouts. Finally, methods are provided for validating the knockout mice using PCR of genomic DNA, reverse-transcription PCR and quantitative reverse-transcription PCR of mRNA, and immunoblot analysis of proteins. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology and Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - William Shawlot
- Mouse Genetic Engineering Facility, University of Texas at Austin, Austin, Texas
| | - Jin Xiang Ren
- Mouse Genetic Engineering Facility, University of Texas at Austin, Austin, Texas
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology and Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
29
|
Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varão AM, Aschner M, Smith DR, Mukhopadhyay S. Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. J Nutr 2020; 150:1360-1369. [PMID: 32211802 PMCID: PMC7269748 DOI: 10.1093/jn/nxaa066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Karin Tuschl
- Department of Cell and Developmental Biology, University College London, London, United Kingdom,Department of Developmental Neurobiology, King's College London, London, United Kingdom,Address correspondence to KT (e-mail: )
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami-LIKA, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Postgraduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Alexandre M Varão
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA,Address correspondence to SM (e-mail: )
| |
Collapse
|
30
|
Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 2020; 295:6312-6329. [PMID: 32188696 PMCID: PMC7212623 DOI: 10.1074/jbc.rev119.009453] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.
Collapse
Affiliation(s)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Danielle McBride
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jennifer Veevers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Erin N Haynes
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
31
|
Winslow JW, Limesand KH, Zhao N. The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. Int J Mol Sci 2020; 21:ijms21093304. [PMID: 32392784 PMCID: PMC7246657 DOI: 10.3390/ijms21093304] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
As an essential nutrient, manganese is required for the regulation of numerous cellular processes, including cell growth, neuronal health, immune cell function, and antioxidant defense. However, excess manganese in the body is toxic and produces symptoms of neurological and behavioral defects, clinically known as manganism. Therefore, manganese balance needs to be tightly controlled. In the past eight years, mutations of genes encoding metal transporters ZIP8 (SLC39A8), ZIP14 (SLC39A14), and ZnT10 (SLC30A10) have been identified to cause dysregulated manganese homeostasis in humans, highlighting the critical roles of these genes in manganese metabolism. This review focuses on the most recent advances in the understanding of physiological functions of these three identified manganese transporters and summarizes the molecular mechanisms underlying how the loss of functions in these genes leads to impaired manganese homeostasis and human diseases.
Collapse
|
32
|
Li D, Mukhopadhyay S. Functional analyses of the UDP-galactose transporter SLC35A2 using the binding of bacterial Shiga toxins as a novel activity assay. Glycobiology 2020; 29:490-503. [PMID: 30834435 DOI: 10.1093/glycob/cwz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023] Open
Abstract
SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
33
|
Mercadante CJ, Prajapati M, Conboy HL, Dash ME, Herrera C, Pettiglio MA, Cintron-Rivera L, Salesky MA, Rao DB, Bartnikas TB. Manganese transporter Slc30a10 controls physiological manganese excretion and toxicity. J Clin Invest 2019; 129:5442-5461. [PMID: 31527311 PMCID: PMC6877324 DOI: 10.1172/jci129710] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals who work in industrial settings. The first known disease of inherited Mn excess, identified in 2012, is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia. To investigate the role of SLC30A10 in Mn homeostasis, we first generated whole-body Slc30a10-deficient mice, which developed severe Mn excess and impaired systemic and biliary Mn excretion. Slc30a10 localized to canalicular membranes of hepatocytes, but mice with liver Slc30a10 deficiency developed minimal Mn excess despite impaired biliary Mn excretion. Slc30a10 also localized to the apical membrane of enterocytes, but mice with Slc30a10 deficiency in small intestines developed minimal Mn excess despite impaired Mn export into the lumen of the small intestines. Finally, mice with Slc30a10 deficiency in liver and small intestines developed Mn excess that was less severe than that observed in mice with whole-body Slc30a10 deficiency, suggesting that additional sites of Slc30a10 expression contribute to Mn homeostasis. Overall, these results indicated that Slc30a10 is essential for Mn excretion by hepatocytes and enterocytes and could be an effective target for pharmacological intervention to treat Mn toxicity.
