1
|
Sturrock GR, Robison ATR, Dharani A, Monson EE, Franz KJ, Fitzgerald MC. Extrinsic and intrinsic factors affect copper-induced protein precipitation across eukaryotic and prokaryotic proteomes. Protein Sci 2025; 34:e70158. [PMID: 40371726 PMCID: PMC12079486 DOI: 10.1002/pro.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
The susceptibility of a protein to aggregation upon exposure to copper ions (Cu) has been recognized as a contributor to Cu-induced cellular dysfunction and toxicity. Different cell types succumb to Cu to varying degrees, indicating innate differences between species in the mechanisms used to tolerate exposure to Cu in excess of their biological needs. Investigated here are properties associated with metal-induced protein precipitation (MiPP) compared across cell lysates generated from three cell lines from three different species: Escherichia coli, Candida albicans, and the human prostate cancer cell line 22Rv1. The human cell line was the most sensitive to Cu-induced protein precipitation, while C. albicans was the most tolerant. This trend aligns with the relative susceptibilities of these cells to Cu-induced cytotoxicity. The unique susceptibilities of these proteomes to precipitation by Cu were examined to identify factors that influence a protein's relative sensitivity to this effect. Identified were intrinsic factors such as frequency and solvent accessibility of known metal-binding amino acids, as well as external factors related to the molecular composition of their native cell lysates. Overall, our findings help to elucidate the biomolecular basis underpinning the unique capacity of adventitious Cu to have differential effects on eukaryotic and prokaryotic organisms and the level of Cu needed to induce protein precipitation.
Collapse
Affiliation(s)
| | | | - Azim Dharani
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUSA
| | - Eric E. Monson
- Center for Data and Visualization SciencesDuke UniversityDurhamNorth CarolinaUSA
| | | | | |
Collapse
|
2
|
Lane AR, Roberts BR, Fahrni CJ, Faundez V. A primer on copper biology in the brain. Neurobiol Dis 2025; 212:106974. [PMID: 40414313 DOI: 10.1016/j.nbd.2025.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025] Open
Abstract
This primer aims to expose scientists who study the brain to the field of copper biology. We briefly discuss key copper homeostasis mechanisms and proteins and place these functions in the context of the brain and neurodevelopment. A small number of key copper genes are explored as representative examples of the importance of this metal to the brain. We show that these genes are expressed throughout the brain and their defects are linked to a diverse array of neurological phenotypes, which we discuss further in the context of several neurological and neurodegenerative diseases associated with dysregulation of copper. This review aims to expose interested scientists to the fundamental roles for copper in the brain, the primary proteins responsible for maintaining copper homeostasis in the brain, and the classic neurological diseases associated with this metal.
Collapse
Affiliation(s)
- Alicia R Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA 30322, USA.
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, GA 30322, USA.
| | - Christoph J Fahrni
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Zhao Z, Lucero MY, Su S, Chaney EJ, Xu JJ, Myszka M, Chan J. Activity-based sensing reveals elevated labile copper promotes liver aging via hepatic ALDH1A1 depletion. Nat Commun 2025; 16:1794. [PMID: 39979263 PMCID: PMC11842552 DOI: 10.1038/s41467-025-56585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Oxidative stress plays a key role in aging and related diseases, including neurodegeneration, cancer, and organ failure. Copper (Cu), a redox-active metal ion, generates reactive oxygen species (ROS), and its dysregulation contributes to aging. Here, we develop activity-based imaging probes for the sensitive detection of Cu(I) and show that labile hepatic Cu activity increases with age, paralleling a decline in ALDH1A1 activity, a protective hepatic enzyme. We also observe an age-related decrease in hepatic glutathione (GSH) activity through noninvasive photoacoustic imaging. Using these probes, we perform longitudinal studies in aged mice treated with ATN-224, a Cu chelator, and demonstrate that this treatment improves Cu homeostasis and preserves ALDH1A1 activity. Our findings uncover a direct link between Cu dysregulation and aging, providing insights into its role and offering a therapeutic strategy to mitigate its effects.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, and Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, and Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shengzhang Su
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, and Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, and Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jiajie Jessica Xu
- Animal Care program, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Myszka
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jefferson Chan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, and Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Müller S, Cañeque T, Solier S, Rodriguez R. Copper and iron orchestrate cell-state transitions in cancer and immunity. Trends Cell Biol 2025; 35:105-114. [PMID: 39079798 DOI: 10.1016/j.tcb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 02/09/2025]
Abstract
Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France; Department of Genetics, Institut Curie, Paris, France; Paris Saclay University, UVSQ, Montigny-le-Bretonneux, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France.
| |
Collapse
|
5
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
6
|
Clough SE, Young TR, Tarrant E, Scott AJP, Chivers PT, Glasfeld A, Robinson NJ. A metal-trap tests and refines blueprints to engineer cellular protein metalation with different elements. Nat Commun 2025; 16:810. [PMID: 39827241 PMCID: PMC11742986 DOI: 10.1038/s41467-025-56199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
It has been challenging to test how proteins acquire specific metals in cells. The speciation of metalation is thought to depend on the preferences of proteins for different metals competing at intracellular metal-availabilities. This implies mis-metalation may occur if proteins become mis-matched to metal-availabilities in heterologous cells. Here we use a cyanobacterial MnII-cupin (MncA) as a metal trap, to test predictions of metalation. By re-folding MncA in buffered competing metals, metal-preferences are determined. Relating metal-preferences to metal-availabilities estimated using cellular metal sensors, predicts mis-metalation of MncA with FeII in E. coli. After expression in E. coli, predominantly FeII-bound MncA is isolated experimentally. It is predicted that in metal-supplemented viable cells metal-MncA speciation should switch. MnII-, CoII-, or NiII-MncA are recovered from the respective metal-supplemented cells. Differences between observed and predicted metal-MncA speciation are used to refine estimated metal availabilities. Values are provided as blueprints to guide engineering biological protein metalation.
Collapse
Affiliation(s)
- Sophie E Clough
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Tessa R Young
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Emma Tarrant
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Andrew J P Scott
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Peter T Chivers
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Arthur Glasfeld
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, Durham, UK.
