1
|
Huerta-Padilla V, Marrero-Rodríguez D, Taniguchi-Ponciano K, López AE, Candanedo-González F, Salcedo E, Valdivia-Flores A, Rodriguez-Esquivel M, Virgilio LG, López-Romero R, Nambo-Lucio MDJ, Meza-Toledo SE, Bandala C, Meraz MA, Salcedo M. Thymopoietin- α, - β, and - γ Isoforms Increased Expression in Cervical Cancer Cells. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:1668482. [PMID: 40242184 PMCID: PMC12003041 DOI: 10.1155/cjid/1668482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/20/2024] [Indexed: 04/18/2025]
Abstract
Cervical cancer (CC) is a public health concern related to the human papillomavirus (HPV) persistent infection. Minichromosome maintenance 2 (MCM2) has been postulated as a surrogate marker for HPV infection. Thymopoietin (TMPO) is a nuclear protein regulated by E2F such as MCM2 or p16. TMPO can give rise to six different isoforms. Herein, both the mRNA and protein levels of TMPO isoforms were analyzed in cervical cells. TMPO expression was selected and analyzed through in silico in several databases from the healthy cervix and cervical lesions. TMPO RNA expression was evaluated in cervical samples and cell lines by RT-PCR and protein expression by Western-blot and immunohistochemistry assays. TMPO and MCM2 immunostaining were evaluated in cervical smears. The clinical-pathological correlation analysis was performed using Kruskal-Wallis or Χ 2 tests. TMPO is overexpressed in 74% of CC cells and all CC cell lines. Moreover, negative immunostaining was observed in normal cervical tissue, compared to strong expression for cervical lesions. Interestingly, TMPO-α, -β, -δ, -ε, and -γ are expressed in all cervical cells and tissues, but a differential expression for α, -β, and -γ isoforms among the cervical cells was observed as overexpressed when HPV is present. Also, the immunostaining of both MCM2 and TMPO was quite similar, but TMPO expression was more sensitive and specific than MCM2 protein. The present study has revealed that TMPO protein expression could be a potential molecular marker for cervical transformed cells, highlighting the TMPO-α, -β, and -γ isoforms as a promising molecular marker of HPV infection.
Collapse
Affiliation(s)
- Víctor Huerta-Padilla
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
- Departamento de Bioquimica, Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Daniel Marrero-Rodríguez
- Endocrine Diseases Research Unit, Specialties Hospital, National Medical Center SXXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Keiko Taniguchi-Ponciano
- Endocrine Diseases Research Unit, Specialties Hospital, National Medical Center SXXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Ariana E. López
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
| | - Fernando Candanedo-González
- Anatomo-Pathology Service, Oncology Hospital, National Medical Center SXXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Emmanuel Salcedo
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
| | | | - Miriam Rodriguez-Esquivel
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
| | - Laura Gómez Virgilio
- Centro de Investigación y de Estudios Avanzados, Molecular Biomedicine Department, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Ricardo López-Romero
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
| | | | - Sergio E. Meza-Toledo
- Departamento de Bioquimica, Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Cindy Bandala
- Departamento de Medicina Traslacional aplicada a Neurociencias, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Marco A. Meraz
- Centro de Investigación y de Estudios Avanzados, Molecular Biomedicine Department, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mauricio Salcedo
- Oncology Genomics Biomedical Research Unit, Gynecology Pediatrics Hospital 3A, North Unity OOAD, Mexican Institute of Social Security, Mexico City, Mexico
| |
Collapse
|
2
|
Filipczak D, Souchet A, Georgiou K, Foisner R, Naetar N. Lamin chromatin binding is modulated by interactions of different LAP2α domains with lamins and chromatin. iScience 2024; 27:110869. [PMID: 39319273 PMCID: PMC11417337 DOI: 10.1016/j.isci.2024.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Lamins A and C are components of the lamina at the nuclear periphery and associate with heterochromatin. A distinct, relatively mobile pool of lamin A/C in the nuclear interior associates with euchromatic regions and with lamin-associated polypeptide 2α (LAP2α). Here we show that phosphorylation-dependent impairment of lamin assembly had no effect on its chromatin association, while LAP2α depletion was sufficient to increase chromatin association of lamins. This suggests that complex interactions between LAP2α, chromatin, and lamins regulate lamin chromatin binding. Both the C terminus of LAP2α and its N-terminal LAP2-Emerin-MAN1 (LEM) domain, mediating interaction with lamin A/C indirectly via barrier-to-autointegration factor (BAF), are required for binding to lamins. The N-terminal LEM-like domain of LAP2α, but not its LEM domain, mediates chromatin association of LAP2α and requires LAP2α dimerization via its C terminus. Our data suggest that formation of several LAP2α-, lamin A/C-, and BAF-containing complexes in the nucleoplasm and on chromatin affects lamin chromatin association.