Collapse
Affiliation(s)
- Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L. Conboy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Miriam E. Dash
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Carolina Herrera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Michael A. Pettiglio
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Layra Cintron-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Madeleine A. Salesky
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Deepa B. Rao
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
34
|
Thompson KJ, Wessling-Resnick M. ZIP14 is degraded in response to manganese exposure. Biometals 2019; 32:829-843. [PMID: 31541377 PMCID: PMC7755095 DOI: 10.1007/s10534-019-00216-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
Abstract
Manganese (Mn) is an essential element necessary for proper development and brain function. Circulating Mn levels are regulated by hepatobiliary clearance to limit toxic levels and prevent tissue deposition. To characterize mechanisms involved in hepatocyte Mn uptake, polarized human HepaRG cells were used for this study. Western blot analysis and immunofluorescence microscopy showed the Mn transporter ZIP14 was expressed and localized to the basolateral surface of polarized HepaRG cells. HepaRG cells took up 54Mn in a time- and temperature-dependent manner but uptake was reduced after exposure to Mn. This loss in transport activity was associated with decreased ZIP14 protein levels in response to Mn exposure. Mn-induced degradation of ZIP14 was blocked by bafilomycin A1, which increased localization of the transporter in Lamp1-positive vesicles. Mn exposure also down-regulated the Golgi proteins TMEM165 and GPP130 while the ER stress marker BiP was induced. These results indicate that Mn exposure decreases ZIP14 protein levels to limit subsequent uptake of Mn as a cytoprotective response. Thus, high levels of Mn may compromise first-pass-hepatic clearance mechanisms.
Collapse
Affiliation(s)
- Khristy J Thompson
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
35
|
Steimle BL, Smith FM, Kosman DJ. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 2019; 294:19197-19208. [PMID: 31699897 DOI: 10.1074/jbc.ra119.009371] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Manganese supports numerous neuronal functions but in excess is neurotoxic. Consequently, regulation of manganese flux at the blood-brain barrier (BBB) is critical to brain homeostasis. However, the molecular pathways supporting the transcellular trafficking of divalent manganese ions within the microvascular capillary endothelial cells (BMVECs) that constitute the BBB have not been examined. In this study, we have determined that ZIP8 and ZIP14 (Zrt- and Irt-like proteins 8 and 14) support Mn2+ uptake by BMVECs and that neither DMT1 nor an endocytosis-dependent pathway play any significant role in Mn2+ uptake. Specifically, siRNA-mediated knockdown of ZIP8 and ZIP14 coincided with a decrease in manganese uptake, and kinetic analyses revealed that manganese uptake depends on pH and bicarbonate and is up-regulated by lipopolysaccharide, all biochemical markers of ZIP8 or ZIP14 activity. Mn2+ uptake also was associated with cell-surface membrane presentation of ZIP8 and ZIP14, as indicated by membrane protein biotinylation. Importantly, surface ZIP8 and ZIP14 biotinylation and Mn2+-uptake experiments together revealed that these transporters support manganese uptake at both the apical, blood and basal, brain sides of BMVECs. This indicated that in the BMVECs of the BBB, these two transporters support a bidirectional Mn2+ flux. We conclude that BMVECs play a critical role in controlling manganese homeostasis in the brain.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| |
Collapse
|
36
|
Felber DM, Wu Y, Zhao N. Regulation of the Metal Transporters ZIP14 and ZnT10 by Manganese Intake in Mice. Nutrients 2019; 11:E2099. [PMID: 31487869 PMCID: PMC6770778 DOI: 10.3390/nu11092099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023] Open
Abstract
The metal transporters ZIP14 and ZnT10 play key physiological roles in maintaining manganese (Mn) homeostasis. However, in vivo regulation of these two transporters by Mn is not understood. Here, we examined how dietary Mn intake regulates ZIP14 and ZnT10 by feeding mice a low-Mn diet, a control diet, or a high-Mn diet for 6 weeks. Inductively coupled plasma mass spectrometry was used to measure Mn and iron (Fe) levels. ZIP14 and ZnT10 protein levels were measured by western blot analysis. While mice on the high-Mn diet exhibited significantly higher levels of Mn in the blood, liver, and brain, the low-Mn diet group did not display matching reductions, indicating that high Mn intake is more effective in disrupting Mn homeostasis in mice. Additionally, Fe levels were only slightly altered, suggesting independent transport mechanisms for Mn and Fe. In the high-Mn diet group, ZIP14 and ZnT10 were both upregulated in the liver, as well as in the small intestine, indicating a coordinated role for these transporters in Mn excretion. Unexpectedly, this upregulation only occurred in male mice, with the exception of hepatic ZIP14, providing new insight into mechanisms behind widely observed sex differences in Mn homeostasis.