- Department of Chemistry, University of Durham, Durham, UK.
| |
Collapse
|
7
|
Falcone E, Vigna V, Schueffl H, Stellato F, Vileno B, Bouraguba M, Mazzone G, Proux O, Morante S, Heffeter P, Sicilia E, Faller P. When Metal Complexes Evolve, and a Minor Species is the Most Active: the Case of Bis(Phenanthroline)Copper in the Catalysis of Glutathione Oxidation and Hydroxyl Radical Generation. Angew Chem Int Ed Engl 2025; 64:e202414652. [PMID: 39363702 PMCID: PMC11720388 DOI: 10.1002/anie.202414652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Several copper-ligands, including 1,10-phenanthroline (Phen), have been investigated for anticancer purposes based on their capacity to bind excess copper (Cu) in cancer tissues and form redox active complexes able to catalyse the formation of reactive oxygen species (ROS), ultimately leading to oxidative stress and cell death. Glutathione (GSH) is a critical compound as it is highly concentrated intracellularly and can reduce and dissociate copper(II) from the ligand forming poorly redox-active copper(I)-thiolate clusters. Here we report that Cu-Phen2 speciation evolves in physiologically relevant GSH concentrations. Experimental and computational experiments suggest that at pH 7.4 mostly copper(I)-GSH clusters are formed, but a minor species of copper(I) bound to one Phen and forming ternary complexes with GSH (GS-Cu-Phen) is the redox active species, oxidizing quite efficiently GSH to GSSG and forming HO⋅ radicals. This minor active species becomes more populated at lower pH, such as typical lysosomal pH 5, resulting in faster GSH oxidation and HO⋅ production. Consistently, cell culture studies showed lower toxicity of Cu-Phen2 upon inhibition of lysosomal acidification. Overall, this study underscores that sub-cellular localisation can considerably influence the speciation of Cu-based drugs and that minor species can be the most redox- and biologically-active.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177)University of Strasbourg, CNRS4 Rue Blaise Pascal67081StrasbourgFrance
- current address: Laboratoire de Chimie de Coordination (UPR 8142)CNRS31077ToulouseFrance
| | - Vincenzo Vigna
- Department of Chemistry and Chemical TechnologiesUniversità della Calabria87036Arcavacata di RendeCSItaly
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of Vienna1090ViennaAustria
| | - Francesco Stellato
- Department of PhysicsUniversità di Roma Tor VergataVia della Ricerca Scientifica 100133RomaItaly
- INFNUniversità di Roma Tor VergataVia della Ricerca Scientifica 100133RomaItaly
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177)University of Strasbourg, CNRS4 Rue Blaise Pascal67081StrasbourgFrance
| | - Merwan Bouraguba
- Institut de Chimie (UMR 7177)University of Strasbourg, CNRS4 Rue Blaise Pascal67081StrasbourgFrance
| | - Gloria Mazzone
- Department of Chemistry and Chemical TechnologiesUniversità della Calabria87036Arcavacata di RendeCSItaly
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble, UAR 832CNRS-Université Grenoble Alpes38041GrenobleFrance
| | - Silvia Morante
- Department of PhysicsUniversità di Roma Tor VergataVia della Ricerca Scientifica 100133RomaItaly
- INFNUniversità di Roma Tor VergataVia della Ricerca Scientifica 100133RomaItaly
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of Vienna1090ViennaAustria
| | - Emilia Sicilia
- Department of Chemistry and Chemical TechnologiesUniversità della Calabria87036Arcavacata di RendeCSItaly
| | - Peter Faller
- Institut de Chimie (UMR 7177)University of Strasbourg, CNRS4 Rue Blaise Pascal67081StrasbourgFrance
- Institut Universitaire de France (IUF)1 rue Descartes75231ParisFrance
| |
Collapse
|
8
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Quinn CF, Wilcox DE. Thermodynamic origin of the affinity, selectivity, and domain specificity of metallothionein for essential and toxic metal ions. Metallomics 2024; 16:mfae041. [PMID: 39289027 DOI: 10.1093/mtomcs/mfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition.
Collapse
Affiliation(s)
- Colette F Quinn
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
- Waters | Wyatt Technology Corporation, 6330 Hollister Avenue, Goleta, CA 93117, USA
| | - Dean E Wilcox
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
10
|
Wang W, Wang T, Chen S, Lv Y, Salmon L, Espuche B, Moya S, Morozova O, Yun Y, Di Silvio D, Daro N, Berlande M, Hapiot P, Pozzo JL, Yu H, Hamon JR, Astruc D. Cu(I)-Glutathione Assembly Supported on ZIF-8 as Robust and Efficient Catalyst for Mild CO 2 Conversions. Angew Chem Int Ed Engl 2024; 63:e202407430. [PMID: 38884885 DOI: 10.1002/anie.202407430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT calculation, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.
Collapse
Affiliation(s)
- Wenjuan Wang
- University of Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405, Talence Cedex, France
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| | - Tiansheng Wang
- University of Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405, Talence Cedex, France
- LCC, CNRS UPR 8241 &, University of Toulouse, 31077, Toulouse Cedex, France
| | - Shuang Chen
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Ying Lv
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Lionel Salmon
- LCC, CNRS UPR 8241 &, University of Toulouse, 31077, Toulouse Cedex, France
| | - Bruno Espuche
- Soft Matter Nanotechnology Lab, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Gipuzkoa, Spain
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Oksana Morozova
- Soft Matter Nanotechnology Lab, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Yapei Yun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Desiré Di Silvio
- CIC biomaGUNE, Paseo Miramón 194, 20014, Donostia/San Sebastián, Gipuzkoa, Spain
| | - Nathalie Daro
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Murielle Berlande
- University of Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405, Talence Cedex, France
| | - Philippe Hapiot
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| | - Jean-Luc Pozzo
- University of Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405, Talence Cedex, France
| | - Haizhu Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Jean-René Hamon
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405, Talence Cedex, France
| |
Collapse
|
11
|
Teng X, Stefaniak E, Willison KR, Ying L. Interplay between Copper, Phosphatidylserine, and α-Synuclein Suggests a Link between Copper Homeostasis and Synaptic Vesicle Cycling. ACS Chem Neurosci 2024; 15:2884-2896. [PMID: 39013013 PMCID: PMC11311125 DOI: 10.1021/acschemneuro.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ewelina Stefaniak
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| | - Keith R. Willison
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
12
|
Cheng R, Nishikawa Y, Wagatsuma T, Kambe T, Tanaka YK, Ogra Y, Tamura T, Hamachi I. Protein-Labeling Reagents Selectively Activated by Copper(I). ACS Chem Biol 2024; 19:1222-1228. [PMID: 38747299 DOI: 10.1021/acschembio.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper is an essential trace element that participates in many biological processes through its unique redox cycling between cuprous (Cu+) and cupric (Cu2+) oxidation states. To elucidate the biological functions of copper, chemical biology tools that enable selective visualization and detection of copper ions and proteins in copper-rich environments are required. Herein, we describe the design of Cu+-responsive reagents based on a conditional protein labeling strategy. Upon binding Cu+, the probes generated quinone methide via oxidative bond cleavage, which allowed covalent labeling of surrounding proteins with high Cu+ selectivity. Using gel- and imaging-based analyses, the best-performing probe successfully detected changes in the concentration of labile Cu+ in living cells. Moreover, conditional proteomics analysis suggested intramitochondrial Cu+ accumulation in cells undergoing cuproptosis. Our results highlight the power of Cu+-responsive protein labeling in providing insights into the molecular mechanisms of Cu+ metabolism and homeostasis.