Collapse
Affiliation(s)
- Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Anna Souchet
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| |
Collapse
|
3
|
Liu Z, Wu Y, Mao X, Kwan KCJ, Cheng X, Li X, Jing Y, Li XD. Development of multifunctional synthetic nucleosomes to interrogate chromatin-mediated protein interactions. SCIENCE ADVANCES 2023; 9:eade5186. [PMID: 37134166 PMCID: PMC10156118 DOI: 10.1126/sciadv.ade5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Various proteins bind to chromatin to regulate DNA and its associated processes such as replication, transcription, and damage repair. The identification and characterization of these chromatin-associating proteins remain a challenge, as their interactions with chromatin often occur within the context of the local nucleosome or chromatin structure, which makes conventional peptide-based strategies unsuitable. Here, we developed a simple and robust protein labeling chemistry to prepare synthetic multifunctional nucleosomes that carry a photoreactive group, a biorthogonal handle, and a disulfide moiety to examine chromatin-protein interactions in a nucleosomal context. Using the prepared protein- and nucleosome-based photoaffinity probes, we examined a number of protein-protein and protein-nucleosome interactions. In particular, we (i) mapped the binding sites for the HMGN2-nucleosome interaction, (ii) provided the evidence for transition between the active and poised states of DOT1L in recognizing H3K79 within the nucleosome, and (iii) identified OARD1 and LAP2α as nucleosome acidic patch-associating proteins. This study provides powerful and versatile chemical tools for interrogating chromatin-associating proteins.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiping Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xin Mao
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Xinxin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen 518055, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
4
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
5
|
Vidak S, Georgiou K, Fichtinger P, Naetar N, Dechat T, Foisner R. Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells. J Cell Sci 2018; 131:jcs208462. [PMID: 29361532 PMCID: PMC5826045 DOI: 10.1242/jcs.208462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
A-type lamins are components of the peripheral nuclear lamina but also localize in the nuclear interior in a complex with lamina-associated polypeptide (LAP) 2α. Loss of LAP2α and nucleoplasmic lamins in wild-type cells increases cell proliferation, but in cells expressing progerin (a mutant lamin A that causes Hutchinson-Gilford progeria syndrome), low LAP2α levels result in proliferation defects. Here, the aim was to understand the molecular mechanism governing how relative levels of LAP2α, progerin and nucleoplasmic lamins affect cell proliferation. Cells from progeria patients and inducible progerin-expressing cells expressing low levels of progerin proliferate faster than wild-type or lamin A-expressing control cells, and ectopic expression of LAP2α impairs proliferation. In contrast, cells expressing high levels of progerin and lacking lamins in the nuclear interior proliferate more slowly, and ectopic LAP2α expression enhances proliferation. However, simultaneous expression of LAP2α and wild-type lamin A or an assembly-deficient lamin A mutant restored the nucleoplasmic lamin A pool in these cells and abolished the growth-promoting effect of LAP2α. Our data show that LAP2α promotes or inhibits proliferation of progeria cells depending on the level of A-type lamins in the nuclear interior.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Konstantina Georgiou
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Petra Fichtinger
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Nana Naetar
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Thomas Dechat
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| |
Collapse
|
6
|
Abstract
The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Fahrenkrog B, Martinelli V, Nilles N, Fruhmann G, Chatel G, Juge S, Sauder U, Di Giacomo D, Mecucci C, Schwaller J. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype. PLoS One 2016; 11:e0152321. [PMID: 27031510 PMCID: PMC4816316 DOI: 10.1371/journal.pone.0152321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/11/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Cycle
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/analysis
- Membrane Proteins/metabolism
- Mice
- Mitosis
- Nuclear Envelope/genetics
- Nuclear Envelope/metabolism
- Nuclear Envelope/pathology
- Nuclear Pore Complex Proteins/analysis
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Translocation, Genetic
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
- * E-mail: (BF); (JS)
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nadine Nilles
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Gernot Fruhmann
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Sabine Juge
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Ursula Sauder
- Biozentrum, Microscopy Center, University of Basel, Basel, Switzerland
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
- * E-mail: (BF); (JS)
| |
Collapse
|
8
|
Vidak S, Kubben N, Dechat T, Foisner R. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes Dev 2016; 29:2022-36. [PMID: 26443848 PMCID: PMC4604344 DOI: 10.1101/gad.263939.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A single heterozygous mutation of LMNA generates the lamin A/C variant progerin and causes Hutchinson-Gilford progeria syndrome (HGPS). Vidak et al. show that this mutation leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. Lamina-associated polypeptide 2α (LAP2α) localizes throughout the nucleoplasm and interacts with the fraction of lamins A/C that is not associated with the peripheral nuclear lamina. The LAP2α–lamin A/C complex negatively affects cell proliferation. Lamins A/C are encoded by LMNA, a single heterozygous mutation of which causes Hutchinson-Gilford progeria syndrome (HGPS). This mutation generates the lamin A variant progerin, which we show here leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Surprisingly, contrary to wild-type cells, ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. We conclude that, in addition to its cell cycle-inhibiting function with lamins A/C, LAP2α can also regulate extracellular matrix components independently of lamins A/C, which may help explain the proliferation-promoting function of LAP2α in cells expressing progerin.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Nard Kubben
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Dechat
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|
9
|
Marrero-Rodríguez D, Taniguchi-Ponciano K, Lopez-Sleman J, Romero-Morelos P, Mendoza-Rodríguez M, Garcia I, Huerta-Padilla V, Mantilla A, Duarte A, Piña P, Rodriguez-Esquivel M, Lopez-Romero R, Parrazal-Romero J, Tobias-Alonso S, Jimenez-Vega F, Alvarez-Blanco M, Salcedo M. Thymopoietin Beta and Gamma Isoforms as a Potential Diagnostic Molecular Marker for Breast Cancer: Preliminary Data. Pathol Oncol Res 2015; 21:1045-50. [PMID: 25837847 DOI: 10.1007/s12253-015-9907-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Thymopoietin (TMPO) is an inner nuclear membrane protein, the coding gene named equally, can give arise to six isoforms by alternative splicing. This gene has been found up regulated in several types of cancer. At present work, we evaluated the TMPO isoforms generated by alternative splicing as well as the protein signal detection in breast cancer samples. TMPO expression was analyzed by immunohistochemistry in tissue microarray containing 46 breast tissue samples including normal (n = 6), benign lesions (n = 18) (fibroadenomas (n = 6), fibrocystic changes (n = 6), ductal hyperplasias (n = 6)) and breast carcinoma (n = 22). Isoforms -α, -β and -γ of TMPO were evaluated using RT-PCR; clinical-pathological correlation analysis were done by mean of X(2). Neither the normal nor the benign lesions of the breast showed positive TMPO immunodetection, whilst 45 % of the breast carcinomas were immunopositive (p = 0.000), nine of ten positives carcinomas correspond to the Luminal A subtype. Further, alpha isoform was present in all breast samples analyzed; however, beta and gamma isoforms were only present in ten (p = 0.003) and 17 (p = 0.000), respectively, in the breast cancer samples. According with the present data, we suggest that TMPOβ and -γ isoforms could provide a potential reliable diagnostic marker for breast cancer.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Laboratorio de Oncología genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI. IMSS, Av. Cuauhtémoc 330, Col. Doctores, México, DF, 06720, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pilat U, Dechat T, Bertrand AT, Woisetschläger N, Gotic I, Spilka R, Biadasiewicz K, Bonne G, Foisner R. The muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair the functions of the nucleoplasmic lamin-A/C-LAP2α complex in mice. J Cell Sci 2013; 126:1753-62. [PMID: 23444379 DOI: 10.1242/jcs.115246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A-type lamins are components of the nuclear lamina, a filamentous network of the nuclear envelope in metazoans that supports nuclear architecture. In addition, lamin A/C can also be found in the interior of the nucleus. This nucleoplasmic lamin pool is soluble in physiological buffer, depends on the presence of the lamin-binding protein, lamina-associated polypeptide 2α (LAP2α) and regulates cell cycle progression in tissue progenitor cells. ΔK32 mutations in A-type lamins cause severe congenital muscle disease in humans and a muscle maturation defect in Lmna(ΔK32/ΔK32) knock-in mice. Mutant ΔK32 lamin A/C protein levels were reduced and all mutant lamin A/C was soluble and mislocalized to the nucleoplasm. To test the role of LAP2α in nucleoplasmic ΔK32 lamin A/C regulation and functions, we deleted LAP2α in Lmna(ΔK32/ΔK32) knock-in mice. In double mutant mice the Lmna(ΔK32/ΔK32)-linked muscle defect was unaffected. LAP2α interacted with mutant lamin A/C, but unlike wild-type lamin A/C, the intranuclear localization of ΔK32 lamin A/C was not affected by loss of LAP2α. In contrast, loss of LAP2α in Lmna(ΔK32/ΔK32) mice impaired the regulation of tissue progenitor cells as in lamin A/C wild-type animals. These data indicate that a LAP2α-independent assembly defect of ΔK32 lamin A/C is the predominant cause of the mouse pathology, whereas the LAP2α-linked functions of nucleoplasmic lamin A/C in the regulation of tissue progenitor cells are not affected in Lmna(ΔK32/ΔK32) mice.
