1
|
Bao Z, Yi B. Analysis of preoperative serum cytokine levels in patients with oral squamous cell carcinoma. Sci Rep 2025; 15:13537. [PMID: 40253468 PMCID: PMC12009433 DOI: 10.1038/s41598-025-89816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/07/2025] [Indexed: 04/21/2025] Open
Abstract
This study investigates preoperative serum cytokine levels in patients with oral squamous cell carcinoma (OSCC). The study included 51 patients with OSCC and 42 healthy controls (HCs). Serum samples of 12 cytokines were analyzed using a multiplex bead-based flow cytometry immunoassay. Mann-Whitney U test and binary logistic regression analysis were performed to identify significant indicators of OSCC. Receiver operating characteristic (ROC) curves evaluated the diagnostic performance.Spearman analysis was assessed the correlation between cytokines and tumor-node-metastasis staging of OSCC. Serum levels of interleukin (IL)-2, IL-5, IL-6, IL-8, IL-12P70, IL-17, and interferon gamma (IFN-γ) were significantly higher (P < 0.05) in patients with OSCC than in HCs. IL-5, IL-6, IL-8, IL-12P70, IL-17, IFN-γ, combination 1 (IL-6 and IL-8), and combination 2 (IL-6 and IL-12P70) had area under the curve (AUC) values > 0.7, with combination 2 exhibited the highest AUC of 0.995. Serum cytokine profiles were significantly different (P < 0.05) between the patients with OSCC and HCs. IL-5, IL-6, IL-8, IL-12P70, IL-17, IFN-γ, combination 1, and combination 2 effectively distinguished between HCs and patients with OSCC. Cytokine combinations enhanced OSCC diagnostic accuracy, with significantly elevated IL-6 levels (P < 0.05) in advanced-stage compared to early-stage OSCC, indicating its potential impact on disease progression and prognosis.
Collapse
Affiliation(s)
- Zhenying Bao
- Department of Clinical Laboratory Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Author's, No.22 ,Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Biao Yi
- Department of Clinical Laboratory Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Author's, No.22 ,Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Chen L, Che Y, Huang C. SENP3: Cancers and diseases. Biochim Biophys Acta Rev Cancer 2025; 1880:189260. [PMID: 39765284 DOI: 10.1016/j.bbcan.2025.189260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases. Among these, SENP3 can affect target proteins by regulating the deSUMOylation process, which in turn influences the transcriptional activity of downstream genes, playing a role in either promoting or inhibiting cancer. SENP3 regulates the SUMO status of proteins in numerous signaling pathways, modulating the activity of specific signaling molecules to impact cellular responses and tumor progression. Additionally, SENP3 promotes cell growth and division by deSUMOylating key cyclins. In the context of DNA repair, SENP3 regulates the activity of proteins associated with DNA repair by deSUMOylating repair factors, thereby enhancing DNA repair and maintaining genome stability. Furthermore, SENP3 has specific functions in various other diseases. The complex roles of SENP3 indicate its potential as both a therapeutic target and a biomarker.
Collapse
Affiliation(s)
- Lianglong Chen
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Yaning Che
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
3
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
4
|
Du M, Wang W, Zhang S, Gu J, Zhang C, Zhang H. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide. FRONT BIOSCI-LANDMRK 2024; 29:397. [PMID: 39614435 DOI: 10.31083/j.fbl2911397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Infection is the leading cause of acute lung injury (ALI). Macrophages, which are pivotal innate immune cells, play a critical role in mediating inflammatory processes. Intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria can activate the caspase-11 inflammasome, leading to the induction of pyroptosis in macrophages. This process subsequently triggers the release of inflammatory cytokines and damage-associated molecular patterns from pyroptotic macrophages, thereby exacerbating inflammatory progression in ALI. However, the precise regulatory mechanisms governing caspase-11 activation is still unclear. Sentrin-specific proteases (SENPs) have been identified as notable targets for their anti-inflammatory properties. Nevertheless, the specific role of SENPs in macrophage pyroptosis during the pathogenesis of ALI remains unknown. METHODS We used LPS as an endotoxin to induce ALI. We analyzed the expression and location of sentrin-specific protease 1 (SENP1), pulmonary impairment, macrophage infiltration, caspase-11 inflammasome expression and activation, caspase-11 SUMOylation, and inflammatory cytokine secretion. RESULTS Upregulated expression of SENP1 in lung tissue and macrophages was observed following LPS stimulation. SENP1 mediates de-SUMOylation and activation of caspase-11 inflammasome in macrophages. Moreover, pharmacological inhibition or genetic deficiency of SENP1 in macrophages significantly improved ALI-related histological damage by reducing the secretion of inflammatory cytokines and suppressing caspase-11-dependent pyroptosis. CONCLUSIONS Collectively, our findings highlight the involvement of SENP1 in caspase-11 activation and inflammatory progression in macrophages, thereby establishing a scientific foundation for the exploration of novel therapeutic strategies aimed at treating ALI.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Wenhan Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Chunbing Zhang
- Department of Geriatric, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200000 Shanghai, China
| |
Collapse
|
5
|
Claessens LA, Vertegaal ACO. SUMO proteases: from cellular functions to disease. Trends Cell Biol 2024; 34:901-912. [PMID: 38326147 DOI: 10.1016/j.tcb.2024.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Posttranslational modification by small ubiquitin-like modifiers (SUMOs) is critical in regulating diverse cellular processes including gene expression, cell cycle progression, genome integrity, cellular metabolism, and inflammation and immunity. The covalent attachment of SUMOs to target proteins is highly dynamic and reversible through the concerted action of SUMO conjugating and deconjugating enzymes. In mammalian cells, sentrin-specific proteases (SENPs) are the most abundant family of deconjugating enzymes. This review highlights recent advances in our knowledge of the substrates and cellular and physiological processes controlled by SENPs. Notably, SENPs are emerging as significant players in cancer, as well as in other diseases, making them attractive targets for therapeutic intervention. Consequently, a growing amount of effort in the field is being directed towards the development of SENP inhibitors.
Collapse
Affiliation(s)
- Laura A Claessens
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
6
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Chen X, Wang J, Yang P, Liu HY, Zhong S, Lu C, Gao M, Liu D, Zhang J, Wang J, Ma S, Wang W, Zhu H, Zhang X, Liu Y. SENP3 sensitizes macrophages to ferroptosis via de-SUMOylation of FSP1. Redox Biol 2024; 75:103267. [PMID: 39025016 PMCID: PMC11301343 DOI: 10.1016/j.redox.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, driven by an imbalance in redox homeostasis, has recently been identified to regulate macrophage function and inflammatory responses. SENP3 is a redox-sensitive de-SUMOylation protease that plays an important role in macrophage function. However, doubt remains on whether SENP3 and SUMOylation regulate macrophage ferroptosis. For the first time, the results of our study suggest that SENP3 sensitizes macrophages to RSL3-induced ferroptosis. We showed that SENP3 promotes the ferroptosis of M2 macrophages to decrease M2 macrophage proportion in vivo. Mechanistically, we identified the ferroptosis repressor FSP1 as a substrate for SUMOylation and confirmed that SUMOylation takes place mainly at its K162 site. We found that SENP3 sensitizes macrophages to ferroptosis by interacting with and de-SUMOylating FSP1 at the K162 site. In summary, our study describes a novel type of posttranslational modification for FSP1 and advances our knowledge of the biological functions of SENP3 and SUMOylation in macrophage ferroptosis.