Collapse
Affiliation(s)
- Danielle M Felber
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Yuze Wu
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ningning Zhao
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
37
|
Zogzas CE, Mukhopadhyay S. Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters. Metallomics 2019; 10:1053-1064. [PMID: 29989630 DOI: 10.1039/c8mt00115d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SLC30 proteins belong to the cation diffusion facilitator (CDF) superfamily of metal transporters. SLC30A10 mediates manganese efflux, while other SLC30 members transport zinc. Metal specificity of CDFs may be conferred by amino acids that form a transmembrane metal binding site (Site A). Site A of zinc-transporting CDFs, such as SLC30A1/ZnT1, have a HXXXD motif, but manganese transporters, such as SLC30A10, harbor a NXXXD motif. This critical histidine-to-asparagine substitution, at residue 43, was proposed to underlie manganese transport specificity of SLC30A10. However, we recently discovered that asparagine-43 was dispensable for manganese efflux in HeLa cells; instead, glutamate-25, aspartate-40, asparagine-127, and aspartate-248 were required. In contrast, another group reported that asparagine-43 was required in a chicken cell line. The goal of this study was to resolve the divergent results about the requirement of the crucial asparagine-43 residue. For this, we compared the manganese efflux activity of four cell types that stably over-expressed SLC30A10wild-type (WT), SLC30A10N43A or SLC30A10E25A: physiologically-relevant hepatic HepG2 and neuronal AF5 cells, HEK cells, and embryonic fibroblasts from Slc30a10-/- mice. In all cell types, manganese efflux activity of SLC30A10N43A was comparable to WT, while SLC30A10E25A lacked activity. Importantly, unlike SLC30A10, the histidine residue of the HXXXD motif of SLC30A1/ZnT1 was required for zinc transport. These results imply that the mechanisms of ion coordination within the transmembrane domain of SLC30A10 substantially differ from previously-studied CDFs, suggest that factors beyond Site A residues may confer metal specificity to CDFs, and improve understanding of the pathobiology of manganese toxicity due to mutations in SLC30A10.
Collapse
Affiliation(s)
- Charles E Zogzas
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, 3.510E BME, 107 W. Dean Keeton, Austin, TX 78712, USA.
| | | |
Collapse
|
38
|
Scheiber IF, Alarcon NO, Zhao N. Manganese Uptake by A549 Cells is Mediated by Both ZIP8 and ZIP14. Nutrients 2019; 11:nu11071473. [PMID: 31261654 PMCID: PMC6682971 DOI: 10.3390/nu11071473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
The alveolar epithelia of the lungs require manganese (Mn) as an essential nutrient, but also provide an entry route for airborne Mn that can cause neurotoxicity. Transporters involved in Mn uptake by alveolar epithelial cells are unknown. Recently, two members of the Zrt- and Irt-like protein (ZIP) family of metal transporters, ZIP8 and ZIP14, have been identified as crucial Mn importers in vivo. ZIP8 is by far most abundantly expressed in the lungs, whereas ZIP14 expression in the lungs is low compared to other tissues. We hypothesized that Mn uptake by alveolar epithelial cells is primarily mediated by ZIP8. To test our hypothesis, we used A549 cells, a type II alveolar cell line. Mirroring the in vivo situation, A549 cells expressed higher levels of ZIP8 than cell models for the liver, intestines, and kidney. Quantification of ZIP8 and ZIP14 revealed a strong enrichment of ZIP8 over ZIP14 in A549 cells. Using siRNA technology, we identified ZIP8 and ZIP14 as the major transporters mediating Mn uptake by A549 cells. To our surprise, knockdown of either ZIP8 or ZIP14 impaired Mn accumulation to a similar extent, which we traced back to similar amounts of ZIP8 and ZIP14 at the plasma membrane. Our study highlights the importance of both ZIP8 and ZIP14 in Mn metabolism of alveolar epithelial cells.