Collapse
Affiliation(s)
- Ursula Pilat
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ward MC, van der Watt PJ, Tzoneva G, Leaner VD. Deregulated LAP2α expression in cervical cancer associates with aberrant E2F and p53 activities. IUBMB Life 2011; 63:1018-26. [PMID: 21990273 DOI: 10.1002/iub.528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/06/2011] [Indexed: 01/11/2023]
Abstract
Lamina-associated polypeptide 2 alpha (LAP2α) plays a role in maintaining nuclear structure, in nuclear assembly/disassembly, and in transcriptional regulation. Elevated LAP2α mRNA expression has been previously reported to associate with certain cancer types. The aim of this study was to investigate LAP2α expression in cervical cancer and transformed cells and to identify factors that associate with its differential expression. LAP2α expression was found to be elevated in cervical cancer tissue by microarray, qRT-PCR, and immunofluorescence analyses. LAP2α also showed elevated expression in cervical cancer cell lines and in transformed fibroblasts compared with normal cells. To determine factors associated with elevated LAP2α in cervical cancer, the effect of inhibiting HPV E7 and E6 oncoproteins was investigated. E7 inhibition resulted in a decrease in phosphorylated Rb and an associated decrease in LAP2α, suggesting a role for E2F in regulating LAP2α expression. This finding was confirmed by inhibiting DP1, a co-activator of E2F, which resulted in decreased LAP2α levels. Inhibition of E6 resulted in elevated p53 and an associated decrease in LAP2α, suggesting that p53 associates with the negative regulation of LAP2α expression. This hypothesis was tested by inhibiting p53 in normal cells, and a resultant increase in LAP2α expression was observed. In conclusion, this study provides evidence for elevated LAP2α expression in cervical cancer and suggests that E2F and p53 activities associate with the positive and negative regulation of LAP2α expression, respectively.
Collapse
Affiliation(s)
- Michelle C Ward
- Faculty of Health Sciences, Division of Medical Biochemistry, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, South Africa
| | | | | | | |
Collapse
|
12
|
Gotic I, Foisner R. Multiple novel functions of lamina associated polypeptide 2α in striated muscle. Nucleus 2010; 1:397-401. [PMID: 21326822 PMCID: PMC3037534 DOI: 10.4161/nucl.1.5.12394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 01/19/2023] Open
Abstract
Lamina-associated polypeptide 2α (LAP2α) is a nucleoplasmic protein that interacts with A-type lamins and the retinoblastoma protein (pRb) and affects pRb-mediated cell cycle regulation and chromatin organization. Mutations in lamin A/C and LAP2α cause late onset striated muscle diseases, but the molecular mechanisms are poorly understood. We have recently reported on the striated muscle phenotype of LAP2α-deficient mice, revealing new unexpected roles of LAP2α. Loss of LAP2α in skeletal muscle caused an upregulated stem cell-type gene expression in muscle satellite cell progeny and their delayed myogenic differentiation in vitro. In vivo, the myofiber-associated muscle stem cell pool was increased. In addition, absence of LAP2α promoted muscle remodeling towards fast myofiber types in the soleus muscle of old animals. In cardiac tissue, deletion of LAP2α caused systolic dysfunction in young mice with an increased susceptibility for fibrosis in old animals. The functional impairment in the heart was accompanied by a deregulation of major cardiac transcription factors, GATA4 and MEF2c and activation of compensatory pathways, including the downregulation of β-adrenergic receptor signaling.Here we discuss potential functions of LAP2α in striated muscle at molecular level and how loss of these functions may cause the diverse muscle phenotypes. We propose that LAP2α serves as a transcriptional co-regulator, which controls muscle specific gene expression during muscle regeneration, muscle remodeling and stress response.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
13
|
Martin C, Chen S, Jackson DA. Inheriting nuclear organization: can nuclear lamins impart spatial memory during post-mitotic nuclear assembly? Chromosome Res 2010; 18:525-41. [PMID: 20568006 DOI: 10.1007/s10577-010-9137-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
Cell type and tissue architecture correlate with genome organization in higher eukaryotes, and structural nuclear landmarks are faithfully transmitted from one cell generation to the next. However, how nuclear components find their place in the nucleus after mitosis is still a matter of debate. As the major structural proteins within nuclei, the nuclear lamins are good candidates to re-establish nuclear compartments following mitosis. Human cells with reduced expression of the major B-type lamin protein, lamin B1, were generated using RNA interference. Mitotic and nuclear assembly phenotypes were then visualized in both fixed and living cells. Mitotic defects in lamin B1-depleted cells correlated with a general deterioration in nuclear compartmentalization and chromatin structure, frequent failure of chromosome segregation, and profound disorganization of centromeres. Examination of cells with normal lamin B1 expression indicated that small lamin B1 foci remain associated with major nuclear compartments--chromatin, nucleoli, and nuclear speckles--during an unperturbed mitosis. Our experiments show that normal lamin B1 expression is required for successful cell division and provide preliminary evidence that lamin B1-containing remnants of the interphase nucleoskeleton persist throughout mitosis. We suggest that these residual structures provide landmarks that are targeted during nuclear reassembly to allow key features of nuclear organization to be inherited from one cell cycle to the next.