Collapse
Affiliation(s)
- Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hsin-Ying Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Zhong
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Ma
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanting Zhu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Galán-Vidal J, García-Gaipo L, Molinuevo R, Dias S, Tsoi A, Gómez-Román J, Elder JT, Hochegger H, Gandarillas A. Sumo-regulatory SENP2 controls the homeostatic squamous mitosis-differentiation checkpoint. Cell Death Dis 2024; 15:596. [PMID: 39152119 PMCID: PMC11329632 DOI: 10.1038/s41419-024-06969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Squamous or epidermoid cancer arises in stratified epithelia but also is frequent in the non-epidermoid epithelium of the lung by unclear mechanisms. A poorly studied mitotic checkpoint drives epithelial cells bearing irreparable genetic damage into epidermoid differentiation. We performed an RNA-sequencing gene search to target unknown regulators of this response and selected the SUMO regulatory protein SENP2. Alterations of SENP2 expression have been associated with some types of cancer. We found the protein to be strongly localised to mitotic spindles of freshly isolated human epidermal cells. Primary cells rapidly differentiated after silencing SENP2 with specific shRNAs. Loss of SENP2 produced in synchronised epithelial cells delays in mitotic entry and exit and defects in chromosomal alignment. The results altogether strongly argue for an essential role of SENP2 in the mitotic spindle and hence in controlling differentiation. In addition, the expression of SENP2 displayed an inverse correlation with the immuno-checkpoint biomarker PD-L1 in a pilot collection of aggressive lung carcinomas. Consistently, metastatic head and neck cancer cells that do not respond to the mitosis-differentiation checkpoint were resistant to depletion of SENP2. Our results identify SENP2 as a novel regulator of the epithelial mitosis-differentiation checkpoint and a potential biomarker in epithelial cancer.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Rut Molinuevo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Samantha Dias
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Javier Gómez-Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008, Santander, Spain
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut national de la santé et de la recherche médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
9
|
Chen X, Su Q, Ling X, Yang Y, Liu Y, Zhu X, He A, Wu H, Qi Y. SENP3-regulated Nodal signaling plays a potential role in cardiac left-right asymmetry development. Int J Biol Macromol 2024; 274:133294. [PMID: 38925188 DOI: 10.1016/j.ijbiomac.2024.133294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Congenital heart disease (CHD) is a type of major defect that occurs during embryonic development. Although significant advances have been made in the treatment of CHD, its etiology and molecular mechanism remain unclear. To identify the critical role of SUMOylation in cardiac development, we generated SENP3 knockout mice and showed that SENP3 knockout mice die on embryonic day 8.5 with an open neural tube and reversed left-right cardiac asymmetry. Moreover, SENP3 knockout promoted apoptosis and senescence of H9C2 cells. Further studies showed that Nodal, a critical gene that forms left-right asymmetry, is regulated by SENP3 and that SENP3 regulates cell apoptosis and senescence in a Nodal-dependent manner. Furthermore, Nodal was hyper-SUMOylated after SENP3 knockout, and SUMOylation of Nodal inhibited its ubiquitination and ubiquitin-proteasome degradation pathway. Nodal overexpression enhanced cell apoptosis and senescence; however, the mutation at the SUMOylation site of Nodal reversed its effect on the apoptosis and senescence of H9C2 cells. More importantly, the SENP3-Nodal axis regulates cell senescence by inducing cell autophagy. These results suggest that the SENP3-Nodal signaling axis regulates cardiac senescence-autophagy homeostasis, which in turn affects cardiac development and results in the occurrence of CHD.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Zhang Y, Sun H, Huang F, Chen Y, Ding X, Zhou C, Wu Y, Zhang Q, Ma X, Wang J, Yue R, Shen L, Sun X, Ye Z. The chromatin remodeling factor Arid1a cooperates with Jun/Fos to promote osteoclastogenesis by epigenetically upregulating Siglec15 expression. J Bone Miner Res 2024; 39:775-790. [PMID: 38477755 DOI: 10.1093/jbmr/zjae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Osteoporosis is characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-related bone formation, particularly increased osteoclastogenesis. However, the mechanisms by which epigenetic factors regulate osteoclast precursor differentiation during osteoclastogenesis remain poorly understood. Here, we show that the specific knockout of the chromatin remodeling factor Arid1a in bone marrow-derived macrophages (BMDMs) results in increased bone mass. The loss of Arid1a in BMDM inhibits cell-cell fusion and maturation of osteoclast precursors, thereby suppressing osteoclast differentiation. Mechanistically, Arid1a increases the chromatin access in the gene promoter region of sialic acid-binding Ig-like lectin 15 (Siglec15) by transcription factor Jun/Fos, which results in the upregulation of Siglec15 and promotion of osteoclast differentiation. However, the loss of Arid1a reprograms the chromatin structure to restrict Siglec15 expression in osteoclast precursors, thereby inhibiting BMDM differentiation into mature osteoclasts. Deleting Arid1a after ovariectomy (a model for postmenopausal bone loss) alleviated bone loss and maintained bone mass. In summary, epigenetic reprogramming mediated by Arid1a loss suppresses osteoclast differentiation and may serve as a promising therapeutic strategy for treating bone loss diseases.
Collapse
Affiliation(s)
- Yongxing Zhang
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Hangxiang Sun
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Fei Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yang Chen
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Xiying Ding
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Chenhe Zhou
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Yan Wu
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Qing Zhang
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Xiao Ma
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Jun Wang
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| |
Collapse
|
11
|
Zhao S, Xu Z, Niu X, Cao C, Gu Y, Wang H, Lu Q, Wu Z, Li L, Du J, Liao M. The role of SUMO specific peptidase 3 in secondary inflammation of ischemic stroke in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167104. [PMID: 38437993 DOI: 10.1016/j.bbadis.2024.167104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Ischemic stroke is the main cause of death and disability, and microglia play a crucial role in the pathophysiology of hypoxic ischemic brain injury. We found that SENP3 is highly expressed in the early stages of ischemic stroke in both in vivo and in vitro mouse models, and may be related to the deSUMOylation of the key kinase MKK7 in the TLR4/p-JNK signaling pathway. Knocking down SENP3 can inhibit the deSUMOylation of MKK7, thereby inhibiting the activation of the TLR4/p-JNK signaling pathway in an in vitro stroke model. Proteomic analysis showed that SENP3 undergoes phosphorylation at the T429 site after ischemic stroke. Computer simulation predictions show a significant enhancement of the interaction between pT429-SENP3 and MKK7, which has been confirmed through experiments on the interaction of biological macromolecules (SPR). The mitochondrial metabolic abnormalities caused by energy abnormalities in the early stages of stroke provide a good explanation for the phosphorylation of SENP3. Therefore, we used the mitochondrial complex inhibitor TTFA to reverse demonstrate that the phosphorylation of SENP3 comes from the large amount of adenosine triphosphate produced by mitochondrial abnormal metabolism caused by early oxygen glucose deficiency. Finally, proteomic analysis indicates that a significant amount of oxidative phosphorylation does occur in the early stages of stroke. In summary, targeted regulation of SENP3 phosphorylation to affect the deSUMOylation of MKK7 may inhibit secondary inflammation in ischemic stroke.
