1
|
Reyes AWB, Huy TXN, Nguyen TT, Salad SA, Aguilar CNT, Min W, Lee HJ, Kim S. Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice. Microorganisms 2024; 12:2533. [PMID: 39770737 PMCID: PMC11676798 DOI: 10.3390/microorganisms12122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Our preliminary data using bone marrow-derived macrophages (BMDMs) collected from ICR mice treated with anti-sirtuin (anti-SIRT) 1 antibody showed that Brucella uptake was significantly attenuated. We then further investigated the effect of an inhibitor of SIRT1/2, cambinol, in the progression of Brucella. The in vitro results using RAW264.7 cells revealed that cambinol treatment had no effect on adhesion, uptake, intracellular survival and nitric oxide (NO) production during B. abortus infection, nor did it directly affect bacterial growth for up to 72 h. Finally, intraperitoneal treatment of 8-week-old female ICR mice infected with Brucella showed no differences in the total average weights of spleens and livers; however, the treated mice displayed higher Brucella colony-forming units (CFUs) from the spleens. Furthermore, the interleukin (IL)-10 serum level was observed to be lower in treated mice at 7 d post-infection, and none of the cytokines tested showed a change at 14 d post-infection. The overall findings showed that cambinol treatment had no effect on the proliferation of Brucella in RAW264.7 macrophages but exacerbated the splenic proliferation of the bacteria in mice and displayed reduced anti-inflammatory cytokine IL-10 at the first week of infection, suggesting that cambinol as an inhibitory of SIRT1/2 could be beneficial in the context of Brucella dissemination in animal hosts and that exploration of activating SIRTs could be an alternative treatment against Brucella infection.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines;
- Microbial Research Division, UPLB Zoonoses Center, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Said Abdi Salad
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Ched Nicole Turbela Aguilar
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.X.N.H.); (T.T.N.); (S.A.S.); (C.N.T.A.); (W.M.); (H.J.L.)
| |
Collapse
|
2
|
Nguyen TT, Huy TXN, Aguilar CNT, Reyes AWB, Salad SA, Min WG, Lee HJ, Kim HJ, Lee JH, Kim S. Intracellular Growth Inhibition and Host Immune Modulation of 3-Amino-1,2,4-triazole in Murine Brucellosis. Int J Mol Sci 2023; 24:17352. [PMID: 38139181 PMCID: PMC10743636 DOI: 10.3390/ijms242417352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Catalase, an antioxidant enzyme widely produced in mammalian cells and bacteria, is crucial to mitigating oxidative stress in hostile environments. This function enhances the intracellular survivability of various intracellular growth pathogens, including Brucella (B.) abortus. In this study, to determine whether the suppression of catalase can inhibit the intracellular growth of B. abortus, we employed 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, in both RAW 264.7 macrophage cells and an ICR mouse model during Brucella infection. The intracellular growth assay indicated that 3-AT exerts growth-inhibitory effects on B. abortus within macrophages. Moreover, it contributes to the accumulation of reactive oxygen species and the formation of nitric oxide. Notably, 3-AT diminishes the activation of the nucleus transcription factor (NF-κB) and modulates the cytokine secretion within infected cells. In our mouse model, the administration of 3-AT reduced the B. abortus proliferation within the spleens and livers of infected mice. This reduction was accompanied by a diminished immune response to infection, as indicated by the lowered levels of TNF-α, IL-6, and IL-10 and altered CD4+/CD8+ T-cell ratio. These results suggest the protective and immunomodulatory effects of 3-AT treatment against Brucella infection.