Collapse
Affiliation(s)
- Catherine Martin
- Faculty of Life Sciences, University of Manchester, MIB, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | |
Collapse
|
14
|
Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R, Braun J, Stewart CL, Foisner R. Loss of LAP2 alpha delays satellite cell differentiation and affects postnatal fiber-type determination. Stem Cells 2010; 28:480-8. [PMID: 20039368 DOI: 10.1002/stem.292] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lamina-associated polypeptide 2 alpha (LAP2 alpha) is a nucleoplasmic protein implicated in cell cycle regulation through its interaction with A-type lamins and the retinoblastoma protein. Mutations in lamin A/C and LAP2 alpha cause late onset striated muscle diseases, but the molecular mechanisms are poorly understood. To study the role of LAP2 alpha in skeletal muscle function and postnatal tissue homeostasis, we generated complete and muscle-specific LAP2 alpha knockout mice. Whereas overall muscle morphology, function, and regeneration were not detectably affected, the myofiber-associated muscle stem cell pool was increased in complete LAP2 alpha knockout animals. At molecular level, the absence of LAP2 alpha preserved the stem cell-like phenotype of Lap2 alpha(-/-) primary myoblasts and delayed their in vitro differentiation. In addition, loss of LAP2 alpha shifted the myofiber-type ratios of adult slow muscles toward fast fiber types. Conditional Cre-mediated late muscle-specific ablation of LAP2 alpha affected early stages of in vitro myoblast differentiation, and also fiber-type determination, but did not change myofiber-associated stem cell numbers in vivo. Our data demonstrate multiple and distinct functions of LAP2 alpha in muscle stem cell maintenance, early phases of myogenic differentiation, and muscle remodeling.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A- and B-type lamins are the major intermediate filaments of the nucleus. Lamins engage in a plethora of stable and transient interactions, near the inner nuclear membrane and throughout the nucleus. Lamin-binding proteins serve an amazingly diverse range of functions. Numerous inner-membrane proteins help anchor lamin filaments to the nuclear envelope, serving as part of the nuclear "lamina" network that is essential for nuclear architecture and integrity. Certain lamin-binding proteins of the inner membrane bind partners in the outer membrane and mechanically link lamins to the cytoskeleton. Inside the nucleus, lamin-binding proteins appear to serve as the "adaptors" by which the lamina organizes chromatin, influences gene expression and epigenetic regulation, and modulates signaling pathways. Transient interactions of lamins with key components of the transcription and replication machinery may provide an additional level of regulation or support to these essential events.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
16
|
Andrés V, González JM. Role of A-type lamins in signaling, transcription, and chromatin organization. ACTA ACUST UNITED AC 2010; 187:945-57. [PMID: 20038676 PMCID: PMC2806284 DOI: 10.1083/jcb.200904124] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A-type lamins (lamins A and C), encoded by the LMNA gene, are major protein constituents of the mammalian nuclear lamina, a complex structure that acts as a scaffold for protein complexes that regulate nuclear structure and functions. Interest in these proteins has increased in recent years with the discovery that LMNA mutations cause a variety of human diseases termed laminopathies, including progeroid syndromes and disorders that primarily affect striated muscle, adipose, bone, and neuronal tissues. In this review, we discuss recent research supporting the concept that lamin A/C and associated nuclear envelope proteins regulate gene expression in health and disease through interplay with signal transduction pathways, transcription factors, and chromatin-associated proteins.
Collapse
Affiliation(s)
- Vicente Andrés
- Department of Atherothrombosis and Cardiovascular Imaging, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| | | |
Collapse
|
17
|
Gotic I, Leschnik M, Kolm U, Markovic M, Haubner BJ, Biadasiewicz K, Metzler B, Stewart CL, Foisner R. Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice. Circ Res 2009; 106:346-53. [PMID: 19926876 DOI: 10.1161/circresaha.109.205724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Lamina-associated polypeptide (LAP)2alpha is a mammalian chromatin-binding protein that interacts with a fraction of A-type lamins in the nuclear interior. Because mutations in lamins and LAP2alpha lead to cardiac disorders in humans, we hypothesized that these factors may play important roles in heart development and adult tissue homeostasis. OBJECTIVE We asked whether the presence of LAP2alpha was required for normal cardiac function. METHODS AND RESULTS To study the molecular mechanisms of the disease, we analyzed heart structure and function in complete and conditional Lap2alpha(-/-) mice as well as Lap2alpha(-/-)/Mdx mutants. Unlike conditional deletion of LAP2alpha in late embryonic striated muscle, its complete knockout caused systolic dysfunction in young mice, accompanied by sporadic fibrosis in old animals, as well as deregulation of major cardiac transcription factors GATA4 and myocyte enhancer factor 2c. Activation of compensatory pathways, including downregulation of beta-adrenergic receptor signaling, resulted in reduced responsiveness of the myocardium to chronic beta-adrenergic stimulation and stalled the progression of LAP2alpha-deficient hearts from hypertrophy toward cardiac failure. Dystrophin deficiency in an Mdx background resulted in a transient rescue of the Lap2alpha(-/-) phenotype. CONCLUSIONS Our data suggest a novel role of LAP2alpha in the maintenance of cardiac function under normal and stress conditions.
Collapse
Affiliation(s)
- Ivana Gotic
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, Stewart CL, Foisner R. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008; 10:1341-8. [PMID: 18849980 DOI: 10.1038/ncb1793] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/01/2008] [Indexed: 01/07/2023]
Abstract
Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Medical University of Vienna and University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The LEM domain proteins emerin and LAP2alpha are dispensable for human immunodeficiency virus type 1 and murine leukemia virus infections. J Virol 2008; 82:5860-8. [PMID: 18400857 DOI: 10.1128/jvi.00076-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human nuclear envelope proteins emerin and lamina-associated polypeptide 2alpha (LAP2alpha) have been proposed to aid in the early replication steps of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). However, whether these factors are essential for HIV-1 or MLV infection has been questioned. Prior studies in which conflicting results were obtained were highly dependent on RNA interference-mediated gene silencing. To shed light on these contradictory results, we examined whether HIV-1 or MLV could infect primary cells from mice deficient for emerin, LAP2alpha, or both emerin and LAP2alpha. We observed HIV-1 and MLV infectivity in mouse embryonic fibroblasts (MEFs) from emerin knockout, LAP2alpha knockout, or emerin and LAP2alpha double knockout mice to be comparable in infectivity to wild-type littermate-derived MEFs, indicating that both emerin and LAP2alpha were dispensable for HIV-1 and MLV infection of dividing, primary mouse cells. Because emerin has been suggested to be important for infection of human macrophages by HIV-1, we also examined HIV-1 transduction of macrophages from wild-type mice or knockout mice, but again we did not observe a difference in susceptibility. These findings prompted us to reexamine the role of human emerin in supporting HIV-1 and MLV infection. Notably, both viruses efficiently infected human cells expressing high levels of dominant-negative emerin. We thus conclude that emerin and LAP2alpha are not required for the early replication of HIV-1 and MLV in mouse or human cells.