Collapse
Affiliation(s)
- Siyuan Zhao
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zeting Xu
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xueyuan Niu
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Cao
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanlan Gu
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong Wang
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qiuxia Lu
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ziniu Wu
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liangqiong Li
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Juanjuan Du
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
12
|
Wang P, Yang L, Guo Y, Qi S, Liang J, Tian G, Tian Z. SENP3 mediates the activation of the Wnt/β-catenin signaling pathway to accelerate the growth and metastasis of oesophagal squamous cell carcinoma in mice. Funct Integr Genomics 2024; 24:40. [PMID: 38383667 DOI: 10.1007/s10142-024-01321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
As a common malignant tumor, esophageal squamous cell carcinoma (ESCC) is occasionally seen in clinical practice. This type of disease has low incidence rate and mortality. The post-translational modification of small ubiquitin like modifiers (SUMO) can play a crucial role in regulating protein function, and can significantly impact the occurrence and development of diseases. SUMO-specific peptidase (SENP) affects cell activity by regulating the biological function of SUMO. SENP3 belongs to the SENP family, and available data indicate that many malignancies are associated with SENPs, it is currently unclear its role in ESCC. This study indicates that there is a high level of SENP3 expression in ESCC tumor cells. If the expression level of this gene is high, it can have a significant impact on ESCC cell lines and affect physiological activities such as invasion of KYSE170 cells. If the gene is knocked out, this situation will not occur. There is also research data indicating that this gene can effectively activate related signaling pathways, thereby promoting the physiological activities of malignant tumor cells. In a nude mouse xenograft tumor model, KYSE170 cells with SENP3 expression knockdown induced a smaller volume and weight of tumor tissue. Therefore, it can be clearly stated that SENP3 can enable Wnt/ β- The catenin signaling pathway is stimulated, which in turn affects the physiological activities of ESCC cells, including the invasion process. The results of this article lay the foundation for clinical staff to carry out clinical management.
Collapse
Affiliation(s)
- Pengzeng Wang
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, No.12 Jian-Kang Road, Chang-An District, Shijiazhuang, 050011, People's Republic of China
| | - Linan Yang
- Department of Respiratory Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Yin Guo
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Shuliang Qi
- Department of Thoracic Surgery, Gucheng County Hospital in Hebei Province, Hengshui, 253800, People's Republic of China
| | - Jia Liang
- Department of Cancer, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Guo Tian
- Medical Record Room, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Ziqiang Tian
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, No.12 Jian-Kang Road, Chang-An District, Shijiazhuang, 050011, People's Republic of China.
| |
Collapse
|
13
|
He X, Wang B, Deng W, Cao J, Tan Z, Li X, Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun Signal 2024; 22:73. [PMID: 38279161 PMCID: PMC10811823 DOI: 10.1186/s12964-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/09/2023] [Indexed: 01/28/2024] Open
Abstract
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jinhua Cao
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
14
|
Su G, Huang S, Jiang S, Chen L, Yang F, Liu Z, Wang G, Huang J. Porcine β-Defensin 114: Creating a Dichotomous Response to Inflammation. Int J Mol Sci 2024; 25:1016. [PMID: 38256090 PMCID: PMC10816359 DOI: 10.3390/ijms25021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 μg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 μg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 μg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 μg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.
Collapse
Affiliation(s)
- Guoqi Su
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Shan Jiang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
15
|
Jiang Y, Liang M, Chen L, Wang J, Huang Y, Huo H, Xiao D, Hu Y, Wang Z, Ji Q, Li Y, Cai Z, He B. Myeloid SENP3 deficiency protects mice from diet and age-induced obesity via regulation of YAP1 SUMOylation. Cell Mol Life Sci 2023; 81:4. [PMID: 38070059 PMCID: PMC10710392 DOI: 10.1007/s00018-023-05050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation, which is driven by macrophage infiltration in adipose tissue and leads to elevated cytokines such as interleukin-1β (IL-1β) in the circulation and tissues. Previous studies demonstrate that SENP3, a redox-sensitive SUMO2/3-specific protease, is strongly implicated in the development and progression of cancer and cardiovascular diseases. However, the role of SENP3 in obesity-associated inflammation remains largely unknown. To better understand the effects of SENP3 on adipose tissue macrophage (ATM) activation and function within the context of obesity, we generated mice with myeloid-specific deletion of SENP3 (Senp3flox/flox;Lyz2-Cre mice). We found that the expression of SENP3 is dramatically increased in ATMs during high-fat diet (HFD)-induced obesity in mice. Senp3flox/flox;Lyz2-Cre mice show lower body weight gain and reduced adiposity and adipocyte size after challenged with HFD and during aging. Myeloid-specific SENP3 deletion attenuates macrophage infiltration in adipose tissue and reduces serum levels of inflammatory factors during diet and age-induced obesity. Furthermore, we found that SENP3 knockout markedly inhibits cytokine release from macrophage after lipopolysaccharide and palmitic acid treatment in vitro. Mechanistically, in cultured peritoneal macrophages, SENP3 protein level is enhanced by IL-1β, in parallel with the upregulation of Yes-associated protein 1 (YAP1). Moreover, we demonstrated that SENP3 modulates de-SUMO modification of YAP1 and SENP3 deletion abolishes the upregulation of YAP1 induced by IL-1β. Most importantly, SENP3 deficiency reduces YAP1 protein level in adipose tissue during obesity. Our results highlight the important role of SENP3 in ATM inflammation and diet and age-induced obesity.
Collapse
Affiliation(s)
- Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Min Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jian Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Danrui Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
16
|
Xia Q, Mao M, Zhan G, Luo Z, Zhao Y, Li X. SENP3-mediated deSUMOylation of c-Jun facilitates microglia-induced neuroinflammation after cerebral ischemia and reperfusion injury. iScience 2023; 26:106953. [PMID: 37332598 PMCID: PMC10272502 DOI: 10.1016/j.isci.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Recent evidences have implicated that SENP3 is a deSUMOylase which possesses neuronal damage effects in cerebral ischemia. However, its role in microglia remains poorly understood. Here, we found that SENP3 was upregulated in the peri-infarct areas of mice following ischemic stroke. Furthermore, knockdown of SENP3 significantly inhibits the expression of proinflammatory cytokines and chemokines in microglial cells. Mechanistically, SENP3 can bind and then mediated the deSUMOylation of c-Jun, which activated its transcriptional activity, ultimately followed by the activation of MAPK/AP-1 signaling pathway. In addition, microglia-specific SENP3 knockdown alleviated ischemia-induced neuronal damage, and markedly diminished infract volume, ameliorated sensorimotor and cognitive function in animals subjected to ischemic stroke. These results indicated SENP3 functions as a novel regulator of microglia-induced neuroinflammation by activating the MAPK/AP-1 signaling pathway via mediating the deSUMOylation of c-Jun. Interventions of SENP3 expression or its interaction with c-Jun would be a new and promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Mao
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Yu H, Wang H, Liu J, Huang T, Man Y, Xiang L. The effect of ROS-YAP crosstalk on osteoimmune response orchestrating osteogenesis. Cell Cycle 2023; 22:1391-1405. [PMID: 37161399 PMCID: PMC10228400 DOI: 10.1080/15384101.2023.2211830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 05/11/2023] Open
Abstract
Bone defect repair is a common medical concern. In spite of various existing treatments, its management still requires improvement. Here we show that YAP, a downstream signaling of Hippo pathway, might interplay with redox oxygen species (ROS) and modulate osteoimmunology, which refers to the interaction between immune and skeletal system during bone defect repair. We modulated the ROS level of RAW264.7 cells and found YAP level was reversely regulated. Meanwhile, we detected the feedback of YAP on oxidation level. The results demonstrated that the antioxidant enzyme expression was in proportion to the YAP level of RAW264.7 cells. Additionally, indirect coculture system was applied and it indicated that RAW264.7 cells under oxidative stress could impede proliferation and migration ability of MC3T3-E1 pre-osteoblasts. Consistently, in vivo experiment verified high oxidant level slowed down mice osteogenesis during bone defect repair, while antioxidant and upregulation of YAP accelerated this process. Additionally, we established a mouse model with YAP conditional knockout in macrophages. The results identified that deficiency of YAP in macrophages negatively affected bone defect repair in vivo. In summary, our study indicated that ROS and YAP could jointly modulate osteogenesis via their effect on osteoimmunology.ABBREVIATIONS: GPX4, glutathione peroxidase 4; NAC, N-Acetyl-L-cysteine; qRT-PCR, real-time quantitative PCR; ROS, reactive oxygen species; Tb.N, trabecular number; Tb.Sp, trabecular separation.