Collapse
Affiliation(s)
- Ivo F Scheiber
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Ningning Zhao
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
39
|
Selyunin AS, Hutchens S, McHardy SF, Mukhopadhyay S. Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis. Life Sci Alliance 2019; 2:2/3/e201900439. [PMID: 31243048 PMCID: PMC6599968 DOI: 10.26508/lsa.201900439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
This study reports an unexpected role of late endosome–lysosome fusion in early endosome-to-Golgi trafficking of Shiga toxins and identifies tamoxifen to be a potent inhibitor of Shiga toxicosis. Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin–producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin–producing E. coli infections.
Collapse
Affiliation(s)
- Andrey S Selyunin
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
40
|
Gordon SJV, Fenker DE, Vest KE, Padilla-Benavides T. Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. Metallomics 2019; 11:1140-1153. [PMID: 31086870 PMCID: PMC6584035 DOI: 10.1039/c8mt00348c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace elements such as copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) function as enzyme cofactors and second messengers in cell signaling. Trace elements are emerging as key regulators of differentiation and development of mammalian tissues including blood, brain, and skeletal muscle. We previously reported an influx of Cu and dynamic expression of metal transporters during differentiation of skeletal muscle cells. Here, we demonstrate that during differentiation of skeletal myoblasts an increase of Mn, Fe and Zn also occurs. Interestingly the Mn increase is concomitant with increased Mn-dependent SOD2 levels. To better understand the Mn import pathway in skeletal muscle cells, we probed the functional relevance of the closely related proteins ZIP8 and ZIP14, which are implicated in Zn, Mn, and Fe transport. Partial depletion of ZIP8 severely impaired growth of myoblasts and led to cell death under differentiation conditions, indicating that ZIP8-mediated metal transport is essential in skeletal muscle cells. Moreover, knockdown of Zip8 impaired activity of the Mn-dependent SOD2. Growth defects were partially rescued only by Mn supplementation to the medium, suggesting additional functions for ZIP8 in the skeletal muscle lineage. Restoring wild type Zip8 into the knockdown cells rescued the proliferation and differentiation phenotypes. On the other hand, knockdown of Zip14, had only a mild effect on myotube size, consistent with a role for ZIP14 in muscle hypertrophy. Simultaneous knockdown of both Zip8 and Zip14 further impaired differentiation and led cell death. This is the first report on the functional relevance of two members of the ZIP family of metal transporters in the skeletal muscle lineage, and further supports the paradigm that trace metal transporters are important modulators of mammalian tissue development.