Collapse
|
20
|
Vaillant DC, Paulin-Levasseur M. Evaluation of mammalian cell-free systems of nuclear disassembly and assembly. J Histochem Cytochem 2007; 56:157-73. [PMID: 17967934 DOI: 10.1369/jhc.7a7330.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.
Collapse
Affiliation(s)
- Dominique C Vaillant
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
21
|
Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res 2007; 313:2167-79. [PMID: 17451680 DOI: 10.1016/j.yexcr.2007.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 11/27/2022]
Abstract
Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and beta-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.
Collapse
Affiliation(s)
- Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
22
|
Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 2007; 274:1362-73. [PMID: 17489094 DOI: 10.1111/j.1742-4658.2007.05695.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamins are major structural components of the nuclear envelope in multicellular eukaryotes. Particularly A-type lamins are also located in the nucleoplasm, likely involving a specific binding partner, lamina-associated polypeptide 2alpha (LAP2alpha). LAP2alpha-lamins A/C complexes in the nucleoplasm have been implicated in the regulation of gene expression by various means. They bind chromatin proteins and chromatin modifying enzymes, and can thus participate in epigenetic control pathways. Furthermore, binding of lamins A/C complexes to specific transcription factors and repressors may directly affect their transcriptional activity. LAP2alpha-lamins A/C also regulate retinoblastoma protein and influence cell cycle progression and differentiation, which could have important implications for molecular mechanisms of laminopathic diseases, linked to lamins A/C mutations.
Collapse
Affiliation(s)
- Daniela Dorner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
23
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
24
|
Somech R, Gal-Yam EN, Shaklai S, Geller O, Amariglio N, Rechavi G, Simon AJ. Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 2007; 86:393-401. [PMID: 17364180 DOI: 10.1007/s00277-007-0275-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Extensive research in recent years has broadened the functions of nuclear envelope proteins beyond simply stabilizing the nucleus architecture. Particularly, integral nuclear membrane proteins, such as the alternative spliced isoforms of lamina-associated polypeptide 2 (LAP2), have been shown to be important for the initiation of replication and repression of transcription. The latter is regulated by epigenetic changes, induced by the binding of LAP2beta to histone deacetylase-3 (HDAC3), resulting in histone H4 deacetylation. Involvement of nuclear envelope proteins in pathological proliferative conditions, mainly those involving abnormal recruitment and activation of HDACs, is still unknown. In this paper, we show that various nuclear envelope proteins are highly expressed in normal and malignant activated lymphocytes. Specifically, rapidly replicating cells of various hematological malignancies highly express LAP2beta, while slowly proliferating malignant cells of chronic malignant hematological diseases do not. Taking together the elevated expression of LAP2beta in highly proliferative malignant cells with its known ability to modify histones through binding with HDAC3 raises the possibility of its role in hematological malignancies involving aberrant activity of HDAC3. Based on our presented results, we believe that the LAP2-HDAC regulatory pathway should be studied as a new target for rational therapy.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center, Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
25
|
Snyers L, Vlcek S, Dechat T, Skegro D, Korbei B, Gajewski A, Mayans O, Schöfer C, Foisner R. Lamina-associated polypeptide 2-alpha forms homo-trimers via its C terminus, and oligomerization is unaffected by a disease-causing mutation. J Biol Chem 2007; 282:6308-15. [PMID: 17213199 DOI: 10.1074/jbc.m605782200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nucleoplasmic protein, Lamina-associated polypeptide (LAP) 2alpha, is one of six alternatively spliced products of the LAP2gene, which share a common N-terminal region. In contrast to the other isoforms, which also share most of their C termini, LAP2alpha has a large unique C-terminal region that contains binding sites for chromatin, A-type lamins, and retinoblastoma protein. By immunoprecipitation analyses of LAP2alpha complexes from cells expressing differently tagged LAP2alpha proteins and fragments, we demonstrate that LAP2alpha forms higher order structures containing multiple LAP2alpha molecules in vivo and that complex formation is mediated by the C terminus. Solid phase binding assays using recombinant and in vitro translated LAP2alpha fragments showed direct interactions of LAP2alpha C termini. Cross-linking of LAP2alpha complexes and multiangle light scattering of purified LAP2alpha revealed the existence of stable homo-trimers in vivo and in vitro. Finally, we show that, in contrast to the LAP2alpha-lamin A interaction, its self-association is not affected by a disease-linked single point mutation in the LAP2alpha C terminus.
Collapse
Affiliation(s)
- Luc Snyers
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Naetar N, Hutter S, Dorner D, Dechat T, Korbei B, Gotzmann J, Beug H, Foisner R. LAP2alpha-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. J Cell Sci 2007; 120:737-47. [PMID: 17284516 DOI: 10.1242/jcs.03390] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lamina-associated polypeptide 2alpha (LAP2alpha) is a nuclear protein dynamically associating with chromatin during the cell cycle. In addition, LAP2alpha interacts with A-type lamins and retinoblastoma protein and regulates cell cycle progression via the E2F-Rb pathway. Using yeast two-hybrid analysis and three independent in vitro binding assays we identified a new LAP2alpha interaction partner of hitherto unknown functions, which we termed LINT-25. LINT-25 protein levels were upregulated during G1 phase in proliferating cells and upon cell cycle exit in quiescence, senescence and differentiation. Upon cell cycle exit LINT-25 accumulated in heterochromatin foci, and LAP2alpha protein levels were downregulated by proteasomal degradation. Although LAP2alpha was not required for the upregulation and reorganization of LINT-25 during cell cycle exit, transient expression of LINT-25 in proliferating cells caused loss of LAP2alpha and subsequent cell death. Our data show a role of LINT-25 and LAP2alpha during cell cycle exit, in which LINT-25 acts upstream of LAP2alpha.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Brachner A, Reipert S, Foisner R, Gotzmann J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 2007; 118:5797-810. [PMID: 16339967 DOI: 10.1242/jcs.02701] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The LEM (lamina-associated polypeptide-emerin-MAN1) domain is a motif shared by a group of lamin-interacting proteins in the inner nuclear membrane (INM) and in the nucleoplasm. The LEM domain mediates binding to a DNA-crosslinking protein, barrier-to-autointegration factor (BAF). We describe a novel, ubiquitously expressed LEM domain protein, LEM2, which is structurally related to MAN1. LEM2 contains an N-terminal LEM motif, two predicted transmembrane domains and a MAN1-Src1p C-terminal (MSC) domain highly homologous to MAN1, but lacks the MAN1-specific C-terminal RNA-recognition motif. Immunofluorescence microscopy of digitonin-treated cells and subcellular fractionation identified LEM2 as a lamina-associated protein residing in the INM. LEM2 binds to the lamin C tail in vitro. Targeting of LEM2 to the nuclear envelope requires A-type lamins and is mediated by the N-terminal and transmembrane domains. Highly overexpressed LEM2 accumulates in patches at the nuclear envelope and forms membrane bridges between nuclei of adjacent cells. LEM2 structures recruit A-type lamins, emerin, MAN1 and BAF, whereas lamin B and lamin B receptor are excluded. Our data identify LEM2 as a novel A-type-lamin-associated INM protein involved in nuclear structure organization.