Collapse
Affiliation(s)
- Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Mucosa and Periodontitis, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyu Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Ma Y, Hu J, Xue X, Gu J, Pan Y, Yang J. SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway. Heliyon 2023; 9:e15584. [PMID: 37180935 PMCID: PMC10172869 DOI: 10.1016/j.heliyon.2023.e15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Macrophages preferentially polarize to the anti-inflammatory M2 subtype in response to alterations in the wound microenvironment. SUMO-specific protease 3 (SENP3), a SUMO-specific protease, has been proven to regulate inflammation in macrophages by deSUMOylating substrate proteins, but its contribution to wound healing is poorly defined. Here, we report that SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing in macrophage-specific SENP3 knockout mice. Notably, it affects wound healing through the suppression of inflammation and promotion of angiogenesis and collagen remodeling. Mechanistically, we identified that SENP3 knockout facilitates M2 polarization through the Smad6/IκB/p65 signaling pathway. SENP3 knockout elevated the expression of Smad6 and IκB. Moreover, Smad6 silencing enhanced the expression of p-p65 and proinflammatory cytokines while inhibiting the level of IκB. Our study revealed the essential role of SENP3 in M2 polarization and wound healing, which offers a theoretical basis for further research and a therapeutic strategy for wound healing.
Collapse
Affiliation(s)
- Yiwen Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xingjuan Xue
- Department of Thoracic Surgery, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing City, Fujian Province, 350399, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuyan Pan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai 200011, China.
| |
Collapse
|
19
|
Bao X, Liu B, Jiang Y, Feng T, Cao W, Shi J, Jiang Y, Chen X, Yang J, Li J, Zhou Z. Loss of SENP3 mediated the formation of nasal polyps in nasal mucosal inflammation by increasing alternative activated macrophage. Immun Inflamm Dis 2023; 11:e781. [PMID: 36840491 PMCID: PMC9910171 DOI: 10.1002/iid3.781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND AND AIM Small ubiquitin-like modifier (SUMO)-specific protease (SENP)3 is a protease molecule that responds to reactive oxygen species (ROS) with high sensitivity. However, the role of ROS and SENP3 in the formation of nasal polyps (NPs) remains unclear. This study aimed to explore how SENP3 influenced the outcome of chronic rhinosinusitis (CRS) by altering macrophage function, that is, the formation of NPs. METHODS The alternative activation of macrophage (M2) was detected with CD68+ CD206+ in humans and CD206+ in mice. The nasal mucosa of patients with CRS was tested using flow cytometry (CD68, CD80, and CD206) and triple-color immunofluorescence staining (CD68, CD206, and SENP3). The bone marrow-derived macrophages from SENP3 knockout and control mice were stimulated with interleukin (IL)-4 and IL-13 to analyze alternative macrophage polarization in vitro. An animal model of allergic rhinitis was constructed using SENP3 knockout mice. CD206 was detected by immunofluorescence staining. The thickening of eosinophil-infiltrated mucosa was detected by Luna staining. RESULTS The number of CD68+ CD206+ M2 increased in the nasal mucosa of patients with CRS with NP (CRSwNP) compared with patients with CRS without NP (CRSsNP), but with no significant difference between the groups. SENP3 knockout increased the polarization of F4/80+ CD206+ M2. Meanwhile, the number of CD206+ M2 significantly increased in the allergic rhinitis model constructed using SENP3 knockout mice and controls, with a more obvious proliferation of the nasal mucosa. CONCLUSION Downregulation of SENP3 promotes the formation of nasal polyps mediated by increasing alternative activated macrophage in nasal mucosal inflammation.
Collapse
Affiliation(s)
- Ximing Bao
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bin Liu
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yongquan Jiang
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Tingting Feng
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Wanxin Cao
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Jiali Shi
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yiming Jiang
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xiaorui Chen
- Anesthesia Department of Shanghai International Medical CenterShanghaiChina
| | - Jie Yang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiping Li
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Zheng Zhou
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
20
|
Wang L, Li J, Yu C. SENP3 Aggravates Renal Tubular Epithelial Cell Apoptosis in Lipopolysaccharide-Induced Acute Kidney Injury via deSUMOylation of Drp1. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:424-435. [PMID: 36466072 PMCID: PMC9710481 DOI: 10.1159/000525308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sepsis causes acute kidney injury (AKI) in critically ill patients, although the mechanisms underlying the pathophysiology are not fully understood. SUMO-specific proteases 3 (SENP3), a member of the deSUMOylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, the role of SENP3 in septic AKI remains unclear. OBJECTIVES The purpose of this study was to investigate the role of SENP3 in lipopolysaccharide (LPS)-induced AKI model. METHODS C57BL/6 mice were given intraperitoneal injection of LPS (10 mg/kg). NRK-52E cells were treated with LPS in vitro. The SENP3 protein expression was analyzed by Western blotting. The levels of reactive oxygen species (ROS) in cells were measured using DCFH-DA. SENP3-siRNA or SENP3-plasmid was, respectively, transfected into NRK-52E cells to knock down or overexpress the SENP3 expression. Western blotting was performed to analyze the protein expression of cleaved caspase 3, cytochrome c, and dynamin-related protein 1 (Drp1). The mitochondrial membrane potential was measured using JC-1 assay kit. Co-immunoprecipitation was used to determine the interaction of Drp1 and SMUO2/3. RESULTS SENP3 protein expression was obviously increased in renal tissues from the mouse model of LPS-induced AKI. Accordingly, SENP3 expression was upregulated in NRK-52E cells treated with LPS in a ROS-dependent manner in vitro. Knockdown of SENP3 dramatically ameliorated LPS-induced apoptosis of NRK-52E cells, whereas overexpression of SENP3 further aggravated LPS-induced apoptosis of NRK-52E cells. Mechanistically, SENP3 triggered Drp1 recruitment to mitochondria by increasing the deSUMOylation of Drp1. CONCLUSION SENP3 aggravated renal tubular epithelial cell apoptosis in LPS-induced AKI via Drp1 deSUMOylation manner.