Collapse
Affiliation(s)
- Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72300, Vietnam
| | - Ched Nicole Turbela Aguilar
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Said Abdi Salad
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Won-Gi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Hu-Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - John-Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea;
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| |
Collapse
|
3
|
Tu Y, Wang L, Wang X, Wu W, Tu Y, Zou D, Deng Y, Qi J, Cao C, Xu D, Chai Y, Zhu Y, Zhang J, Sun J, Lai F, He L. LncRNA-WAKMAR2 regulates expression of CLDN1 to affect skin barrier through recruiting c-Fos. Contact Dermatitis 2023; 88:188-200. [PMID: 36461623 DOI: 10.1111/cod.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/31/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is an immune-mediated photo-allergic skin disease. In the clinic, the treatment of this disease is hampered by the lack of proper understanding of the skin barrier dysfunction mechanism. OBJECTIVE To illuminate the mechanism of skin barrier dysfunction in CAD. METHODS Transcriptome sequencing and protein profiling were used to detect skin barrier injury-related genes. RNA pull down, a promoter-reporter gene assay, and chromatin isolation by RNA purification-sequencing were used to elucidate the effect of WAKMAR2 in skin barrier functionality. RESULTS Transcriptome sequencing from patient's tissues showed a significantly decreased expression of WAKMAR2. Down-regulation of WAKMAR2 destroyed the keratinocyte barrier. Moreover, WAKMAR2 can directly bind to the c-Fos protein. This novel long non-coding RNA (LncRNA)-protein complexes were targeted to the CLDN1 promotor. Overexpression of WAKMAR2 enhanced the promoter activity of CLDN1, while the addition of AP-1 inhibitor could reverse this phenomenon. Furthermore, our in vivo results suggested that expression of WAKMAR2 was required for the repair of skin damage in mice induced by ultraviolet irradiation. CONCLUSIONS We identified a crucial LncRNA (WAKMAR2) for the protection of the skin barrier in vitro and in vivo. Mechanically, it can specifically interact with c-Fos protein for the regulation of CLDN1, a finding which could be applied for CAD treatment.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guiyang, China
| | - Li Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoli Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Can Cao
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Huy TXN, Nguyen TT, Reyes AWB, Kim H, Min W, Lee HJ, Lee JH, Kim S. Cobalt (II) Chloride Regulates the Invasion and Survival of Brucella abortus 544 in RAW 264.7 Cells and B6 Mice. Pathogens 2022; 11:596. [PMID: 35631117 PMCID: PMC9143810 DOI: 10.3390/pathogens11050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of Cobalt (II) chloride (CoCl2) in the context of Brucella abortus (B. abortus) infection have not been evaluated so far. Firstly, we found that CoCl2 treatment inhibited the phagocytosis of B. abortus into RAW 264.7 cells. The inhibition of bacterial invasion was regulated by F-actin formation and associated with a reduction in the phosphorylation of ERK1/2 and HIF-1α expression. Secondly, the activation of trafficking regulators LAMP1, LAMP2, and lysosomal enzyme GLA at the transcriptional level activated immune responses, weakening the B. abortus growth at 4 h post-infection (pi). The silencing of HIF-1α increased bacterial survival at 24 h pi. At the same time, CoCl2 treatment showed a significant increase in the transcripts of lysosomal enzyme HEXB and cytokine TNF-α and an attenuation of the bacterial survival. Moreover, the enhancement at the protein level of HIF-1α was induced in the CoCl2 treatment at both 4 and 24 h pi. Finally, our results demonstrated that CoCl2 administration induced the production of serum cytokines IFN-γ and IL-6, which is accompanied by dampened Brucella proliferation in the spleen and liver of treated mice, and reduced the splenomegaly and hepatomegaly. Altogether, CoCl2 treatment contributed to host resistance against B. abortus infection with immunomodulatory effects.
Collapse
Affiliation(s)
- Tran X. N. Huy
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72300, Vietnam;
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Trang T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Alisha W. B. Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines;
| | - Heejin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Hu J. Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - John H. Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| |
Collapse
|
6
|
Martinez-Fabregas J, Tamargo-Azpilicueta J, Diaz-Moreno I. Lysosomes: Multifunctional compartments ruled by a complex regulatory network. FEBS Open Bio 2022; 12:758-774. [PMID: 35218162 PMCID: PMC8972048 DOI: 10.1002/2211-5463.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
More than 50 years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions. Lysosomes are involved in the regulation of cell metabolism through the mTOR/TFEB axis. They are also key players in the regulation and onset of the immune response. Furthermore, it is becoming clear that lysosomal hydrolases can regulate several biological processes outside of the lysosome. They are also implicated in a complex communication network among subcellular compartments that involves intimate organelle‐to‐organelle contacts. Furthermore, lysosomal dysfunction is nowadays accepted as the causative event behind several human pathologies: low frequency inherited diseases, cancer, or neurodegenerative, metabolic, inflammatory, and autoimmune diseases. Recent advances in our knowledge of the complex biology of lysosomes have established them as promising therapeutic targets for the treatment of different pathologies. Although recent discoveries have started to highlight that lysosomes are controlled by a complex web of regulatory networks, which in some cases seem to be cell‐ and stimuli‐dependent, to harness the full potential of lysosomes as therapeutic targets, we need a deeper understanding of the little‐known signalling pathways regulating this subcellular compartment and its functions.
Collapse
Affiliation(s)
- Jonathan Martinez-Fabregas
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Joaquin Tamargo-Azpilicueta
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
7
|
Reyes AWB, Huy TXN, Vu SH, Kim HJ, Lee JJ, Choi JS, Lee JH, Kim S. Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection. J Vet Sci 2021; 22:e18. [PMID: 33774934 PMCID: PMC8007444 DOI: 10.4142/jvs.2021.22.e18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.