Collapse
Affiliation(s)
- Andreas Brachner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Pekovic V, Harborth J, Broers JLV, Ramaekers FCS, van Engelen B, Lammens M, von Zglinicki T, Foisner R, Hutchison C, Markiewicz E. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts. J Cell Biol 2007; 176:163-72. [PMID: 17227891 PMCID: PMC2063936 DOI: 10.1083/jcb.200606139] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/15/2006] [Indexed: 01/03/2023] Open
Abstract
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wagner N, Krohne G. LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:1-46. [PMID: 17560279 DOI: 10.1016/s0074-7696(07)61001-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEM-domain proteins present a growing family of nonrelated inner nuclear membrane and intranuclear proteins, including emerin, MAN1, LEM2, several alternatively spliced isoforms of LAP2, and various uncharacterized proteins in higher eukaryotes as well as the Drosophila-specific proteins otefin and Bocksbeutel. LEM-domain proteins are involved in diverse cellular processes including replication and cell cycle control, chromatin organization and nuclear assembly, the regulation of gene expression and signaling pathways, as well as retroviral infection. Genetic analyses in different model organisms reveal new insights into the various functions of LEM-domain proteins, lamins, and their involvement in laminopathic diseases. All these findings as well as previously proposed ideas and models have been summarized to broaden our view of this exciting protein family.
Collapse
Affiliation(s)
- Nicole Wagner
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
30
|
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disease characterized by dilatation and impaired systolic function of the left or both ventricles. The etiology of DCM is multifactorial, and many different clinical conditions can lead to the phenotype of DCM. During recent years it has become evident that genetic factors play an important role in the etiology and pathogenesis of idiopathic DCM. The genetics of DCM have been under intensive investigation lately, and thereby the knowledge on the genetic basis of DCM has increased rapidly. The genetic background of the disease seems to be relatively heterogeneous, and the disease-associated mutations concern mostly single families and only few affected patients. Disease-associated mutations have been detected e.g. in genes encoding sarcomere, cytoskeletal, and nuclear proteins, as well as proteins involved with regulation of Ca(2+) metabolism. The mechanisms, by which mutations eventually result in clinical heart failure, are complex and not yet totally resolved. DCM causes considerable morbidity and mortality. Better knowledge of the genetic background and disease-causing mechanisms would probably help us in focusing early treatment on right subjects and potentially also developing new treatment modalities and improving cardiac outcome in the affected patients. This review deals with DCM of genetic origin.
Collapse
Affiliation(s)
- Satu Kärkkäinen
- Kuopio University and Kuopio University Hospital, Kuopio, Finland.
| | | |
Collapse
|
31
|
Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2006; 26:566-74. [PMID: 16247757 DOI: 10.1002/humu.20250] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Matthew R G Taylor
- CU-Cardiovascular Institute, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C, Gotzmann J, Hutchison CJ, Foisner R. Lamina-associated polypeptide 2alpha regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J Cell Biol 2006; 173:83-93. [PMID: 16606692 PMCID: PMC2063793 DOI: 10.1083/jcb.200511149] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/07/2006] [Indexed: 12/23/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2alpha is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2alpha in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2alpha by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2alpha-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2alpha COOH terminus directly bound Rb, and overexpressed LAP2alpha inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2alpha associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2alpha in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2alpha on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.
Collapse
Affiliation(s)
- Daniela Dorner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wagner N, Kagermeier B, Loserth S, Krohne G. The Drosophila melanogaster LEM-domain protein MAN1. Eur J Cell Biol 2006; 85:91-105. [PMID: 16439308 DOI: 10.1016/j.ejcb.2005.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 12/24/2022] Open
Abstract
Here we describe the Drosophila melanogaster LEM-domain protein encoded by the annotated gene CG3167 which is the putative ortholog to vertebrate MAN1. MAN1 of Drosophila (dMAN1) and vertebrates have the following properties in common. Firstly, both molecules are integral membrane proteins of the inner nuclear membrane (INM) and share the same structural organization comprising an N-terminally located LEM motif, two transmembrane domains in the middle of the molecule, and a conserved RNA recognition motif in the C-terminal region. Secondly, dMAN1 has similar targeting domains as it has been reported for the human protein. Thirdly, immunoprecipitations with dMAN1-specific antibodies revealed that this Drosophila LEM-domain protein is contained in protein complexes together with lamins Dm0 and C. It has been previously shown that human MAN1 binds to A- and B-type lamins in vitro. During embryogenesis and early larval development LEM-domain proteins dMAN1 and otefin show the same expression pattern and are much more abundant in eggs and the first larval instar than in later larval stages and young pupae whereas the LEM-domain protein Bocksbeutel is uniformly expressed in all developmental stages. dMAN1 is detectable in the nuclear envelope of embryonic cells including the pole cells. In mitotic cells of embryos at metaphase and anaphase, LEM-domain proteins dMAN1, otefin and Bocksbeutel were predominantly localized in the region of the two spindle poles whereas the lamin B receptor and lamin Dm0 were more homogeneously distributed. Downregulation of dMAN1 by RNA interference (RNAi) in Drosophila cultured Kc167 cells has no obvious effect on nuclear architecture, viability of RNAi-treated cells and the intracellular distribution of the LEM-domain proteins Bocksbeutel and otefin. In contrast, the localization of dMAN1, Bocksbeutel and otefin at the INM is supported by lamin Dm0. We conclude that the dMAN1 protein is not a limiting component of the nuclear architecture in Drosophila cultured cells.
Collapse
Affiliation(s)
- Nicole Wagner
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
34
|
Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 2005; 118:3419-30. [PMID: 16079285 DOI: 10.1242/jcs.02471] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ;structural bridge' connecting the nuclear interior with the actin cytoskeleton.