Collapse
Affiliation(s)
- Rong Cheng
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
13
|
Doumi I, Lang L, Vileno B, Deponte M, Faller P. Glutathione Protects other Cellular Thiols against Oxidation by Cu II-Dp44mT. Chemistry 2024; 30:e202304212. [PMID: 38408264 DOI: 10.1002/chem.202304212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.
Collapse
Affiliation(s)
- Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
14
|
Sullivan MJ, Terán I, Goh KG, Ulett GC. Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria. Emerg Top Life Sci 2024; 8:45-56. [PMID: 38362914 PMCID: PMC10903455 DOI: 10.1042/etls20230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Ignacio Terán
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
15
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202313063. [PMID: 38515866 PMCID: PMC10953330 DOI: 10.1002/ange.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
16
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. Angew Chem Int Ed Engl 2023; 62:e202313063. [PMID: 37906440 PMCID: PMC10952886 DOI: 10.1002/anie.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
17
|
Kim JE, Jeon S, Lindahl PA. Discovery of an unusual copper homeostatic mechanism in yeast cells respiring on minimal medium and an unexpectedly diverse labile copper pool. J Biol Chem 2023; 299:105435. [PMID: 37944620 PMCID: PMC10704325 DOI: 10.1016/j.jbc.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Copper is essential for all eukaryotic cells but many details of how it is trafficked within the cell and how it is homeostatically regulated remain uncertain. Here, we characterized the copper content of cytosol and mitochondria using liquid chromatography with ICP-MS detection. Chromatograms of cytosol exhibited over two dozen peaks due to copper proteins and coordination complexes. Yeast cells respiring on minimal media did not regulate copper import as media copper concentration increased; rather, they imported copper at increasing rates while simultaneously increasing the expression of metallothionein CUP1 which then sequestered most of the excessive imported copper. Peak intensities due to superoxide dismutase SOD1, other copper proteins, and numerous coordination complexes also increased, but not as drastically. The labile copper pool was unexpectedly diverse and divided into two groups. One group approximately comigrated with copper-glutathione, -cysteine, and -histidine standards; the other developed only at high media copper concentrations and at greater elution volumes. Most cytosolic copper arose from copper-bound proteins, especially CUP1. Cytosol contained an unexpectedly high percentage of apo-copper proteins and apo-coordination complexes. Copper-bound forms of non-CUP1 proteins and complexes coexisted with apo-CUP1 and with the chelator BCS. Both experiments suggest unexpectedly stable-binding copper proteins and coordination complexes in cytosol. COX17Δ cytosol chromatograms were like those of WT cells. Chromatograms of soluble mitochondrial extracts were obtained, and mitoplasting helped distinguish copper species in the intermembrane space versus in the matrix/inner membrane. Issues involving the yeast copperome, copper homeostasis, labile copper pool, and copper trafficking are discussed.
Collapse
Affiliation(s)
- Joshua E Kim
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Seoyoung Jeon
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
18
|
Faizullin BA, Dayanova IR, Kurenkov AV, Gubaidullin AT, Saifina AF, Nizameev IR, Kholin KV, Khrizanforov MN, Sirazieva AR, Litvinov IA, Voloshina AD, Lyubina AP, Sibgatullina GV, Samigullin DV, Musina EI, Strelnik ID, Karasik AA, Mustafina AR. ROS-producing nanomaterial engineered from Cu(I) complexes with P 2N 2-ligands for cancer cells treating. DISCOVER NANO 2023; 18:133. [PMID: 37903946 PMCID: PMC10616039 DOI: 10.1186/s11671-023-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.
Collapse
Affiliation(s)
- Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088.
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexey V Kurenkov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Irek R Nizameev
- Department of Physics, Kazan National Research Technological University, 68 Karl Marx Str., Kazan, Russia, 420015
| | - Kirill V Kholin
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Mikhail N Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Aisylu R Sirazieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
| | - Dmitry V Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| |
Collapse
|
19
|
Stone DJ, Macias-Contreras M, Crist SM, Bucag CFT, Seo G, Zhu L. SNAP-tagging live cells via chelation-assisted copper-catalyzed azide-alkyne cycloaddition. Org Biomol Chem 2023; 21:7419-7436. [PMID: 37665276 DOI: 10.1039/d3ob01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
SNAP-tag is a single-turnover enzyme that has become a powerful tool, hence a popular choice, of targeted cellular protein labeling. Three SNAP-tag substrates that carry the copper-chelating 2-picolyl azide moiety are prepared, one of which has an unconventional 5-pyridylmethyl-substituted guanine structure, rather than the usual benzylguanine that is optimized to be accepted by SNAP-tag. All three substrates are effective in transferring a 2-picolyl azide moiety to SNAP-tag in live cells under conventional labeling conditions (30-minute incubation of cells with labeling reagents at 37 °C under 5% CO2). Live cells that are decorated with chelating azido groups on the extracellular side of membranes undergo copper-catalyzed azide-alkyne cycloaddition (CuAAC) with an ethynyl-functionalized fluorophore to accomplish membrane protein labeling by a fluorescent dye. The chelation-assisted CuAAC labeling step is rapid (<1 minute) with a relatively low dose of the copper catalyst (20 μM), and consequently exerts no ill effect on the labeled cells. A SNAP-tag substrate that carries a non-chelating azide moiety, on the other hand, fails to produce satisfactory labeling under the same constraints. The rapid, live cell-compatible SNAP-tag/chelation-assisted CuAAC two-step method expands the utility of SNAP-tag in protein labeling applications.