Collapse
|
21
|
Li Z, Liu J, Fu H, Li Y, Liu Q, Song W, Zeng M. SENP3 affects the expression of PYCR1 to promote bladder cancer proliferation and EMT transformation by deSUMOylation of STAT3. Aging (Albany NY) 2022; 14:8032-8045. [PMID: 36227136 PMCID: PMC9596220 DOI: 10.18632/aging.204333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 12/09/2022]
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including bladder cancer (BC). In our study, we examined the regulation of STAT3 post-translational modifications (PTMs) and found that SENP3 is high in bladder cancer. Sentrin/SUMO-specific protease3 (SENP3) and STAT3 were highly expressed in BC tissues when compared with tissue adjacent to carcinoma. SENP3 induced STAT3 protein level and p-STAT3 translocating into nuclear through deSUMOylation of STAT3. Further, nuclear STAT3, as a transcriptional activity factor, promoted pyrroline-5-carboxylate reductase 1 PYCR1 gene and protein level by interacting with the promoter of (PYCR1). Next, we found that knockdown of PYCR1 inhibited Epithelial to mesenchymal transition of bladder cancer, and simultaneously mitigated the carcinogenic effects of STAT3. In vitro, STAT3 knockdown in bladder cancer cells inhibited cell proliferation, migration, and invasion. In contrast, SENP3 overexpression reversed these effects. In all, results lend novel insights into the regulation of STAT3, which has key roles in bladder cancer progression.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Jian Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Huifeng Fu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Qiang Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Mingqiang Zeng
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| |
Collapse
|
22
|
Liu P, Zhang J, Wang Y, Wang C, Qiu X, Chen DQ. Natural Products Against Renal Fibrosis via Modulation of SUMOylation. Front Pharmacol 2022; 13:800810. [PMID: 35308200 PMCID: PMC8931477 DOI: 10.3389/fphar.2022.800810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is the common and final pathological process of kidney diseases. As a dynamic and reversible post-translational modification, SUMOylation and deSUMOylation of transcriptional factors and key mediators significantly affect the development of renal fibrosis. Recent advances suggest that SUMOylation functions as the promising intervening target against renal fibrosis, and natural products prevent renal fibrosis via modulating SUMOylation. Here, we introduce the mechanism of SUMOylation in renal fibrosis and therapeutic effects of natural products. This process starts by summarizing the key mediators and enzymes during SUMOylation and deSUMOylation and its regulation role in transcriptional factors and key mediators in renal fibrosis, then linking the mechanism findings of SUMOylation and natural products to develop novel therapeutic candidates for treating renal fibrosis, and concludes by commenting on promising therapeutic targets and candidate natural products in renal fibrosis via modulating SUMOylation, which highlights modulating SUMOylation as a promising strategy for natural products against renal fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dan-Qian Chen,
| |
Collapse
|
23
|
Hotz PW, Müller S, Mendler L. SUMO-specific Isopeptidases Tuning Cardiac SUMOylation in Health and Disease. Front Mol Biosci 2021; 8:786136. [PMID: 34869605 PMCID: PMC8641784 DOI: 10.3389/fmolb.2021.786136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
SUMOylation is a transient posttranslational modification with small-ubiquitin like modifiers (SUMO1, SUMO2 and SUMO3) covalently attached to their target-proteins via a multi-step enzymatic cascade. SUMOylation modifies protein-protein interactions, enzymatic-activity or chromatin binding in a multitude of key cellular processes, acting as a highly dynamic molecular switch. To guarantee the rapid kinetics, SUMO target-proteins are kept in a tightly controlled equilibrium of SUMOylation and deSUMOylation. DeSUMOylation is maintained by the SUMO-specific proteases, predominantly of the SENP family. SENP1 and SENP2 represent family members tuning SUMOylation status of all three SUMO isoforms, while SENP3 and SENP5 are dedicated to detach mainly SUMO2/3 from its substrates. SENP6 and SENP7 cleave polySUMO2/3 chains thereby countering the SUMO-targeted-Ubiquitin-Ligase (StUbL) pathway. Several biochemical studies pinpoint towards the SENPs as critical enzymes to control balanced SUMOylation/deSUMOylation in cardiovascular health and disease. This study aims to review the current knowledge about the SUMO-specific proteases in the heart and provides an integrated view of cardiac functions of the deSUMOylating enzymes under physiological and pathological conditions.
Collapse
Affiliation(s)
- Paul W Hotz
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Luca Mendler
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Chen F, Yan H, Guo C, Zhu H, Yi J, Sun X, Yang J. Assessment of SENP3-interacting proteins in hepatocytes treated with diethylnitrosamine by BioID assay. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1237-1246. [PMID: 34312671 PMCID: PMC8406365 DOI: 10.1093/abbs/gmab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
SUMOylation of proteins regulates cell behaviors and is reversibly removed by small ubiquitin-like modifier (SUMO)-specific proteases (SENPs). The SENP family member SENP3 is involved in SUMO2/3 deconjugation and has been reported to sense cell stress and accumulate in several human cancer cells and macrophages. We previously reported that Senp3-knockout heterozygous mice showed smaller liver, but the pertinent mechanisms of SENP3 and SUMOylated substrates remain unclear. Thus, in this study, we investigated the interacting proteins with SENP3 and the alteration in hepatocytes treated with the xenobiotic diethylnitrosamine (DEN), which is specifically transformed in the liver and induces DNA double-strand breaks. Our data revealed that a certain amount of SENP3 was present in normal, untreated hepatocytes; however, DEN treatment promoted rapid SENP3 accumulation. SENP3 was mainly localized in the nuclei, and its level was significantly increased in the cytoplasm after 2 h of DEN treatment. The application of the recent proximity-dependent biotinylation (BioID) method led to the identification of 310 SENP3-interacting proteins that were involved in not only gene transcription but also RNA splicing, protein folding, and metabolism. Furthermore, after DEN exposure for a short duration, ribosomal proteins as well as proteins associated with mitochondrial ATP synthesis, membrane transport, and bile acid synthesis, rather than DNA repair proteins, were identified. This study provides insights into the diverse regulatory roles of SENP3, and the BioID method seems to be efficient for identifying physiologically relevant insoluble proteins.
Collapse
Affiliation(s)
- Fei Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyu Yan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chu Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiqin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
26
|
Yu B, Lin Q, Huang C, Zhang B, Wang Y, Jiang Q, Zhang C, Yi J. SUMO proteases SENP3 and SENP5 spatiotemporally regulate the kinase activity of Aurora A. J Cell Sci 2021; 134:jcs249771. [PMID: 34313310 DOI: 10.1242/jcs.249771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA, also known as AURKA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupts the deSUMOylation of AurA, leading to increased kinase activity and abnormalities in spindle assembly and chromosome segregation, which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render spatiotemporal control on its kinase activity in mitosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bin Yu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Huang
- Medical School, Kunming University of Science and Technology, Kunming 650091, China
| | - Boyan Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
27
|
Zhang Y, Chen Y, Sun H, Zhang W, Zhang L, Li H, Huang X, Yang J, Ye Z. SENP3-Mediated PPARγ2 DeSUMOylation in BM-MSCs Potentiates Glucocorticoid-Induced Osteoporosis by Promoting Adipogenesis and Weakening Osteogenesis. Front Cell Dev Biol 2021; 9:693079. [PMID: 34249943 PMCID: PMC8266396 DOI: 10.3389/fcell.2021.693079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common secondary osteoporosis and reduced bone formation was the main pathological change in GIOP. Our previous studies have shown that there was an imbalance between adipogenic and osteogenic differentiation in GIOP BM-MSCs and peroxisome proliferator-activated receptor γ2 (PPARγ2) played a vital role in this disorders. Here, we reported that there was an increase in ROS level and SENP3 expression in Dex-induced osteoporotic BM-MSCs, and enhanced adipogenesis and weakened osteogenesis in osteoporotic BM-MSCs might be caused by upregulated SENP3. Then we found that SENP3 de-SUMOylated PPARγ2 on K107 site to potentiate adipogenesis and weaken osteogenesis. These results may provide new strategy and target in the clinical diagnosis and treatment of GIOP.