Collapse
Affiliation(s)
- V C Padmakumar
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol 2005; 6:21-31. [PMID: 15688064 DOI: 10.1038/nrm1550] [Citation(s) in RCA: 658] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many nuclear proteins form lamin-dependent complexes, including LEM-domain proteins, nesprins and SUN-domain proteins. These complexes have roles in chromatin organization, gene regulation and signal transduction. Some link the nucleoskeleton to cytoskeletal structures, ensuring that the nucleus and centrosome assume appropriate intracellular positions. These complexes provide new insights into cell architecture, as well as a foundation for the understanding of the molecular mechanisms that underlie the human laminopathies - clinical disorders that range from Emery-Dreifuss muscular dystrophy to the accelerated ageing seen in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904 Israel.
| | | | | | | | | |
Collapse
|
36
|
Maraldi NM, Squarzoni S, Sabatelli P, Capanni C, Mattioli E, Ognibene A, Lattanzi G. Laminopathies: Involvement of structural nuclear proteins in the pathogenesis of an increasing number of human diseases. J Cell Physiol 2005; 203:319-27. [PMID: 15389628 DOI: 10.1002/jcp.20217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Just at the beginning of the millennium the neologism laminopathies has been introduced in the scientific vocabulary. An exponential increase of interest on the subject started concomitantly, so that a formerly quite neglected group of rare human diseases is now widely investigated. This review will cover the history of the identification of the molecular basis for fourteen (since now) hereditary diseases arising from defects in genes that encode nuclear envelope and nuclear lamina-associated proteins and will also consider the hypotheses that can account for the role of structural nuclear proteins in the pathogenesis of diseases affecting a wide spectrum of tissues.
Collapse
Affiliation(s)
- Nadir M Maraldi
- ITOI-CNR, Unit of Bologna via di Barbiano 1/10 c/o IOR, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Margalit A, Vlcek S, Gruenbaum Y, Foisner R. Breaking and making of the nuclear envelope. J Cell Biochem 2005; 95:454-65. [PMID: 15832341 DOI: 10.1002/jcb.20433] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During mitosis, a single nucleus gives rise to two nuclei that are identical to the parent nucleus. Mitosis consists of a continuous sequence of events that must be carried out once and only once. Two such important events are the disassembly of the nuclear envelope (NE) during the first stages of mitosis, and its accurate reassembly during the last stages of mitosis. NE breakdown (NEBD) is initiated when maturation-promoting factor (MPF) enters the nucleus and starts phosphorylating nuclear pore complexes (NPCs) and nuclear lamina proteins, followed by NPC and lamina breakdown. Nuclear reassembly starts when nuclear membranes assemble onto the chromatin. This article focuses on the different models of NEBD and reassembly with emphasis on recent data.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
38
|
Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 2004; 117:6117-28. [PMID: 15546916 DOI: 10.1242/jcs.01529] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2α is a LEM (lamina-associated polypeptide emerin MAN1) family protein associated with nucleoplasmic A-type lamins and chromatin. Using live cell imaging and fluorescence microscopy we demonstrate that LAP2α was mostly cytoplasmic in metaphase and associated with telomeres in anaphase. Telomeric LAP2α clusters grew in size, formed `core' structures on chromatin adjacent to the spindle in telophase, and translocated to the nucleoplasm in G1 phase. A subfraction of lamin C and emerin followed LAP2α to the core region early on, whereas LAP2β, lamin B receptor and lamin B initially bound to more peripheral regions of chromatin, before they spread to core structures with different kinetics. Furthermore, the DNA-crosslinking protein barrier-to-autointegration factor (BAF) bound to LAP2α in vitro and in mitotic extracts, and subfractions of BAF relocalized to core structures with LAP2α. We propose that LAP2α and a subfraction of BAF form defined complexes in chromatin core regions and may be involved in chromatin reorganization during early stages of nuclear assembly.
Collapse
Affiliation(s)
- Thomas Dechat
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vlcek S, Foisner R, Wilson KL. Lco1 is a novel widely expressed lamin-binding protein in the nuclear interior. Exp Cell Res 2004; 298:499-511. [PMID: 15265697 DOI: 10.1016/j.yexcr.2004.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/20/2004] [Indexed: 12/25/2022]
Abstract
A-type lamins are localized at the nuclear envelope and in the nucleoplasm, and are implicated in human diseases called laminopathies. In a yeast two-hybrid screen with lamin C, we identified a novel widely expressed 171-kDa protein that we named Lamin companion 1 (Lco1). Three independent biochemical assays showed direct binding of Lco1 to the C-terminal tail of A-type lamins with an affinity of 700 nM. Lco1 also bound the lamin B1 tail with lower affinity (2 microM). Ectopic Lco1 was found primarily in the nucleoplasm and colocalized with endogenous intranuclear A-type lamins in HeLa cells. Overexpression of prelamin A caused redistribution of ectopic Lco1 to the nuclear rim together with ectopic lamin A, confirming association of Lco1 with lamin A in vivo. Whereas the major C-terminal lamin-binding fragment of Lco1 was cytoplasmic, the N-terminal Lco1 fragment localized in the nucleoplasm upon expression in cells. Furthermore, full-length Lco1 was nuclear in cells lacking A-type lamins, showing that A-type lamins are not required for nuclear targeting of Lco1. We conclude that Lco1 is a novel intranuclear lamin-binding protein. We hypothesize that Lco1 is involved in organizing the internal lamin network and potentially relevant as a laminopathy disease gene or modifier.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
40
|
Gajewski A, Csaszar E, Foisner R. A Phosphorylation Cluster in the Chromatin-binding Region Regulates Chromosome Association of LAP2α. J Biol Chem 2004; 279:35813-21. [PMID: 15208326 DOI: 10.1074/jbc.m402546200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LAP2alpha is a LEM family protein associated with nucleoplasmic A-type lamins and chromatin in interphase. Like lamins and other lamina proteins LAP2alpha is cytoplasmic in metaphase, but it associates with chromosomes prior to nuclear envelope formation in late anaphase to telophase. In vitro phosphorylation analysis and mass spectrometry identified a cluster of at least three mitotic cyclin-dependent kinase 1 phosphorylation sites in the C-terminal chromatin-binding region of LAP2alpha as well as four additional potential sites in the cluster, some of which were targeted alternatively in LAP2alpha mutated at the major sites. LAP2alpha mutants containing serine --> alanine mutations at all seven sites revealed a clear phenotype. Mutated LAP2alpha remained associated with chromosomes throughout mitosis, but the dissociation of lamins into the cytoplasm and nuclear envelope disassembly were not affected. These data demonstrate the in vivo significance of mitotic phosphorylation for the dynamic behavior of LAP2alpha in the cell cycle and show that, unlike the interaction with lamins, the chromatin association of LAP2alpha is regulated by multiple mitosis-specific phosphorylation at sites clustered within a defined region in the C terminus of the protein.