Collapse
Affiliation(s)
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jin Ju Lee
- Bacterial Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jeong Soo Choi
- Bacterial Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
8
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Vu SH, Bernardo Reyes AW, Ngoc Huy TX, Min W, Lee HJ, Kim HJ, Lee JH, Kim S. Prostaglandin I2 (PGI 2) inhibits Brucella abortus internalization in macrophages via PGI 2 receptor signaling, and its analogue affects immune response and disease outcome in mice. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103902. [PMID: 33091457 DOI: 10.1016/j.dci.2020.103902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
To date, the implications of prostaglandin I2 (PGI2), a prominent lipid mediator for modulation of immune responses, has not been clearly understood in Brucella infection. In this study, we found that cyclooxygenase-2 (COX-2) was significantly expressed in both infected bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. Prostaglandin I2 synthase (PTGIS) expression was not significantly changed, and PGI2receptor (PTGIR) expression was downregulated in BMMs but upregulated in RAW 264.7 macrophages at late infection. Here, we presented that PGI2, a COX-derived metabolite, was produced by macrophages during Brucella infection and its production was regulated by COX-2 and IL-10. We suggested that PGI2 and selexipag, a potent PGI2 analogue, inhibited Brucella internalization through IP signaling which led to down-regulation of F-actin polymerization and p38α MAPK activity. Administration with selexipag suppressed immune responses and resulted in a notable reduction in bacterial burden in spleen of Brucella-challenged mice. Taken together, our study is the first to characterize PGI2 synthesis and its effect in evasion strategy of macrophages against Brucella infection.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
10
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
11
|
Vu SH, Bernardo Reyes AW, Ngoc Huy TX, Min W, Lee HJ, Kim HJ, Lee JH, Kim S. Transcriptomic profiling of phospholipase A2 and the role of arachidonic acid during Brucella abortus 544 infection in both in vitro and in vivo systems. Microb Pathog 2020; 152:104655. [PMID: 33264666 DOI: 10.1016/j.micpath.2020.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
To date, the antimicrobial activity of arachidonic acid (AA) with regard to pathogenesis of Brucella in macrophages is unknown. We found that AA is highly toxic to B. abortus in a time- and dose-dependent manner. Transcription profiling of different groups of phospholipases A2 (PLA2) was examined, ten PLA2 were detected including cPLA2-IV-A, cPLA2-IV-B, iPLA2-VI, sPLA2-I-B, sPLA2-II-C, sPLA2-II-D, sPLA2-II-E, sPLA2-V, sPLA2-X, sPLA2-XII-A. Phagocytic signaling investigation indicated that AA treatment attenuated p38α activity in infected culture macrophages possibly leading to inhibition of Brucella internalization. Post-treatment with the fatty acid did not influence bacterial intracellular multiplication or alter production of antimicrobial effectors like ROS and NO in RAW 264.7 cells. On the other hand, AA administration significantly reduced bacterial load and modestly inhibited pro-inflammatory cytokine secretion including TNF, IFN-γ and IL-6 in mice plasma. To our knowledge, we are the first to suggest that B. abortus invasion to RAW 264.7 macrophages is impaired by AA.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
12
|
Hernandez J, Ashley D, Cao R, Abrahem R, Nguyen T, To K, Yegiazaryan A, Akinwale David A, Kumar Tiwari R, Venketaraman V. Cyclic Peptide [R 4W 4] in Improving the Ability of First-Line Antibiotics to Inhibit Mycobacterium tuberculosis Inside in vitro Human Granulomas. Front Immunol 2020; 11:1677. [PMID: 32973740 PMCID: PMC7438584 DOI: 10.3389/fimmu.2020.01677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) is currently one of the leading causes of global mortality. Medical non-compliance due to the length of the treatment and antibiotic side effects has led to the emergence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (M. tb) that are difficult to treat. A current therapeutic strategy attempting to circumvent this issue aims to enhance drug delivery to reduce the duration of the antibiotic regimen or dosage of first-line antibiotics. One such agent that may help is cyclic peptide [R4W4], as it has been shown to have antibacterial properties (in combination with tetracycline) against methicillin-resistant Staphylococcus aureus (MRSA) in the past. The objective of this study is to test cyclic peptide [R4W4] both alone and in combination with current first-line antibiotics (either isoniazid or pyrazinamide) to study the effects of inhibition of M. tb inside in vitro human granulomas. Results from our studies indicate that [R4W4] is efficacious in controlling M. tb infection in the granulomas and has enhanced inhibitory effects in the presence of first-line antibiotics.