Collapse
Affiliation(s)
- Daniel J Stone
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Miguel Macias-Contreras
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Shaun M Crist
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Christelle F T Bucag
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Gwimoon Seo
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
20
|
Melenbacher A, Stillman MJ. Cu(I) binds to Zn7-MT2 via two parallel pathways. Metallomics 2023; 15:mfad053. [PMID: 37699789 DOI: 10.1093/mtomcs/mfad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Metallothionein proteins are essential for Cu(I) and Zn(II) homeostasis as well as heavy metal detoxification. The metallation properties of MT2 are of great interest due to their wide patterns of expression and correlation with multiple diseases including cancers, neurological disorders, and respiratory diseases. Use of isotopically pure 63Cu(I) and 68Zn(II) eliminates the complexity of the Cu, Zn-MT2 mass spectral peaks due to significant overlap of naturally abundant isotopes. This allows for the resolution of the precise Cu(I) and Zn(II) stoichiometries when both Cu(I) and Zn(II) are bound to MT2 at physiological pH as expected in vivo. Exact Cu: Zn ratios were determined from mass spectral simulations carried out for every point in the titration. We report that Cu(I) metallation of Zn7-MT2 can only be understood in terms of two pathways occurring in parallel with pathway ① resulting in Cu5Zn5-MT2 and Cu9Zn3-MT2. Pathway ② results in Cu6Zn4-MT2 and Cu10Zn2-MT2, which are the major products of the reaction. From the electrospray ionization (ESI)-mass spectral data we report a series of formation constants (KF) for species starting from Zn7-MT2 up to Cu11Zn2-MT2. Room temperature phosphorescence and circular dichroism (CD) spectra were measured in parallel with the ESI-mass spectrometry data allowing for the assignment of specific species to specific spectral bands. Through analysis of the CD spectral bands, we propose that Cu(I) binds to the β domain first to form a Cu5Zn1 cluster or Cu6 cluster with emission at 670 and 750 nm, respectively, leaving the Zn4 cluster in the α domain.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Melenbacher A, Stillman MJ. Metallothionein-3: 63 Cu(I) binds to human 68 Zn 7 -βα MT3 with no preference for Cu 4 -β cluster formation. FEBS J 2023; 290:4316-4341. [PMID: 37165729 DOI: 10.1111/febs.16812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Human metallothioneins (MTs) are involved in binding the essential elements, Cu(I) and Zn(II), and the toxic element, Cd(II), in metal-thiolate clusters using 20 reduced cysteines. The brain-specific MT3 binds a mixture of Cu(I) and Zn(II) in vivo. Its metallation properties are critically important because of potential connections between Cu, Zn and neurodegenerative diseases. We report that the use of isotopically pure 63 Cu(I) and 68 Zn(II) greatly enhances the element resolution in the ESI-mass spectral data revealing species with differing Cu:Zn ratios but the same total number of metals. Room temperature phosphorescence and circular dichroism spectral data measured in parallel with ESI-mass spectral data identified the presence of specific Cu(I)-thiolate clusters in the presence of Zn(II). A series of Cu(I)-thiolate clusters form following Cu(I) addition to apo MT3: the two main clusters that form are a Cu6 cluster in the β domain followed by a Cu4 cluster in the α domain. 63 Cu(I) addition to 68 Zn7 -MT3 results in multiple species, including clustered Cu5 Zn5 -MT3 and Cu9 Zn3 -MT3. We assign the domain location of the metals for Cu5 Zn5 -MT3 as a Cu5 Zn1 -β cluster and a Zn4 -α cluster and for Cu9 Zn3 -MT3 as a Cu6 -β cluster and a Cu3 Zn3 -α cluster. While many reports of the average MT3 metal content exist, determining the exact Cu,Zn stoichiometry has proven very difficult even with native ESI-MS. The work in this paper solves the ambiguity introduced by the overlap of the naturally abundant Cu(I) and Zn(II) isotopes. Contrary to other reports, there is no indication of a major fraction of Cu4 -β-Znn -α-MT3 forming.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
22
|
Zimmeter K, Vileno B, Platas-Iglesias C, Vinjamuri B, Sour A, Faller P. Derivatization of the Peptidic Xxx-Zzz-His Motif toward a Ligand with Attomolar Cu II Affinity under Maintaining High Selectivity and Fast Redox Silencing. Inorg Chem 2023. [PMID: 37269299 DOI: 10.1021/acs.inorgchem.3c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cu chelation in biological systems is of interest as a tool to study the metabolism of this essential metal or for applications in the case of diseases with a systemic or local Cu overload, such as Wilson's or Alzheimer's disease. The choice of the chelating agent must meet several criteria. Among others, affinities and kinetics of metal binding and related metal selectivity are important parameters of the chelators to consider. Here, we report on the synthesis and characterization of Cu-binding properties of two ligands, L1 and L2, derivatives of the well-known peptidic CuII-binding motif Xxx-Zzz-His (also called ATCUN), where CuII is bound to the N-terminal amine, two amidates, and the imidazole. In either L, the N-terminal amine was replaced with a pyridine, and for L2, one amide was replaced with an amine compared to Xxx-Zzz-His. In particular, L2 showed several interesting features, including a CuII-binding affinity with a log KDapp = -16.0 similar to that of EDTA and stronger than all reported ATCUN peptides. L2 showed high selectivity for CuII over ZnII and other essential metal ions, even under the challenging conditions of the presence of human serum albumin. Further, L2 showed fast and efficient CuII redox silencing qualities and CuII-L2 was stable in the presence of mM GSH concentrations. Benefitting the fact that L2 can be easily elongated on its peptide part by standard SPPS to add other functions, L2 has attractive properties as a CuII chelator for application in biological systems.
Collapse
Affiliation(s)
- Katharina Zimmeter
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Bharath Vinjamuri
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Angélique Sour
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
23
|
Faizullin BA, Elistratova JG, Strelnik ID, Akhmadgaleev KD, Gubaidullin AT, Kholin KV, Nizameev IR, Babaev VM, Amerhanova SK, Voloshina AD, Gerasimova TP, Karasik AA, Sinyashin OG, Mustafina AR. Luminescent Water-Dispersible Nanoparticles Engineered from Copper(I) Halide Cluster Core and P,N-Ligand with an Optimal Balance between Stability and ROS Generation. INORGANICS 2023. [DOI: 10.3390/inorganics11040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The present work introduces the solvent exchange procedure as a route for conversion of the Cu4I4L2 complex, where the Cu4I4 cluster core is coordinated with two P,N-ligands (L), into an aqueous colloid. The analysis of both colloidal and supernatant phases revealed some losses in CuI going from the initial Cu4I4L2 complex to Cu2I2L3-based nanoparticles. The comparative analysis of IR, 31P NMR spectroscopy, ESI mass-spectrometry and luminescence data argued for a contribution of the “butterfly”-like structures of the Cu2I2 cluster core to Cu2I2L3-based nanoparticles, although the amorphous nature of the latter restricted structure evaluation from the PXRD data. The green luminescence of the colloids revealed their chemical stability under pH variations in the solutions of some amino acids and peptides, and to specify the temperature and concentration conditions triggering the oxidative degradation of the nanoparticles. The spin trap-facilitated ESR study indicated that the oxidative transformations were followed by the generation of reactive oxygen species (ROS). The physiological temperature level (310 K) enhanced the ROS generation by nanoparticles, but the ROS level was suppressed in the solution of GSH at pH = 7.0. The cytotoxicity of nanoparticles was evaluated in the M-HeLa cell line and is discussed in correlation with their cell internalization and intracellular oxidative transformations.