Collapse
Affiliation(s)
- Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| | - Daniel E. Fenker
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| |
Collapse
|
41
|
Scheiber IF, Wu Y, Morgan SE, Zhao N. The intestinal metal transporter ZIP14 maintains systemic manganese homeostasis. J Biol Chem 2019; 294:9147-9160. [PMID: 31028174 PMCID: PMC6556583 DOI: 10.1074/jbc.ra119.008762] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
ZIP14 (encoded by the solute carrier 39 family member 14 (SLC39A14) gene) is a manganese transporter that is abundantly expressed in the liver and small intestine. Loss-of-function mutations in SLC39A14 cause severe hypermanganesemia. Because the liver is regarded as the main regulatory organ involved in manganese homeostasis, impaired hepatic manganese uptake for subsequent biliary excretion has been proposed as the underlying disease mechanism. However, liver-specific Zip14 KO mice exhibit decreased manganese only in the liver and do not develop manganese accumulation in other tissues under normal conditions. This suggests that impaired hepatobiliary excretion is not the primary cause for manganese overload observed in individuals lacking functional ZIP14. We therefore hypothesized that increased intestinal manganese absorption could induce manganese hyperaccumulation when ZIP14 is inactivated. To elucidate the role of ZIP14 in manganese absorption, here we used CaCo-2 Transwell cultures as a model system for intestinal epithelia. The generation of a ZIP14-deficient CaCo-2 cell line enabled the identification of ZIP14 as the major transporter mediating basolateral manganese uptake in enterocytes. Lack of ZIP14 severely impaired basolateral-to-apical (secretory) manganese transport and strongly enhanced manganese transport in the apical-to-basolateral (absorptive) direction. Mechanistic studies provided evidence that ZIP14 restricts manganese transport in the absorptive direction via direct basolateral reuptake of freshly absorbed manganese. In support of such function of intestinal ZIP14 in vivo, manganese levels in the livers and brains of intestine-specific Zip14 KO mice were significantly elevated. Our findings highlight the importance of intestinal ZIP14 in regulating systemic manganese homeostasis.
Collapse
Affiliation(s)
- Ivo Florin Scheiber
- From the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Yuze Wu
- From the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | | | - Ningning Zhao
- From the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
42
|
Abstract
Purpose of Review This article provides an overview of the pathogenesis, clinical presentation and treatment of inherited manganese transporter defects. Recent Findings Identification of a new group of manganese transportopathies has greatly advanced our understanding of how manganese homeostasis is regulated in vivo. While the manganese efflux transporter SLC30A10 and the uptake transporter SLC39A14 work synergistically to reduce the manganese load, SLC39A8 has an opposing function facilitating manganese uptake into the organism. Bi-allelic mutations in any of these transporter proteins disrupt the manganese equilibrium and lead to neurological disease: Hypermanganesaemia with dystonia 1 (SLC30A10 deficiency) and hypermanganesaemia with dystonia 2 (SLC39A14 deficiency) are characterised by manganese neurotoxicity while SLC39A8 mutations cause a congenital disorder of glycosylation type IIn due to Mn deficiency. Summary Inherited manganese transporter defects are an important differential diagnosis of paediatric movement disorders. Manganese blood levels and MRI brain are diagnostic and allow early diagnosis to avoid treatment delay.
Collapse
Affiliation(s)
- S Anagianni
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK
| | - K Tuschl
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK. .,Department of Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK. .,UCL GOS Institute of Child Health, 30 Guilford Street, London,, WC1N 1EH, UK.
| |
Collapse
|
43
|
Dos Santos NR, Rodrigues JLG, Bandeira MJ, Anjos ALDS, Araújo CDFS, Adan LFF, Menezes-Filho JA. Manganese exposure and association with hormone imbalance in children living near a ferro-manganese alloy plant. ENVIRONMENTAL RESEARCH 2019; 172:166-174. [PMID: 30782536 DOI: 10.1016/j.envres.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
It has been suggested that manganese (Mn) plays a fundamental role in the reproductive system through interference with the regulation of the secretion of hormones related to puberty. The objective of this study was to evaluate the environmental exposure to Mn and its effects on the endocrine regulation of hormones related to puberty in school-aged children living near a ferro-manganese alloy plant. Toenails, occipital hair, and blood samples were collected from 225 children, between 7 and 12 years of age, in four elementary schools in Simões Filho, Bahia, Brazil, who were exposed to different Mn levels owing to different Mn dust deposition rates. The Mn content was determined in the toenails (MnTn), hair (MnH), and blood (MnB), in addition to blood lead levels (PbB), by using graphite furnace atomic absorption spectrometry. Luteinizing hormone (LH), prolactin (PRL), estradiol (E2), testosterone (T), and thyroid stimulating hormone (TSH) levels were determined by using a chemiluminescence method. Of the total participants, 50.2% were boys, with an average age of 9 years. PRL values were higher in children attending the school with a higher Mn deposition rate (p < 0.004). We observed that MnTn was positively correlated with PRL levels and exhibited a non-linear association with LH levels. None of the tested Mn biomarkers were associated with E2, T, or TSH levels. To date, despite several animal studies that have focused on the correlation between Mn exposure and the endocrine regulation of hormones and pubertal development, very few studies have reported a similar relationship between environmental Mn effects and the human endocrine system. Our findings support the hypothesis that elevated exposure to Mn in children may be associated with hormonal imbalances that might trigger the early onset of puberty.