Collapse
Affiliation(s)
- Joshua Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - David Ashley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Rachel Abrahem
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Timothy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kimberly To
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Aram Yegiazaryan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Ajayi Akinwale David
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
13
|
Arriola Benitez PC, Pesce Viglietti AI, Elizalde MM, Giambartolomei GH, Quarleri JF, Delpino MV. Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection. Pathogens 2020; 9:527. [PMID: 32629846 PMCID: PMC7399813 DOI: 10.3390/pathogens9070527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and -II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| |
Collapse
|
14
|
Hill GW, Gillum TL, Lee BJ, Romano PA, Schall ZJ, Kuennen MR. Reduced inflammatory and phagocytotic responses following normobaric hypoxia exercise despite evidence supporting greater immune challenge. Appl Physiol Nutr Metab 2019; 45:628-640. [PMID: 31751149 DOI: 10.1139/apnm-2019-0657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined changes in immune markers following sustained treadmill exercise in normobaric hypoxia. Ten subjects performed 1 h of treadmill exercise (65% maximal oxygen uptake) under normoxic (NORM: fraction of inspired oxygen (FIO2) = 20.9%) and normobaric hypoxic (HYP: FIO2 = 13.5%) conditions. Blood samples, collected before, after (Post), 1 h after (1-Post), and 4 h after (4-Post) exercise, were assayed for plasma cytokines (interleukin (IL)-1RA/IL-1β/IL-8/tumor necrosis factor alpha (TNF-α)) and markers of leukocyte activation (macrophage inflammatory protein-1β (MIP-1β)/myeloperoxidase (MPO)/soluble intercellular adhesion molecule-1 (sICAM-1)) using ELISA. Pro- to anti-inflammatory cytokine ratios (TNF-α/IL-1RA; IL-1β/IL-1RA) were calculated. Peripheral blood mononuclear cells (PBMC) were analyzed for changes in inflammatory status (phosphorylated nuclear factor kappa B/nuclear factor kappa B) using Western Blot. Data were analyzed with 2-way (condition × time) repeated-measure ANOVAs with Newman-Keuls post hoc tests. MIP-1β was elevated at 1-Post HYP exercise (+11%; p < 0.01) but did not increase following exercise in NORM. TNF-α/IL-1RA and IL-1β/IL-1RA ratios were both reduced (p < 0.05) following HYP exercise (-16% and -52%, respectively, at 1-Post and -7% and -32%, respectively, at 4-Post). IL-8 increased (p < 0.05) at Post and 1-Post NORM (+33% and +57%, respectively) and HYP (+60% and +83%, respectively) exercise, but was not different between conditions (p > 0.05). Interestingly, plasma sICAM-1 did not increase (p > 0.05) following NORM exercise but was increased (p < 0.05) at Post (+17%), 1-Post (+16%), and 4-Post (+14%) HYP exercise. There was also a delayed peak in plasma MPO concentrations following HYP exercise and PBMC exhibited a reduced (p < 0.05) inflammatory capacity at Post (-38%) and 1-Post (-49%). Novelty Following HYP exercise, participants exhibited (i) circulatory bias towards anti-inflammation; (ii) elevated sICAM; (iii) delayed peak in plasma MPO; and (iv) diminished inflammatory response in PBMC. Collectively, these data suggest immunosuppression. This is undesirable, given that elevated MIP-1β (reported here) and elevated intestinal fatty acid binding protein (reported previously) both suggest higher lipopolysaccharide concentrations following HYP exercise.
Collapse
Affiliation(s)
- Garrett W Hill
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Ben J Lee
- Occupational Performance Research Group, University of Chichester, Chichester PO19 6PE, UK
| | - Phebe A Romano
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Zach J Schall
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| |
Collapse
|
15
|
Interleukin 6 Promotes Brucella abortus Clearance by Controlling Bactericidal Activity of Macrophages and CD8 + T Cell Differentiation. Infect Immun 2019; 87:IAI.00431-19. [PMID: 31451617 DOI: 10.1128/iai.00431-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
To date, the implications of interleukin 6 (IL-6) for immune responses in the context of Brucella infection are still unknown. In the present study, we found that Brucella abortus infection induced marked production of IL-6 in mice that was important for sufficient differentiation of CD8+ T cells, a key factor in Brucella clearance. Blocking IL-6 signaling also significantly induced serum IL-4 and IL-10, together with a decreased gamma interferon (IFN-γ) level, suggesting that IL-6 is essential for priming the T-helper (Th) 1 cell immune response during Brucella infection. The IL-6 pathway also activated the bactericidal activity of primary and cultured macrophages. Bacterial killing was markedly abrogated when IL-6 signaling was suppressed, and this phenomenon was mainly associated with decreased activity of lysosome-mediated killing. Interestingly, suppressor of cytokine signaling 3 (SOCS3) was important for regulating the IL-6-dependent anti-Brucella activity through the JAK/STAT pathway. During early infection, in the absence of SOCS3, IL-6 exhibited anti-inflammatory effects and lysosome-mediated killing inhibition; however, the increase in SOCS3 successfully shifted functional IL-6 toward proinflammatory brucellacidal activity in the late stage. Our data clearly indicate that IL-6 contributes to host resistance against B. abortus infection by controlling brucellacidal activity in macrophages and priming cellular immune responses.