Collapse
Affiliation(s)
- Andreas Gajewski
- Department of Medical Biochemistry, Medical University of Vienna, Austria
| | | | | |
Collapse
|
41
|
Abstract
Barrier-to-autointegration factor (BAF) is an essential protein that is highly conserved in metazoan evolution. BAF binds directly to double-stranded DNA, nuclear LEM-domain proteins, lamin A and transcription activators. BAF is also a host cell component of retroviral pre-integration complexes. BAF binds matrix, a retroviral protein, and facilitates efficient retroviral DNA integration in vitro through unknown mechanisms. New findings suggest that BAF has structural roles in nuclear assembly and chromatin organization, represses gene expression and might interlink chromatin structure, nuclear architecture and gene regulation in metazoans.
Collapse
Affiliation(s)
- Miriam Segura-Totten
- Department of Science and Technology, Universidad Metropolitana, PO Box 21150, San Juan, PR 00928, USA
| | | |
Collapse
|
42
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zastrow MS, Vlcek S, Wilson KL. Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 2004; 117:979-87. [PMID: 14996929 DOI: 10.1242/jcs.01102] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What do such diverse molecules as DNA, actin, retinoblastoma protein and protein kinase Cα all have in common? They and additional partners bind `A-type' lamins, which form stable filaments in animal cell nuclei. Mutations in A-type lamins cause a bewildering range of tissue-specific diseases, termed `laminopathies', including Emery-Dreifuss muscular dystrophy and the devastating Hutchinson-Gilford progeria syndrome, which mimics premature aging. Considered individually and collectively, partners for A-type lamins form four loose groups: architectural partners, chromatin partners, gene-regulatory partners and signaling partners. We describe 16 partners in detail, summarize their binding sites in A-type lamins, and sketch portraits of ternary complexes and functional pathways that might depend on lamins in vivo. On the basis of our limited current knowledge, we propose lamin-associated complexes with multiple components relevant to nuclear structure (e.g. emerin, nesprin 1α, actin) or signaling and gene regulation (e.g. LAP2α, retinoblastoma, E2F-DP heterodimers, genes) as `food for thought'. Testing these ideas will deepen our understanding of nuclear function and human disease.
Collapse
Affiliation(s)
- Michael S Zastrow
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
44
|
Prüfert K, Winkler C, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) genes of zebrafish and chicken: no LAP2α isoform is synthesised by non-mammalian vertebrates. Eur J Cell Biol 2004; 83:403-11. [PMID: 15506564 DOI: 10.1078/0171-9335-00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
45
|
Schoft VK, Beauvais AJ, Lang C, Gajewski A, Prüfert K, Winkler C, Akimenko MA, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) isoforms beta, gamma and omega of zebrafish: developmental expression and behavior during the cell cycle. J Cell Sci 2003; 116:2505-17. [PMID: 12734396 DOI: 10.1242/jcs.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zebrafish lamina-associated polypeptides 2 (ZLAP2) beta, gamma and omega have in common an N-terminal region with a LEM domain, and in the C-terminal half of the molecule a lamina binding domain and a membrane spanning sequence. The maternally synthesized omega is the largest isoform and the only LAP2 present in the rapidly dividing embryonic cells up to the gastrula stage. ZLAP2omega levels decrease during development, concomitant with the increase of the somatic isoforms ZLAP2beta and gamma. In somatic zebrafish cells ZLAP2gamma is the predominant isoform, whereas only small amounts of ZLAP2beta are present. During early embryonic development, ZLAP2omega becomes associated with mitotic chromosomes before anaphase. The surface of these chromosomes is decorated with vesicles, and each chromosome assembles its own nuclear envelope at the end of mitosis (karyomere formation). Ectopically expressed ZLAP2omega-green fluorescent protein (GFP) fusion protein targets vesicles to mitotic chromosomes in Xenopus A6 cells, suggesting that ZLAP2omega is involved in karyomere formation during early zebrafish development. When ZLAP2beta and gamma were expressed as GFP fusion proteins in Xenopus A6 cells, the beta- but not the gamma-isoform was found in association with mitotic chromosomes, and ZLAP2beta-containing chromosomes were decorated with vesicles. Further analysis of ZLAP2-GFP fusion proteins containing only distinct domains of the ZLAP2 isoforms revealed that the common N-terminal region in conjunction with beta- or omega-specific sequences mediate binding to mitotic chromosomes in vivo.
Collapse
Affiliation(s)
- Vera K Schoft
- Division of Electron Microscopy, Biocenter of the University of Wü rzburg, Am Hubland, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lang C, Krohne G. Lamina-associated polypeptide 2beta (LAP2beta) is contained in a protein complex together with A- and B-type lamins. Eur J Cell Biol 2003; 82:143-53. [PMID: 12691263 DOI: 10.1078/0171-9335-00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lamina-associated polypeptide 2beta (LAP2beta) of vertebrates is an integral membrane protein of the inner nuclear membrane that is generated by alternative splicing from the LAP2 gene. In the majority of Xenopus somatic cells including cultured kidney epithelial cells (A6 cells) there is only one major LAP2 isoform expressed that has the highest similarities with the mammalian LAP2beta whereas isoforms corresponding in size to the mammalian LAP2gamma and alpha are not detectable. We selected A6 cells and A6 cells stably expressing GFP fusion proteins of Xenopus LAP2beta (XLAP2Pbeta) as a model system to study interactions between LAP2beta and lamins. In vitro binding experiments with GST-XLAP2beta fusion proteins and immunoprecipitations with antibodies to GFP revealed that XLAP2beta is part of a complex that contains A- and B-type lamins. For the targeting to the nuclear envelope and the in vivo formation of this complex, GFP fusion proteins were sufficient comprising only the carboxyterminal 135 amino acids of XLAP2beta or the comparable region of zebrafish LAP2beta. A highly conserved 36 amino acids long sequence is located in this region of LAP2beta that is part of the lamina-binding domain previously identified in rat LAP2beta. GFP-LAP2beta fusion proteins of Xenopus, zebrafish, and rat that contained this sequence do compete with endogenous LAP2 in transfected cells for the same binding sites in the lamina. Our data indicate that the lamina-binding site of LAP2beta has been highly conserved during vertebrate evolution and suggests that this region of LAP2beta mediates the interactions between polymers of A- and B-type lamins.
Collapse
Affiliation(s)
- Carmen Lang
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Würzburg/Germany
| | | |
Collapse
|