Collapse
Affiliation(s)
- Nathália R Dos Santos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Juliana L G Rodrigues
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Matheus J Bandeira
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Ana Laura Dos S Anjos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil.
| | - Cecília de Freitas S Araújo
- Environmental and Public Health Program, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Brazil.
| | - Luis Fernando F Adan
- Graduate Program in Medicine and Health, School of Medicine, Federal University of Bahia, Brazil.
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| |
Collapse
|
44
|
Peres TV, Horning KJ, Bornhorst J, Schwerdtle T, Bowman AB, Aschner M. Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo. Biol Trace Elem Res 2019; 188:127-134. [PMID: 30267310 PMCID: PMC6438193 DOI: 10.1007/s12011-018-1531-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022]
Abstract
Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30 min followed by co-exposure for 1 h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.
Collapse
Affiliation(s)
- Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kyle J Horning
- Department of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| | - Julia Bornhorst
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Tanja Schwerdtle
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Aaron B Bowman
- Department of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
- School of Health Science, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
45
|
Carmona A, Zogzas CE, Roudeau S, Porcaro F, Garrevoet J, Spiers KM, Salomé M, Cloetens P, Mukhopadhyay S, Ortega R. SLC30A10 Mutation Involved in Parkinsonism Results in Manganese Accumulation within Nanovesicles of the Golgi Apparatus. ACS Chem Neurosci 2019; 10:599-609. [PMID: 30272946 DOI: 10.1021/acschemneuro.8b00451] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manganese (Mn) is an essential metal that can be neurotoxic when elevated exposition occurs leading to parkinsonian-like syndromes. Mutations in the Slc30a10 gene have been identified in new forms of familial parkinsonism. SLC30A10 is a cell surface protein involved in the efflux of Mn and protects the cell against Mn toxicity. Disease-causing mutations block the efflux activity of SLC30A10, resulting in Mn accumulation. Determining the intracellular localization of Mn when disease-causing SLC30A10 mutants are expressed is essential to elucidate the mechanisms of Mn neurotoxicity. Here, using organelle fluorescence microscopy and synchrotron X-ray fluorescence (SXRF) imaging, we found that Mn accumulates in the Golgi apparatus of human cells transfected with the disease-causing SLC30A10-Δ105-107 mutant under physiological conditions and after exposure to Mn. In cells expressing the wild-type SLC30A10 protein, cellular Mn content was low after all exposure conditions, confirming efficient Mn efflux. In nontransfected cells that do not express endogenous SLC30A10 and in mock transfected cells, Mn was located in the Golgi apparatus, similarly to its distribution in cells expressing the mutant protein, confirming deficient Mn efflux. The newly developed SXRF cryogenic nanoimaging (<50 nm resolution) indicated that Mn was trapped in single vesicles within the Golgi apparatus. Our results confirm the role of SLC30A10 in Mn efflux and the accumulation of Mn in cells expressing the disease-causing SLC30A10-Δ105-107 mutation. Moreover, we identified suborganelle Golgi nanovesicles as the main compartment of Mn accumulation in SLC30A10 mutants, suggesting interactions with the vesicular trafficking machinery as a cause of the disease.
Collapse
Affiliation(s)
- Asuncion Carmona
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Charles E. Zogzas
- Division of Pharmacology and Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, United States
| | - Stéphane Roudeau
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Francesco Porcaro
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Kathryn M. Spiers
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Murielle Salomé
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, United States
| | - Richard Ortega
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| |
Collapse
|
46
|
Jin L, Frazer DM, Lu Y, Wilkins SJ, Ayton S, Bush A, Anderson GJ. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics 2019; 11:959-967. [DOI: 10.1039/c8mt00370j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knockout mice with constitutively low ferroportin show that ferroportin does not make a major contribution to manganese homeostasis in vivo.