Collapse
Affiliation(s)
- Yongxing Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Chen
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangxiang Sun
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Zhang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Xin Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoming Ye
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Cai Z, Wang Z, Yuan R, Cui M, Lao Y, Wang Y, Nie P, Shen L, Yi J, He B. Redox-sensitive enzyme SENP3 mediates vascular remodeling via de-SUMOylation of β-catenin and regulation of its stability. EBioMedicine 2021; 67:103386. [PMID: 34000626 PMCID: PMC8138600 DOI: 10.1016/j.ebiom.2021.103386] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress plays critical pathophysiological roles in vascular remodeling-related cardiovascular diseases, including hypertension, atherosclerosis, and restenosis. Previous studies demonstrate that SENP3, a redox-sensitive SUMO2/3-specific protease, is strongly implicated in cancer development and progression. However, the role of SENP3 in vascular remodeling remains unknown. Methods We generated three mouse models of vascular remodeling due to low shear stress, hypertension, and atherosclerosis. The expression of SENP3 was determined by western blotting and/or immunofluorescence staining in cultured vascular smooth muscle cells (VSMCs), animal models, and human samples. The biological function of SENP3 in proliferation and migration of VSMC and vascular remodeling was further investigated in vitro and in vivo models. Findings SENP3 was highly expressed in VSMCs of remodeled arteries, accompanied by elevated reactive oxygen species (ROS) levels. In cultured VSMCs, SENP3 protein levels were enhanced by oxidized low-density lipoprotein and Angiotensin II in a ROS-dependent manner. SENP3 overexpression significantly promoted and sh-RNA-mediated knockdown markedly inhibited VSMCs proliferation and migration. Immunofluorescence staining showed that SENP3 expression was correlated with intimal area in remodeled arteries. Furthermore, we demonstrated that SENP3 interacted with β-catenin and inhibited its proteasome-dependent degradation via de-SUMOylation of β-catenin. Most importantly, SENP3+/− mice exhibited alleviated vascular remodeling. Interpretation Our results highlight the important function of SENP3 as a redox sensor and mediator in vascular remodeling.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zi Wang
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ruosen Yuan
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingli Cui
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Yimin Lao
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong Universtity School of Medicine, Shanghai 200025, China
| | - Ying Wang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong Universtity School of Medicine, Shanghai 200025, China
| | - Peng Nie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Linghong Shen
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing Yi
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong Universtity School of Medicine, Shanghai 200025, China.
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
29
|
Xiao M, Bian Q, Lao Y, Yi J, Sun X, Sun X, Yang J. SENP3 loss promotes M2 macrophage polarization and breast cancer progression. Mol Oncol 2021; 16:1026-1044. [PMID: 33932085 PMCID: PMC8847990 DOI: 10.1002/1878-0261.12967] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/06/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor‐associated macrophages (TAM) play a crucial role in promoting cancer progression. Upon cytokine stimulation, TAM preferentially polarize to the anti‐inflammatory and pro‐tumor M2 subtype. The mechanism underlying such preferential polarization remains elusive. Here, we report that macrophage‐specific deletion of the SUMO‐specific protease Sentrin/SUMO‐specific protease 3 promotes macrophage polarization towards M2 in bone marrow‐derived macrophage (BMDM) induced by interleukin 4 (IL‐4)/IL‐13 and in an ex vivo model (murine Py8119 cell line), as well as in a mouse orthotopic tumor model. Notably, Sentrin/SUMO‐specific protease 3 (SENP3) loss in macrophages accelerated breast cancer malignancy in ex vivo and in vivo models. Mechanistically, we identified Akt Serine/threonine kinase 1 (Akt1) as the substrate of SENP3 and found that the enhanced Akt1 SUMOylation upon SENP3 loss resulted in Akt1 hyper‐phosphorylation and activation, which facilitates M2 polarization. Analysis of clinical data showed that a lower level of SENP3 in TAM has a strong negative correlation with the level of the M2 marker CD206, as well as with a worse clinical outcome. Thus, increased Akt1 SUMOylation as a result of SENP3 deficiency modulates polarization of macrophages to the M2 subtype within a breast cancer microenvironment, which in turn promotes tumor progression.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Qi Bian
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yimin Lao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
30
|
Stability of Smyd1 in endothelial cells is controlled by PML-dependent SUMOylation upon cytokine stimulation. Biochem J 2021; 478:217-234. [PMID: 33241844 DOI: 10.1042/bcj20200603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
Smyd1 is an epigenetic modulator of gene expression that has been well-characterized in muscle cells. It was recently reported that Smyd1 levels are modulated by inflammatory processes. Since inflammation affects the vascular endothelium, this study aimed to characterize Smyd1 expression in endothelial cells. We detected Smyd1 in human endothelial cells (HUVEC and EA.hy926 cells), where the protein was largely localized in PML nuclear bodies (PML-NBs). By transfection of EA.hy926 cells with expression vectors encoding Smyd1, PML, SUMO1, active or mutant forms of the SUMO protease SuPr1 and/or the SUMO-conjugation enzyme UBC9, as well as Smyd1- or PML-specific siRNAs, in the presence or absence of the translation blocker cycloheximide or the proteasome-inhibitor MG132, and supported by computational modeling, we show that Smyd1 is SUMOylated in a PML-dependent manner and thereby addressed for degradation in proteasomes. Furthermore, transfection with Smyd1-encoding vectors led to PML up-regulation at the mRNA level, while PML transfection lowered Smyd1 protein stability. Incubation of EA.hy926 cells with the pro-inflammatory cytokine TNF-α resulted in a constant increase in Smyd1 mRNA and protein over 24 h, while incubation with IFN-γ induced a transient increase in Smyd1 expression, which peaked at 6 h and decreased to control values within 24 h. The IFN-γ-induced increase in Smyd1 was accompanied by more Smyd1 SUMOylation and more/larger PML-NBs. In conclusion, our data indicate that in endothelial cells, Smyd1 levels are regulated through a negative feedback mechanism based on SUMOylation and PML availability. This molecular control loop is stimulated by various cytokines.
Collapse
|
31
|
Zhang Y, Yang K, Yang J, Lao Y, Deng L, Deng G, Yi J, Sun X, Wang Q. SENP3 Suppresses Osteoclastogenesis by De-conjugating SUMO2/3 from IRF8 in Bone Marrow-Derived Monocytes. Cell Rep 2021; 30:1951-1963.e4. [PMID: 32049023 DOI: 10.1016/j.celrep.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022] Open
Abstract
Bone metabolism depends on the balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases like osteoporosis are characterized by increased bone destruction due to partially enhanced osteoclastogenesis. Here, we report that the post-translational SUMO modification is critical for regulating osteoclastogenesis. The expression of the SUMO-specific protease SENP3 is downregulated in osteoclast precursors during osteoclast differentiation. Mice with SENP3 deficiency in bone marrow-derived monocytes (BMDMs) exhibit more severe bone loss due to over-activation of osteoclasts after ovariectomy. Deleting SENP3 in BMDMs promotes osteoclast differentiation. Mechanistically, loss of SENP3 increases interferon regulatory factor 8 (IRF8) SUMO3 modification at the K310 amino acid site, which upregulates expression of the nuclear factor of activated T cell c1 (NFATc1) and osteoclastogenesis. In summary, IRF8 de-SUMO modification mediated by SENP3 suppresses osteoclast differentiation and suggests strategies to treat bone loss diseases.