Collapse
|
24
|
Ritacca AG, Falcone E, Doumi I, Vileno B, Faller P, Sicilia E. Dual Role of Glutathione as a Reducing Agent and Cu-Ligand Governs the ROS Production by Anticancer Cu-Thiosemicarbazone Complexes. Inorg Chem 2023; 62:3957-3964. [PMID: 36802558 PMCID: PMC9996813 DOI: 10.1021/acs.inorgchem.2c04392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
α-Pyridyl thiosemicarbazones (TSC) such as Triapine (3AP) and Dp44mT are a promising class of anticancer agents. Contrary to Triapine, Dp44mT showed a pronounced synergism with CuII, which may be due to the generation of reactive oxygen species (ROS) by Dp44mT-bound CuII ions. However, in the intracellular environment, CuII complexes have to cope with glutathione (GSH), a relevant CuII reductant and CuI-chelator. Here, aiming at rationalizing the different biological activity of Triapine and Dp44mT, we first evaluated the ROS production by their CuII-complexes in the presence of GSH, showing that CuII-Dp44mT is a better catalyst than CuII-3AP. Furthermore, we performed density functional theory (DFT) calculations, which suggest that a different hard/soft character of the complexes could account for their different reactivity with GSH.
Collapse
Affiliation(s)
- Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
25
|
Pain PK, Palit D, Shegane M, Singh RP, Manna D. Optochemical control of Cu(I) homeostasis in mammalian cells. Chem Commun (Camb) 2023; 59:2315-2318. [PMID: 36748368 DOI: 10.1039/d2cc05830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper can act as a double-edged sword as it can cause fatal diseases when in excess or shortage. Precise control of copper homeostasis is maintained by a complex machinery inside cells. To overcome imbalances in copper concentration, we have developed a simple system to control the cellular copper concentration by using a photocaged chelator and light. This photocaged chelator allowed us to control cellular copper concentration in a spatiotemporal manner.
Collapse
Affiliation(s)
- Pritam Kumar Pain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Dipanwita Palit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Meenakshi Shegane
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Rajnish Pratap Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| |
Collapse
|
26
|
Robison ATR, Sturrock GR, Zaengle-Barone JM, Wiebelhaus N, Dharani A, Williams IG, Fitzgerald MC, Franz KJ. Analysis of copper-induced protein precipitation across the E. coli proteome. Metallomics 2023; 15:mfac098. [PMID: 36549662 PMCID: PMC9830969 DOI: 10.1093/mtomcs/mfac098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Metal cations have been exploited for their precipitation properties in a wide variety of studies, ranging from differentiating proteins from serum and blood to identifying the protein targets of drugs. Despite widespread recognition of this phenomenon, the mechanisms of metal-induced protein aggregation have not been fully elucidated. Recent studies have suggested that copper's (Cu) ability to induce protein aggregation may be a main contributor to Cu-induced cell death. Here, we provide the first proteome-wide analysis of the relative sensitivities of proteins across the Escherichia coli proteome to Cu-induced aggregation. We utilize a metal-induced protein precipitation (MiPP) methodology that relies on quantitative bottom-up proteomics to define the metal concentration-dependent precipitation properties of proteins on a proteomic scale. Our results establish that Cu far surpasses other metals in promoting protein aggregation and that the protein aggregation is reversible upon metal chelation. The bulk of the Cu bound in the protein aggregates is Cu1+, regardless of the Cu2+ source. Analysis of our MiPP data allows us to investigate underlying biophysical characteristics that determine a protein's sensitivity to Cu-induced aggregation, which is independent of the relative concentration of protein in the lysate. Overall, this analysis provides new insights into the mechanism behind Cu cytotoxicity, as well as metal cation-induced protein aggregation.
Collapse
Affiliation(s)
- Amy T R Robison
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | - Azim Dharani
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
27
|
Melenbacher A, Heinlein L, Hartwig A, Stillman MJ. 63Cu(I) binding to human kidney 68Zn7-βα MT1A: determination of Cu(I)-thiolate cluster domain specificity from ESI-MS and room temperature phosphorescence spectroscopy. Metallomics 2023; 15:mfac101. [PMID: 36583699 PMCID: PMC9846682 DOI: 10.1093/mtomcs/mfac101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Mammalian metallothioneins (MTs) are important proteins in Zn(II) and Cu(I) homeostasis with the Zn(II) and Cu(I) binding to the 20 cysteines in metal-thiolate clusters. Previous electrospray ionization (ESI) mass spectrometric (MS) analyses of Cu(I) binding to Zn7-MT were complicated by significant overlap of the natural abundance isotopic patterns for Zn(II) and Cu(I) leading to impossibly ambiguous stoichiometries. In this paper, isotopically pure 63Cu(I) and 68Zn(II) allowed determination of the specific stoichiometries in the 68 Zn,63Cu-βα MT1A species formed following the stepwise addition of 63Cu(I) to 68Zn7-βα MT1A. These species were characterized by ESI-MS and room temperature emission spectroscopy. The key species that form and their emission band centres are Zn5Cu5-βα MT1A (λ = 684 nm), Zn4Cu6-βα MT1A (λ = 750 nm), Zn3Cu9-βα MT1A (λ = 750 nm), Zn2Cu10-βα MT1A (λ = 750 nm), and Zn1Cu14-βα MT1A (λ = 634 nm). The specific domain stoichiometry of each species was determined by assessing the species forming following 63Cu(I) addition to the 68Zn3-β MT1A and 68Zn4-α MT1A domain fragments. The domain fragment emission suggests that Zn5Cu5-βα MT1A contains a Zn1Cu5-β cluster and the Zn4Cu6-βα MT1A, Zn3Cu9-βα MT1A, and Zn2Cu10-βα MT1A each contain a Cu6-β cluster. The species forming with >10 mol. eq. of 63Cu(I) in βα-MT1A exhibit emission from the Cu6-β cluster and an α domain cluster. This high emission intensity is seen at the end of the titrations of 68Zn7-βα MT1A and the 68Zn4-α MT1A domain fragment suggesting that the initial presence of the Zn(II) results in clustered Cu(I) binding in the α domain.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
| | - Lina Heinlein
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Karlsruhe, Baden-Württemberg, 76131, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Karlsruhe, Baden-Württemberg, 76131, Germany
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
| |
Collapse
|
28
|
Osman D, Robinson NJ. Protein metalation in a nutshell. FEBS Lett 2023; 597:141-150. [PMID: 36124565 PMCID: PMC10087151 DOI: 10.1002/1873-3468.14500] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Metalation, the acquisition of metals by proteins, must avoid mis-metalation with tighter binding metals. This is illustrated by four selected proteins that require different metals: all show similar ranked orders of affinity for bioavailable metals, as described in a universal affinity series (the Irving-Williams series). Crucially, cellular protein metalation occurs in competition with other metal binding sites. The strength of this competition defines the intracellular availability of each metal: its magnitude has been estimated by calibrating a cells' set of DNA-binding, metal-sensing, transcriptional regulators. This has established that metal availabilities (as free energies for forming metal complexes) are maintained to the inverse of the universal series. The tightest binding metals are least available. With these availabilities, correct metalation is achieved.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| |
Collapse
|
29
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
30
|
Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, El Khoury Y, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-Catalyzed Glutathione Oxidation is Accelerated by the Anticancer Thiosemicarbazone Dp44mT and Further Boosted at Lower pH. J Am Chem Soc 2022; 144:14758-14768. [PMID: 35929814 PMCID: PMC9389589 DOI: 10.1021/jacs.2c05355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Glutathione (GSH) is the most abundant thiol in mammalian
cells
and plays a crucial role in maintaining redox cellular homeostasis.