Collapse
Affiliation(s)
- Lian Jin
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| | - David M. Frazer
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Yan Lu
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Sarah J. Wilkins
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Ashley Bush
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Gregory J. Anderson
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| |
Collapse
|
47
|
Taylor CA, Hutchens S, Liu C, Jursa T, Shawlot W, Aschner M, Smith DR, Mukhopadhyay S. SLC30A10 transporter in the digestive system regulates brain manganese under basal conditions while brain SLC30A10 protects against neurotoxicity. J Biol Chem 2018; 294:1860-1876. [PMID: 30559290 DOI: 10.1074/jbc.ra118.005628] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
The essential metal manganese becomes neurotoxic at elevated levels. Yet, the mechanisms by which brain manganese homeostasis is regulated are unclear. Loss-of-function mutations in SLC30A10, a cell surface-localized manganese efflux transporter in the brain and liver, induce familial manganese neurotoxicity. To elucidate the role of SLC30A10 in regulating brain manganese, we compared the phenotypes of whole-body and tissue-specific Slc30a10 knockout mice. Surprisingly, unlike whole-body knockouts, brain manganese levels were unaltered in pan-neuronal/glial Slc30a10 knockouts under basal physiological conditions. Further, although transport into bile is a major route of manganese excretion, manganese levels in the brain, blood, and liver of liver-specific Slc30a10 knockouts were only minimally elevated, suggesting that another organ compensated for loss-of-function in the liver. Additional assays revealed that SLC30A10 was also expressed in the gastrointestinal tract. In differentiated enterocytes, SLC30A10 localized to the apical/luminal domain and transported intracellular manganese to the lumen. Importantly, endoderm-specific knockouts, lacking SLC30A10 in the liver and gastrointestinal tract, had markedly elevated manganese levels in the brain, blood, and liver. Thus, under basal physiological conditions, brain manganese is regulated by activity of SLC30A10 in the liver and gastrointestinal tract, and not the brain or just the liver. Notably, however, brain manganese levels of endoderm-specific knockouts were lower than whole-body knockouts, and only whole-body knockouts exhibited manganese-induced neurobehavioral defects. Moreover, after elevated exposure, pan-neuronal/glial knockouts had higher manganese levels in the basal ganglia and thalamus than controls. Therefore, when manganese levels increase, activity of SLC30A10 in the brain protects against neurotoxicity.
Collapse
Affiliation(s)
- Cherish A Taylor
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Steven Hutchens
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Chunyi Liu
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Thomas Jursa
- the Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064, and
| | - William Shawlot
- the Mouse Genetic Engineering Facility, University of Texas, Austin, Texas 78712
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Donald R Smith
- the Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064, and
| | - Somshuvra Mukhopadhyay
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| |
Collapse
|
48
|
Thompson KJ, Hein J, Baez A, Sosa JC, Wessling-Resnick M. Manganese transport and toxicity in polarized WIF-B hepatocytes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G351-G363. [PMID: 29792530 PMCID: PMC6335010 DOI: 10.1152/ajpgi.00103.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 μM MnCl2. However, the hepatocytes were resistant to 4-h exposures of up to 500 μM MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.