Collapse
|
16
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
17
|
Hop HT, Reyes AWB, Arayan LT, Huy TXN, Vu SH, Min W, Lee HJ, Kang CK, Rhee MH, Kim S. Interleukin 1 alpha (IL-1α) restricts Brucella abortus 544 survival through promoting lysosomal-mediated killing and NO production in macrophages. Vet Microbiol 2019; 232:128-136. [PMID: 31030836 DOI: 10.1016/j.vetmic.2019.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022]
Abstract
The interleukin-1 (IL-1) family of cytokines, particularly IL-1α and IL-1β, are potent regulators of innate immunity that play key roles in host defense against infection, hence we evaluated the role of these cytokines in the control of brucellosis within RAW 264.7 cells. Marked expression and secretion of IL-1α and IL-1β were observed during Brucella infection in macrophages. Blocking of IL-1α and IL-1β reduced induction of IL-10, IL-1β and TNF, and IL-6 and TNF, respectively. However, interference of IL-1α and not IL-1β signaling notably augmented susceptibility of macrophages to Brucella infection which indicates that IL-1α is required for a downstream signaling cascade of innate immunity for efficient clearance of Brucella. This protection requires binding to interleukin-1 receptor (IL-1R) mediated by myeloid differentiation factor 88 (MyD88) signaling and associated with increased lysosomal-mediated killing and nitric oxide (NO) production. Expression of pro-inflammatory cytokines was observed to be mediated via NF-κB-p50, HIF-1α and CEBPA, but negatively controlled by CEBPB while transcription of some important phagolysosomal genes was regulated via CEBPA and c-Jun which indicates the important role of these transcription factors in the control of Brucella infection in macrophages via IL-1α signaling pathway.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea; Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
18
|
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, Vizcaíno N. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential. Front Microbiol 2018; 9:2230. [PMID: 30294312 PMCID: PMC6158377 DOI: 10.3389/fmicb.2018.02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δomp10Δomp31Δomp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δomp31Δcgs and Δomp10Δomp31Δomp25c mutants were highly attenuated when inoculated at 106 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δomp10ΔugpBΔomp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Axel Cloeckaert
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - Michel Stanislas Zygmunt
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| |
Collapse
|
19
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Vu SH, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. The Key Role of c-Fos for Immune Regulation and Bacterial Dissemination in Brucella Infected Macrophage. Front Cell Infect Microbiol 2018; 8:287. [PMID: 30186773 PMCID: PMC6110913 DOI: 10.3389/fcimb.2018.00287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
The cellular oncogene c-Fos (c-Fos) is a component of activator protein 1 (AP1), a master transcriptional regulator of cells. The suppression of c-Fos signaling by siRNA treatment resulted in significant induction of TLR4, which subsequently activates p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) and enhances F-actin polymerization, leading to an increase in B. abortus phagocytosis. During B. abortus infection, c-Fos signaling is induced, which activates the downstream innate-immunity signaling cascade for bacterial clearance. The inhibition of c-Fos signaling led to increased production of interleukin 10 (IL-10), which partially suppressed lysosome-mediated killing, resulting in increased survival of B. abortus inside macrophages. We present evidence of the regulatory role played by the c-Fos pathway in proliferation during B. abortus infection; however, this was independent of the anti-Brucella effect of this pathway. Another finding is the essential contribution of c-Fos/TRAIL to infected-cell necrosis, which is a key event in bacterial dissemination. These data provide the mechanism via which c-Fos participates in host defense mechanisms against Brucella infection and in bacterial dissemination by macrophages.
Collapse
Affiliation(s)
- Huynh T Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lauren T Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tran X N Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Alisha W B Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Son H Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu J Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Man H Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong H Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|