The thiols of two GSH molecules can be oxidized to the disulfide GSSG.
The cytosolic GSH/GSSG ratio is very high (>100), and its reduction
can lead to apoptosis or necrosis, which are of interest in cancer
research. CuII ions are very efficient oxidants of thiols,
but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and
even more slowly at lower pH. Here, the aerobic oxidation of GSH by
CuII was investigated at different pH values in the presence
of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes
and induces lysosomal membrane permeabilization in a Cu-dependent
manner. The results showed that CuII-Dp44mT catalyzes GSH
oxidation faster than CuII alone at pH 7.4 and hence accelerates
the production of very reactive hydroxyl radicals. Moreover, GSH oxidation
and hydroxyl radical production by CuII-Dp44mT were accelerated
at the acidic pH found in lysosomes. To decipher this unusually faster
thiol oxidation at lower pH, density functional theory (DFT) calculations,
electrochemical and spectroscopic studies were performed. The results
suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting
reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell
culture using the proton pump inhibitor bafilomycin A1 indicated that
the lysosomal pH plays a role in the activity of CuII-Dp44mT.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
31
|
Bonet-Aleta J, Encinas-Gimenez M, Urriolabeitia E, Martin-Duque P, Hueso JL, Santamaria J. Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper-iron nanoparticles working under chemically relevant tumour conditions. Chem Sci 2022; 13:8307-8320. [PMID: 35919722 PMCID: PMC9297535 DOI: 10.1039/d2sc01379g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The present work sheds light on a generally overlooked issue in the emerging field of bio-orthogonal catalysis within tumour microenvironments (TMEs): the interplay between homogeneous and heterogeneous catalytic processes. In most cases, previous works dealing with nanoparticle-based catalysis in the TME focus on the effects obtained (e.g. tumour cell death) and attribute the results to heterogeneous processes alone. The specific mechanisms are rarely substantiated and, furthermore, the possibility of a significant contribution of homogeneous processes by leached species - and the complexes that they may form with biomolecules - is neither contemplated nor pursued. Herein, we have designed a bimetallic catalyst nanoparticle containing Cu and Fe species and we have been able to describe the whole picture in a more complex scenario where both homogeneous and heterogeneous processes are coupled and fostered under TME relevant chemical conditions. We investigate the preferential leaching of Cu ions in the presence of a TME overexpressed biomolecule such as glutathione (GSH). We demonstrate that these homogeneous processes initiated by the released by Cu-GSH interactions are in fact responsible for the greater part of the cell death effects found (GSH, a scavenger of reactive oxygen species, is depleted and highly active superoxide anions are generated in the same catalytic cycle). The remaining solid CuFe nanoparticle becomes an active catalyst to supply oxygen from oxygen reduced species, such as superoxide anions (by-product from GSH oxidation) and hydrogen peroxide, another species that is enriched in the TME. This activity is essential to sustain the homogeneous catalytic cycle in the oxygen-deprived tumour microenvironment. The combined heterogeneous-homogeneous mechanisms revealed themselves as highly efficient in selectively killing cancer cells, due to their higher GSH levels compared to healthy cell lines.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Miguel Encinas-Gimenez
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Esteban Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza) 50009 Zaragoza Spain
| | - Pilar Martin-Duque
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Instituto Aragonés de Ciencias de la Salud (IACS) Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Fundación Araid Av. de Ranillas 1-D 50018 Zaragoza Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| |
Collapse
|
32
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
33
|
Reaction of N-Acetylcysteine with Cu 2+: Appearance of Intermediates with High Free Radical Scavenging Activity: Implications for Anti-/Pro-Oxidant Properties of Thiols. Int J Mol Sci 2022; 23:ijms23116199. [PMID: 35682881 PMCID: PMC9181168 DOI: 10.3390/ijms23116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the kinetics of the reaction of N-acetyl-l-cysteine (NAC or RSH) with cupric ions at an equimolar ratio of the reactants in aqueous acid solution (pH 1.4−2) using UV/Vis absorption and circular dichroism (CD) spectroscopies. Cu2+ showed a strong catalytic effect on the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTSr) consumption and autoxidation of NAC. Difference spectra revealed the formation of intermediates with absorption maxima at 233 and 302 nm (ε302/Cu > 8 × 103 M−1 cm−1) and two positive Cotton effects centered at 284 and 302 nm. These intermediates accumulate during the first, O2-independent, phase of the NAC autoxidation. The autocatalytic production of another chiral intermediate, characterized by two positive Cotton effects at 280 and 333 nm and an intense negative one at 305 nm, was observed in the second reaction phase. The intermediates are rapidly oxidized by added ABTSr; otherwise, they are stable for hours in the reaction solution, undergoing a slow pH- and O2-dependent photosensitive decay. The kinetic and spectral data are consistent with proposed structures of the intermediates as disulfide-bridged dicopper(I) complexes of types cis-/trans-CuI2(RS)2(RSSR) and CuI2(RSSR)2. The electronic transitions observed in the UV/Vis and CD spectra are tentatively attributed to Cu(I) → disulfide charge transfer with an interaction of the transition dipole moments (exciton coupling). The catalytic activity of the intermediates as potential O2 activators via Cu(II) peroxo-complexes is discussed. A mechanism for autocatalytic oxidation of Cu(I)−thiolates promoted by a growing electronically coupled −[CuI2(RSSR)]n− polymer is suggested. The obtained results are in line with other reported observations regarding copper-catalyzed autoxidation of thiols and provide new insight into these complicated, not yet fully understood systems. The proposed hypotheses point to the importance of the Cu(I)−disulfide interaction, which may have a profound impact on biological systems.