Collapse
Affiliation(s)
- Yongxing Zhang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yimin Lao
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xuxu Sun
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
32
|
Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang Y, Zeng Z, Yan L, Zhao Y, Shi J. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. SCIENCE ADVANCES 2021; 7:7/4/eabc5539. [PMID: 33523920 PMCID: PMC7817101 DOI: 10.1126/sciadv.abc5539] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/01/2020] [Indexed: 05/31/2023]
Abstract
Annexin-A1 (ANXA1) has recently been proposed to play a role in microglial activation after brain ischemia, but the underlying mechanism remains poorly understood. Here, we demonstrated that ANXA1 is modified by SUMOylation, and SUMOylated ANXA1 could promote the beneficial phenotype polarization of microglia. Mechanistically, SUMOylated ANXA1 suppressed nuclear factor κB activation and the production of proinflammatory mediators. Further study revealed that SUMOylated ANXA1 targeted the IκB kinase (IKK) complex and selectively enhanced IKKα degradation. Simultaneously, we detected that SUMOylated ANXA1 facilitated the interaction between IKKα and NBR1 to promote IKKα degradation through selective autophagy. Further work revealed that the overexpression of SUMOylated ANXA1 in microglia/macrophages resulted in marked improvement in neurological function in a mouse model of cerebral ischemia. Collectively, our study demonstrates a previously unidentified mechanism whereby SUMOylated ANXA1 regulates microglial polarization and strongly indicates that up-regulation of ANXA1 SUMOylation in microglia may provide therapeutic benefits for cerebral ischemia.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qian Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meng Mao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huijuan Zhou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yi Wang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhen Zeng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lulu Yan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
33
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
34
|
Yang P, Liu Y, Qi YC, Lian ZH. High SENP3 Expression Promotes Cell Migration, Invasion, and Proliferation by Modulating DNA Methylation of E-Cadherin in Osteosarcoma. Technol Cancer Res Treat 2020; 19:1533033820956988. [PMID: 33030103 PMCID: PMC7549150 DOI: 10.1177/1533033820956988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SENP3, a sentrin/SUMO2/3-specific protease, is recognized as a transcriptional factor that accumulates under cellular oxidative stress and plays a significant role in the removal of SUMO2/3 modification. In our study, we examined a TCGA dataset and found that the transcripts per million (TPM) value of SENP3 is high in sarcoma, including osteosarcoma (OS). We found that SENP3 was highly expressed in OS cancer tissues when compared with osteofibrous dysplasia tissues. The survival data of SENP3 in TCGA showed that the sarcoma patients with higher SENP3 expression levels showed poor prognosis. In vitro, SENP3 knockdown in OS cancer cells inhibited cell proliferation, migration, and invasion and induced apoptosis. In contrast, SENP3 overexpression reversed these effects. Next, we found that SENP3 inhibited the expression of E-cadherin (E-Cad) by increasing methylation of the E-Cad promoter. Finally, E-Cad expression was increased in the OS cell line MG63 following methylation, and the cell proliferation, migration, and invasion capacity were decreased. In summary, SENP3 played a significant role in OS carcinogenesis and may act as a potential biomarker in the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Pu Yang
- Postdoctoral Research Station of Clinical Medicine & Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, Hunan, PR China
| | - Yan Liu
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| | - Yin Chao Qi
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| | - Zhang Hong Lian
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| |
Collapse
|
35
|
Yu X, Chen D, Wang L, Li J, Khan K, Chen H, Liang Y, Luo H, Qiu C. Wogonoside inhibits inflammatory cytokine production in lipopolysaccharide-stimulated macrophage by suppressing the activation of the JNK/c-Jun signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:532. [PMID: 32411755 PMCID: PMC7214906 DOI: 10.21037/atm.2020.04.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Mediated by innate immune cells, inflammation is an underlying presence in the pathogenesis of numerous pulmonary diseases. Macrophages play a critical role in mediating the initial response to infection in the lungs. When there is excessive activation of macrophages, hyper-production of inflammatory factors occurs, with inflammation as the ultimate result. Wogonoside, a bioactive flavonoid glycoside, has been reported to alleviate pulmonary inflammation. However, the mechanism underlying the anti-inflammatory effect of wogonoside has not yet been clarified. Methods The productions of nitric oxide (NO) and reactive oxygen species (ROS) were determined using a Griess reagent kit and a DAF-FM DA fluorescent probe, respectively. Moreover, the mRNA levels of inflammatory factors were quantified by qPCR, and the binding ability of c-Jun to promoters of inflammatory factors was performed by ChIP assay. Western blot was employed to detect the protein expression of inflammatory factors and signaling pathway. Results In this study, we found that pre-treatment with wogonoside dramatically suppressed lipopolysaccharide (LPS)-induced increase in the protein and mRNA levels of inflammatory factors in macrophages, such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6. Furthermore, wogonoside profoundly reduced the increase in NO and ROS production and significantly blocked phosphorylation of JNK in LPS-stimulated macrophages. As revealed by Western blot and qPCR analysis, wogonoside mediated the JNK-dependent inhibitory effect. Compared with wogonoside alone, a combination of wogonoside and JNK inhibitor SP600125 provided no extra benefit in suppressing the protein expression and mRNA levels of inflammatory factors in LPS-stimulated macrophages. Additionally, ChIP analysis demonstrated wogonoside to remarkably reduce c-Jun enrichment in COX-2, iNOS, IL-1β, TNF-α, and IL-6 promoters. Conclusions Collectively, our findings showed that wogonoside notably suppresses LPS-stimulated production of inflammatory factors by repressing the activation of the JNK/c-Jun signaling pathway in macrophages. This suggests that wogonoside could serve as a promising therapeutic agent for pulmonary diseases related to macrophage inflammation.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Dandan Chen
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Lingwei Wang
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Jie Li
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Khalid Khan
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Haihui Chen
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Yutian Liang
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| |
Collapse
|
36
|
Chen X, Lao Y, Yi J, Yang J, He S, Chen Y. SENP3 in monocytes/macrophages up-regulates tissue factor and mediates lipopolysaccharide-induced acute lung injury by enhancing JNK phosphorylation. J Cell Mol Med 2020; 24:5454-5462. [PMID: 32237051 PMCID: PMC7214145 DOI: 10.1111/jcmm.15199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
The mechanisms underlying coagulation abnormalities in sepsis and septic acute lung injury remain unclear. Tissue factor (TF) initiates coagulation; its production can be regulated by reactive oxygen species (ROS); and monocytes/macrophages produce pathological TF during sepsis. The SUMO2/3 protease SENP3 is redox‐sensitive, and SENP3 accumulation in lipopolysaccharide (LPS)‐activated macrophages is ROS‐dependent. To explore whether SENP3 contributes to LPS‐activated coagulation, we used mice with Senp3 conditional knockout (cKO) in myeloid cells. In the model of LPS‐induced sepsis, SENP3 cKO mice exhibited less severe acute lung injury than SENP3 fl/fl mice. SENP3 cKO mice exhibited decreased TF expression in monocytes and alveolar macrophages, with consequently compromised coagulation in their blood and lungs. In vitro results showed that ROS‐induced SENP3 accumulation contributed to LPS‐induced TF expression, which was reduced by JNK inhibitor SP600125. Furthermore, mice injected with LPS following SP600125 (75 mg/kg) treatment showed decreased monocytes/macrophages TF production and alleviated coagulation activation, with less severe lung injury and higher survival rates. Collectively, the results suggest that SENP3 mediates LPS‐induced coagulation activation by up‐regulating monocyte/macrophage TF production in a JNK‐dependent manner. This work provides new insights into ROS regulation of LPS‐activated coagulation and reveals a link between SUMOylation and coagulation.