Collapse
Affiliation(s)
- Khristy J. Thompson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jennifer Hein
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrew Baez
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jose Carlo Sosa
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
49
|
Rodan LH, Hauptman M, D'Gama AM, Qualls AE, Cao S, Tuschl K, Al-Jasmi F, Hertecant J, Hayflick SJ, Wessling-Resnick M, Yang ET, Berry GT, Gropman A, Woolf AD, Agrawal PB. Novel founder intronic variant in SLC39A14 in two families causing Manganism and potential treatment strategies. Mol Genet Metab 2018; 124:161-167. [PMID: 29685658 PMCID: PMC5976541 DOI: 10.1016/j.ymgme.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
Congenital disorders of manganese metabolism are rare occurrences in children, and medical management of these disorders is complex and challenging. Homozygous exonic mutations in the manganese transporter SLC39A14 have recently been associated with a pediatric-onset neurodegenerative disorder characterized by brain manganese accumulation and clinical signs of manganese neurotoxicity, including parkinsonism-dystonia. We performed whole exome sequencing on DNA samples from two unrelated female children from the United Arab Emirates with progressive movement disorder and brain mineralization, identified a novel homozygous intronic mutation in SLC39A14 in both children, and demonstrated that the mutation leads to aberrant splicing. Both children had consistently elevated serum manganese levels and were diagnosed with SLC39A14-associated manganism. Over a four-year period, we utilized a multidisciplinary management approach for Patient 1 combining decreased manganese dietary intake and chelation with symptomatic management of dystonia. Our treatment strategy appeared to slow disease progression, but did not lead to a cure or reversal of already established deficits. Clinicians should consider testing for noncoding mutations in the diagnosis of congenital disorders of manganese metabolism and utilizing multidisciplinary approaches in the management of these disorders.
Collapse
Affiliation(s)
- Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States.
| | - Marissa Hauptman
- Harvard Medical School, Boston, MA, United States; Pediatric Environmental Health Center, Division of General Pediatrics, Boston Children's Hospital, Boston, MA, United States; Region 1 New, England, Pediatric Environmental Health Specialty Unit (PEHSU), Boston, MA, United States
| | - Alissa M D'Gama
- Harvard Medical School, Boston, MA, United States; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States
| | - Anita E Qualls
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| | - Siqi Cao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| | - Karin Tuschl
- Department of Cell and Developmental Biology, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Fatma Al-Jasmi
- Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jozef Hertecant
- Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States; Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Edward T Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Gerard T Berry
- Harvard Medical School, Boston, MA, United States; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States
| | - Andrea Gropman
- Division of Neurodevelopmental Disabilities and Neurogenetics, Children's National Health System, Washington, DC, United States
| | - Alan D Woolf
- Harvard Medical School, Boston, MA, United States; Pediatric Environmental Health Center, Division of General Pediatrics, Boston Children's Hospital, Boston, MA, United States; Region 1 New, England, Pediatric Environmental Health Specialty Unit (PEHSU), Boston, MA, United States
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
50
|
SLC39A14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice. Proc Natl Acad Sci U S A 2018; 115:E1769-E1778. [PMID: 29437953 DOI: 10.1073/pnas.1720739115] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Solute carrier family 39, member 14 (SLC39A14) is a transmembrane transporter that can mediate the cellular uptake of zinc, iron, and manganese (Mn). Studies of Slc39a14 knockout (Slc39a14-/-) mice have documented that SLC39A14 is required for systemic growth, hepatic zinc uptake during inflammation, and iron loading of the liver in iron overload. The normal physiological roles of SLC39A14, however, remain incompletely characterized. Here, we report that Slc39a14-/- mice spontaneously display dramatic alterations in tissue Mn concentrations, suggesting that Mn is a main physiological substrate for SLC39A14. Specifically, Slc39a14-/- mice have abnormally low Mn levels in the liver coupled with markedly elevated Mn concentrations in blood and most other organs, especially the brain and bone. Radiotracer studies using 54Mn reveal that Slc39a14-/- mice have impaired Mn uptake by the liver and pancreas and reduced gastrointestinal Mn excretion. In the brain of Slc39a14-/- mice, Mn accumulated in the pons and basal ganglia, including the globus pallidus, a region susceptible to Mn-related neurotoxicity. Brain Mn accumulation in Slc39a14-/- mice was associated with locomotor impairments, as assessed by various behavioral tests. Although a low-Mn diet started at weaning was able to reverse brain Mn accumulation in Slc39a14-/- mice, it did not correct their motor deficits. We conclude that SLC39A14 is essential for efficient Mn uptake by the liver and pancreas, and its deficiency results in impaired Mn excretion and accumulation of the metal in other tissues. The inability of Mn depletion to correct the motor deficits in Slc39a14-/- mice suggests that the motor impairments represent lasting effects of early-life Mn exposure.
Collapse
|