Collapse
|
34
|
Zuily L, Lahrach N, Fassler R, Genest O, Faller P, Sénèque O, Denis Y, Castanié-Cornet MP, Genevaux P, Jakob U, Reichmann D, Giudici-Orticoni MT, Ilbert M. Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. mBio 2022; 13:e0325121. [PMID: 35289645 PMCID: PMC9040851 DOI: 10.1128/mbio.03251-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.
Collapse
Affiliation(s)
- Lisa Zuily
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olivier Genest
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG/DIESE, LCBM (UMR 5249), Grenoble, France
| | - Yann Denis
- Plateforme Transcriptome, Aix-Marseille Université, CNRS, IMM-FR3479, Marseille, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Marianne Ilbert
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| |
Collapse
|
35
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
36
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
37
|
Calvo JS, Villones RLE, York NJ, Stefaniak E, Hamilton GE, Stelling AL, Bal W, Pierce BS, Meloni G. Evidence for a Long-Lived, Cu-Coupled and Oxygen-Inert Disulfide Radical Anion in the Assembly of Metallothionein-3 Cu(I) 4-Thiolate Cluster. J Am Chem Soc 2022; 144:709-722. [PMID: 34985880 PMCID: PMC9029059 DOI: 10.1021/jacs.1c03984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The human copper-binding protein metallothionein-3 (MT-3) can reduce Cu(II) to Cu(I) and form a polynuclear Cu(I)4-Cys5-6 cluster concomitant with intramolecular disulfide bonds formation, but the cluster is unusually inert toward O2 and redox-cycling. We utilized a combined array of rapid-mixing spectroscopic techniques to identify and characterize the transient radical intermediates formed in the reaction between Zn7MT-3 and Cu(II) to form Cu(I)4Zn(II)4MT-3. Stopped-flow electronic absorption spectroscopy reveals the rapid formation of transient species with absorption centered at 430-450 nm and consistent with the generation of disulfide radical anions (DRAs) upon reduction of Cu(II) by MT-3 cysteine thiolates. These DRAs are oxygen-stable and unusually long-lived, with lifetimes in the seconds regime. Subsequent DRAs reduction by Cu(II) leads to the formation of a redox-inert Cu(I)4-Cys5 cluster with short Cu-Cu distances (<2.8 Å), as revealed by low-temperature (77 K) luminescence spectroscopy. Rapid freeze-quench Raman and electron paramagnetic resonance (EPR) spectroscopy characterization of the intermediates confirmed the DRA nature of the sulfur-centered radicals and their subsequent oxidation to disulfide bonds upon Cu(II) reduction, generating the final Cu(I)4-thiolate cluster. EPR simulation analysis of the radical g- and A-values indicate that the DRAs are directly coupled to Cu(I), potentially explaining the observed DRA stability in the presence of O2. We thus provide evidence that the MT-3 Cu(I)4-Cys5 cluster assembly process involves the controlled formation of novel long-lived, copper-coupled, and oxygen-stable disulfide radical anion transient intermediates.
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Nicholas J York
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35401, United States
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Grace E Hamilton
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35401, United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
38
|
Uraguchi S, Nagai K, Naruse F, Otsuka Y, Ohshiro Y, Nakamura R, Takanezawa Y, Kiyono M. Development of affinity bead-based in vitro metal-ligand binding assay reveals dominant cadmium affinity of thiol-rich small peptides phytochelatins beyond glutathione. Metallomics 2021; 13:6445037. [PMID: 34850059 DOI: 10.1093/mtomcs/mfab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
For a better understanding of metal-ligand interaction and its function in cells, we developed an easy, sensitive, and high-throughput method to quantify ligand-metal(loid) binding affinity under physiological conditions by combining ligand-attached affinity beads and inductively coupled plasma-optical emission spectrometry (ICP-OES). Glutathione (GSH) and two phytochelatins (PC2 and PC3, small peptides with different numbers of free thiols) were employed as model ligands and attached to hydrophilic beads. The principle of the assay resembles that of affinity purification of proteins in biochemistry: metals binding to the ligand on the beads and the rest in the buffer are separated by a spin column and quantified by ICP-OES. The binding assay using the GSH-attached beads and various metal(loid)s suggested the different affinity of the metal-GSH interactions, in accordance with the order of the Irving-Williams series and the reported stability constants. The binding assay using PC2 or PC3-attached beads suggested positive binding between PCs and Ni(II), Cu(II), Zn(II), Cd(II), and As(III) in accordance with the number of thiols in PC2 and PC3. We then conducted the competition assay using Cd(II), Mn(II), Fe(II), Cu(II), and Zn(II), and the results suggested a better binding affinity of PC2 with Cd(II) than with the essential metals. Another competition assay using PC2 and GSH suggested a robust binding affinity between PCs and Cd(II) compared to GSH and Cd(II). These results suggested the dominance of PC-Cd complex formation in vitro, supporting the physiological importance of PCs for the detoxification of cadmium in vivo. We also discuss the potential application of the assay.
Collapse
Affiliation(s)
- Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Fumii Naruse
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuto Otsuka
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
39
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
40
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
41
|
Ufnalska I, Drew SC, Zhukov I, Szutkowski K, Wawrzyniak UE, Wróblewski W, Frączyk T, Bal W. Intermediate Cu(II)-Thiolate Species in the Reduction of Cu(II)GHK by Glutathione: A Handy Chelate for Biological Cu(II) Reduction. Inorg Chem 2021; 60:18048-18057. [PMID: 34781677 PMCID: PMC8653159 DOI: 10.1021/acs.inorgchem.1c02669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Gly-His-Lys (GHK)
is a tripeptide present in the human bloodstream
that exhibits a number of biological functions. Its activity is attributed
to the copper-complexed form, Cu(II)GHK. Little is known, however,
about the molecular aspects of the mechanism of its action. Here,
we examined the reaction of Cu(II)GHK with reduced glutathione (GSH),
which is the strongest reductant naturally occurring in human plasma.
Spectroscopic techniques (UV–vis, CD, EPR, and NMR) and cyclic
voltammetry helped unravel the reaction mechanism. The impact of temperature,
GSH concentration, oxygen access, and the presence of ternary ligands
on the reaction were explored. The transient GSH-Cu(II)GHK complex
was found to be an important reaction intermediate. The kinetic and
redox properties of this complex, including tuning of the reduction
rate by ternary ligands, suggest that it may provide a missing link
in copper trafficking as a precursor of Cu(I) ions, for example, for
their acquisition by the CTR1 cellular copper transporter. Gly-His-Lys (GHK) is a human bioactive
tripeptide thought
to be activated by Cu(II) binding, but little is known about the molecular
aspects of its action. UV−vis, circular dichroism (CD), EPR,
and NMR spectroscopies, and cyclic voltammetry were used to examine
the reduction of Cu(II)GHK with glutathione (GSH), the most abundant
biological thiol. A semistable GSH-Cu(II)GHK reaction intermediate
was discovered, with properties suitable for delivering Cu(I) to biological
transport proteins.