Collapse
Affiliation(s)
- Xuelian Chen
- Emergency Department, South Campus, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimin Lao
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yi
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangjun He
- Emergency Department, South Campus, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Chen
- Emergency Department, South Campus, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
García-Revilla J, Alonso-Bellido IM, Burguillos MA, Herrera AJ, Espinosa-Oliva AM, Ruiz R, Cruz-Hernández L, García-Domínguez I, Roca-Ceballos MA, Santiago M, Rodríguez-Gómez JA, Soto MS, de Pablos RM, Venero JL. Reformulating Pro-Oxidant Microglia in Neurodegeneration. J Clin Med 2019; 8:E1719. [PMID: 31627485 PMCID: PMC6832973 DOI: 10.3390/jcm8101719] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
In neurodegenerative diseases, microglia-mediated neuroinflammation and oxidative stress are central events. Recent genome-wide transcriptomic analyses of microglial cells under different disease conditions have uncovered a new subpopulation named disease-associated microglia (DAM). These studies have challenged the classical view of the microglia polarization state's proinflammatory M1 (classical activation) and immunosuppressive M2 (alternative activation). Molecular signatures of DAM and proinflammatory microglia (highly pro-oxidant) have shown clear differences, yet a partial overlapping gene profile is evident between both phenotypes. The switch activation of homeostatic microglia into reactive microglia relies on the selective activation of key surface receptors involved in the maintenance of brain homeostasis (a.k.a. pattern recognition receptors, PRRs). Two relevant PRRs are toll-like receptors (TLRs) and triggering receptors expressed on myeloid cells-2 (TREM2), whose selective activation is believed to generate either a proinflammatory or a DAM phenotype, respectively. However, the recent identification of endogenous disease-related ligands, which bind to and activate both TLRs and TREM2, anticipates the existence of rather complex microglia responses. Examples of potential endogenous dual ligands include amyloid β, galectin-3, and apolipoprotein E. These pleiotropic ligands induce a microglia polarization that is more complicated than initially expected, suggesting the possibility that different microglia subtypes may coexist. This review highlights the main microglia polarization states under disease conditions and their leading role orchestrating oxidative stress.
Collapse
Affiliation(s)
- Juan García-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Isabel M Alonso-Bellido
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Miguel A Burguillos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Antonio J Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Ana M Espinosa-Oliva
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Luis Cruz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - María A Roca-Ceballos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Marti Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José A Rodríguez-Gómez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Departament of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain.
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - Rocío M de Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| | - José L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain.
| |
Collapse
|
38
|
Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J, Yi J. A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy 2019; 16:975-990. [PMID: 31373534 DOI: 10.1080/15548627.2019.1647944] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The roles of SUMOylation and the related enzymes in autophagic regulation are unclear. Based on our previous studies that identified the SUMO2/3-specific peptidase SENP3 as an oxidative stress-responsive molecule, we investigated the correlation between SUMOylation and macroautophagy/autophagy. We found that Senp3± mice showed increased autophagy in the liver under basal and fasting conditions, compared to Senp3+/+ mice. We constructed a liver-specific senp3 knockout mouse; these Senp3-deficient liver tissues showed increased autophagy as well. Autophagic flux was accelerated in hepatic and other cell lines following knockdown of SENP3, both before and after the cells underwent starvation in the form of the serum and amino acid deprivation. We demonstrated that BECN1/beclin 1, the core molecule of the BECN1-PIK3C3 complex, could be SUMO3-conjugated by PIAS3 predominantly at K380 and deSUMOylated by SENP3. The basal SUMOylation of BECN1 was increased upon cellular starvation, which enhanced autophagosome formation by facilitating BECN1 interaction with other complex components UVRAG, PIK3C3 and ATG14, thus promoting PIK3C3 activity. In contrast, SENP3 deSUMOylated BECN1, which impaired BECN1-PIK3C3 complex formation or stability to suppress the PIK3C3 activity. DeSUMOylation of BECN1 restrained autophagy induction under basal conditions and especially upon starvation when SENP3 had accumulated in response to the increased generation of reactive oxygen species. Thus, while reversible SUMOylation regulated the degree of autophagy, SENP3 provided an intrinsic overflow valve for fine-tuning autophagy induction. ABBREVIATIONS AL: autolysosome; AP: autophagosome; ATG: autophagy related; ATG14: autophagy related 14; BECN1: beclin 1, autophagy related; cKO: conditional knockout; co-IP: co-immunoprecipitation; CQ: chloroquine; EBSS: Earle's balanced salt solution; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NAC: N-acetyl-L-cysteine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PTM: post-translational modification; RFP: red fluorescent protein; ROS: reactive oxygen species; RUBCN/rubicon: RUN domain and cysteine-rich domain containing, BECN1-interacting protein; SENP3: SUMO specific peptidase 3; shRNA: small hairpin RNA; siRNA: small interfering RNA; SQSTM1: sequestosome 1; SUMO: small ubiquitin-like modifier; UVRAG: UV radiation resistance associated gene.
Collapse
Affiliation(s)
- Kejia Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Chu Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yimin Lao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jie Yang
- Electron Microscopy Core Facilities, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Fei Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai, China.,CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
39
|
Chang MR, Ciesla A, Strutzenberg TS, Novick SJ, He Y, Garcia-Ordonez RD, Frkic RL, Bruning JB, Kamenecka TM, Griffin PR. Unique Polypharmacology Nuclear Receptor Modulator Blocks Inflammatory Signaling Pathways. ACS Chem Biol 2019; 14:1051-1062. [PMID: 30951276 DOI: 10.1021/acschembio.9b00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity and rheumatic disease are mechanistically linked via chronic inflammation. The orphan receptor TREM-1 (triggering receptor expressed on myeloid cells-1) is a potent amplifier of proinflammatory and noninfectious immune responses. Here, we show that the pan modulator SR1903 effectively blocks TREM-1 activation. SR1903 emerged from a chemical series of potent RORγ inverse agonists, although unlike close structural analogues, it has modest agonist activity on LXR and weak repressive activity (inverse agonism) of PPARγ, three receptors that play essential roles in inflammation and metabolism. The anti-inflammatory and antidiabetic efficacy of this unique modulator in collagen-induced arthritis and diet-induced obesity mouse models is demonstrated. Interestingly, in the context of obesity, SR1903 aided in the maintenance of the thymic homeostasis unlike selective RORγ inverse agonists. SR1903 was well-tolerated following chronic administration, and combined, these data suggest that it may represent a viable strategy for treatment of both metabolic and inflammatory disease. More importantly, the ability of SR1903 to block LPS signaling suggests the potential utility of this unique polypharmacological modulator for treatment of innate immune response disorders.
Collapse
Affiliation(s)
- Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Anthony Ciesla
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Timothy S. Strutzenberg
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Scott J. Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ruben D. Garcia-Ordonez
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Rebecca L. Frkic
- Institute for Photonics & Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Institute for Photonics & Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
40
|
Sawyer IA, Bartek J, Dundr M. Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Semin Cell Dev Biol 2018; 90:94-103. [PMID: 30017905 DOI: 10.1016/j.semcdb.2018.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
Proteins and RNAs inside the cell nucleus are organized into distinct phases, also known as liquid-liquid phase separated (LLPS) droplet organelles or nuclear bodies. These regions exist within the spaces between chromatin-rich regions but their function is tightly linked to gene activity. They include major microscopically-observable structures such as the nucleolus, paraspeckle and Cajal body. The biochemical and assembly factors enriched inside these microenvironments regulate chromatin structure, transcription, and RNA processing, and other important cellular functions. Here, we describe published evidence that suggests nuclear bodies are bona fide LLPS droplet organelles and major regulators of the processes listed above. We also outline an updated "Supply or Sequester" model to describe nuclear body function, in which proteins or RNAs are supplied to surrounding genomic regions or sequestered away from their sites of activity. Finally, we describe recent evidence that suggests these microenvironments are both reflective and drivers of diverse pathophysiological states.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jiri Bartek
- Danish Cancer, Society Research Center, Genome Integrity Unit, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States.
| |
Collapse
|