Collapse
Affiliation(s)
- Iwona Ufnalska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Victoria 3010, Australia
| | - Igor Zhukov
- Polish Academy of Sciences Institute of Biochemistry and Biophysics, Pawińskiego 5a, Warsaw 02-106, Poland
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznań 61-614, Poland
| | - Urszula E Wawrzyniak
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Wojciech Wróblewski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Tomasz Frączyk
- Polish Academy of Sciences Institute of Biochemistry and Biophysics, Pawińskiego 5a, Warsaw 02-106, Poland
| | - Wojciech Bal
- Polish Academy of Sciences Institute of Biochemistry and Biophysics, Pawińskiego 5a, Warsaw 02-106, Poland
| |
Collapse
|
42
|
Cukierman DS, Lázaro DF, Sacco P, Ferreira PR, Diniz R, Fernández CO, Outeiro TF, Rey NA. X1INH, an improved next-generation affinity-optimized hydrazonic ligand, attenuates abnormal copper(I)/copper(II)-α-Syn interactions and affects protein aggregation in a cellular model of synucleinopathy. Dalton Trans 2021; 49:16252-16267. [PMID: 32391542 DOI: 10.1039/d0dt01138j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although normal aging presents an accumulation of copper and iron in the brain, this becomes more relevant in neurodegeneration. α-Synuclein (α-Syn) misfolding has long been linked with the development of Parkinson's disease (PD). Copper binding promotes aggregation of α-Syn, as well as generalized oxidative stress. In this sense, the use of therapies that target metal dyshomeostasis has been in focus in the past years. Metal-Protein Attenuating Compounds (MPACs) are moderate chelators that aim at disrupting specific, abnormal metal-protein interactions. Our research group has now established that N-acylhydrazones compose a set of truly encouraging MPACs for the bioinorganic management of metal-enhanced aggregopathies. In the present work, a novel ligand, namely 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone (X1INH), is reported. We describe solution studies on the interaction and affinity of this compound for copper(ii) ions showing that a fine tuning of metal-affinity was achieved. A series of in vitro biophysical NMR experiments were performed in order to assess the X1INH ability to compete with α-Syn monomers for the binding of both copper(i) and copper(ii) ions, which are central in PD pathology. A preference for copper(i) has been observed. X1INH is less toxic to human neuroglioma (H4) cells in comparison to structure-related compounds. Finally, we show that treatment with X1INH results in a higher number of smaller, less compact inclusions in a well-established model of α-Syn aggregation. Thus, X1INH constitutes a promising MPAC for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Daphne S Cukierman
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-045, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tripodal scaffolds with three appended imidazole thiones for Cu(I) chelation and protection from Cu-mediated oxidative stress. J Inorg Biochem 2021; 222:111518. [PMID: 34182264 DOI: 10.1016/j.jinorgbio.2021.111518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022]
Abstract
Imidazole thiones appear as interesting building blocks for Cu(I) chelation and protection against Cu-mediated oxidative stress. Therefore, a series of tripodal molecules derived from nitrilotriacetic acid appended with three imidazole thiones belonging either to histamine-like or histidine-like moieties were synthesized. These tripods demonstrate intermediate affinity between that previously measured for tripodal analogues bearing three thiol moieties such as cysteine and those grafted with three thioethers, like methionines, consistently with the thione group in the imidazole thione moiety existing as a tautomer between a thiol and a thione. The two non-alkylated tripods derived from thioimidazole, TH and TH* demonstrated three orders of magnitude larger affinity for Cu(I) (logKpH 7.4 = 14.3) than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt (logKpH 7.4 = 11-11.6). Their efficiency to inhibit Cu-mediated oxidative stress is demonstrated by several assays involving ascorbate consumption or biomolecule damages and correlates with their ability to chelate Cu(I), related to their conditional complexation constants at pH 7.4. The two non-alkylated tripods derived from thioimidazole, TH and TH* are significantly more powerful in reducing Cu-mediated oxidative stress than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt.
Collapse
|
44
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Furukawa Y. Good and Bad of Cu/Zn-Superoxide Dismutase Controlled by Metal Ions and Disulfide Bonds. CHEM LETT 2021. [DOI: 10.1246/cl.200770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yoshiaki Furukawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Kanagawa 223-8522, Japan
| |
Collapse
|
46
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
47
|
Betts HD, Whitehead C, Harris HH. Silver in biology and medicine: opportunities for metallomics researchers. Metallomics 2020; 13:6029133. [PMID: 33570135 DOI: 10.1093/mtomcs/mfaa001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
The antibacterial properties of silver have been known for centuries and the threat of antibiotic-resistant bacteria has led to renewed focus on the noble metal. Silver is now commonly included in a range of household and medical items to imbue them with bactericidal properties. Despite this, the chemical fate of the metal in biological systems is poorly understood. Silver(I) is a soft metal with high affinity for soft donor atoms and displays much similarity to the chemistry of Cu(I). In bacteria, interaction of silver with the cell wall/membrane, DNA, and proteins and enzymes can lead to cell death. Additionally, the intracellular generation of reactive oxygen species by silver is posited to be a significant antimicrobial action. While the antibacterial action of silver is well known, bacteria found in silver mines display resistance against it through use of a protein ensemble thought to have been specifically developed for the metal, highlighting the need for judicious use. In mammals, ∼10-20% of ingested silver is retained by the body and thought to predominantly localize in the liver or kidneys. Chronic exposure can result in argyria, a condition characterized by blue staining of the skin, resulting from subdermal deposition of silver [as Ag(0)/sulfides], but more insidious side effects, such as inclusions in the brain, seizures, liver/kidney damage, and immunosuppression, have also been reported. Here, we hope to highlight the current understanding of the biological chemistry of silver and the necessity for continued study of these systems to fill existing gaps in knowledge.
Collapse
Affiliation(s)
- Harley D Betts
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Carole Whitehead
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| |
Collapse
|
48
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
49
|
Bartnicka JJ, Al-Salemee F, Firth G, Blower PJ. L-Cysteine-mediated modulation of copper trafficking in prostate cancer cells: an in vitro and in vivo investigation with 64Cu and 64Cu-PET. Metallomics 2020; 12:1508-1520. [PMID: 32959856 DOI: 10.1039/d0mt00161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 μM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.
Collapse
Affiliation(s)
- Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
50
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|