1
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. In vitro expression of genes encoding HIF1α, VEGFA, PGE2 synthases, and PGE2 receptors in feline oral squamous cell carcinoma. J Vet Diagn Invest 2025; 37:223-233. [PMID: 39930728 PMCID: PMC11811947 DOI: 10.1177/10406387251315677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is an aggressive tumor with poor outcomes. Mechanisms of prostaglandin E2 (PGE2)-related inflammation and angiogenesis interact in human OSCC; however, this relationship has not been reported in FOSCC, to our knowledge. We aimed to characterize expression of genes encoding PGE2 synthases (PTGES1-3), PGE2 receptors (EP1-4), hypoxia inducible factor 1α (HIF1A), and vascular and endothelial growth factor A (VEGFA) in FOSCC cell lines (SCCF1-3) in vitro using reverse-transcription quantitative real-time PCR (RT-qPCR). Expression of PTGES1, PTGES3, EP4, and VEGFA were serum-inducible in SCCF2 cells; VEGFA was also inducible in SCCF1 cells (p ≤ 0.05). Compared to other serum-treated cells, SCCF3 cells had the lowest VEGFA expression despite the highest HIF1A (p ≤ 0.05) expression. PGE2 (5 µg/mL and 35 µg/mL) was added to SCCF2 cells for 4 different times (30, 60, 120, 240 min). Both doses of PGE2 stimulated expression of HIF1A and CD147 at 240 min (p ≤ 0.05). PGE2 treatment stimulated cyclooxygenase 2 (COX2) expression at 30 min, followed by suppression at 60 and 120 min and a sharp reduction in EP4 expression at 60 min (p ≤ 0.05). Treatment of SCCF2 with PGE2 and EP4 antagonist L-161,982 increased COX2 expression, and L-161,982 (alone and in combination with PGE2) stimulated EP4 expression (p ≤ 0.05). Genes for PGE2 synthase enzymes, PGE2 receptors, HIF1α and VEGFA were expressed in FOSCC cells in vitro. SCCF2 cells responded to exogenous PGE2 and EP4 antagonism, suggesting that EP4 activity in FOSCC deserves more study.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K. Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
2
|
Majima M, Matsuda Y, Watanabe SI, Ohtaki Y, Hosono K, Ito Y, Amano H. Prostanoids Regulate Angiogenesis and Lymphangiogenesis in Pathological Conditions. Cold Spring Harb Perspect Med 2024; 14:a041182. [PMID: 38565267 PMCID: PMC11610754 DOI: 10.1101/cshperspect.a041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Angiogenesis, the formation of new blood vessels from the preexistent microvasculature, is an essential component of wound repair and tumor growth. Nonsteroidal anti-inflammatory drugs that suppress prostanoid biosynthesis are known to suppress the incidence and progression of malignancies including colorectal cancers, and also to delay the wound healing. However, the precise mechanisms are not fully elucidated. Accumulated results obtained from prostanoid receptor knockout mice indicate that a prostaglandin E-type receptor signaling EP3 in the host microenvironment is critical in tumor angiogenesis inducing vascular endothelial growth factor A (VEGF-A). Further, lymphangiogenesis was also enhanced by EP signaling via VEGF-C/D inductions in pathological settings. These indicate the importance of EP receptor to facilitate angiogenesis and lymphangiogenesis in vivo. Prostanoids act beyond their commonly understood activities in smooth muscle contraction and vasoactivity, both of which are quick responses elicited within several seconds on stimulations. Prostanoid receptor signaling will be a potential therapeutic target for disease conditions related to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yasuaki Ohtaki
- Department of Human Sensing, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
3
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
5
|
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, Leonardi C, Montaldo E, Lusito E, Dugnani E, Citro A, Ng MSF, Schiavo Lena M, Drago D, Andolfo A, Brugiapaglia S, Scagliotti A, Mortellaro A, Corbo V, Liu Z, Mondino A, Dellabona P, Piemonti L, Taveggia C, Doglioni C, Cappello P, Novelli F, Iannacone M, Ng LG, Ginhoux F, Crippa S, Falconi M, Bonini C, Naldini L, Genua M, Ostuni R. IL-1β + macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623:415-422. [PMID: 37914939 DOI: 10.1038/s41586-023-06685-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco M Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vincenzo Cuzzola
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Carlo Leonardi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | | | - Denise Drago
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Mondino
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Stefano Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mimicking Gene-Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. BIOLOGY 2022; 12:biology12010006. [PMID: 36671699 PMCID: PMC9855005 DOI: 10.3390/biology12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study's conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene-environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients' cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues' and organs' tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene-environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future.
Collapse
|
8
|
Jiang DT, Tuo L, Bai X, Bing WD, Qu QX, Zhao X, Song GM, Bi YW, Sun WY. Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha. Stem Cell Res Ther 2022; 13:316. [PMID: 35842683 PMCID: PMC9288720 DOI: 10.1186/s13287-022-03011-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is associated with oxidative stress and affects the survival and homing of transplanted mesenchymal stem cells (MSCs) as well as cytokine secretion by the MSCs, thereby altering their therapeutic potential. In this study, we preconditioned the MSCs with prostaglandin E1 (PGE1) and performed in vitro and in vivo cell experiments to evaluate the therapeutic effects of MSCs in rats with PAH. Methods We studied the relationship between PGE1 and vascular endothelial growth factor (VEGF) secretion, B-cell lymphoma 2 (Bcl-2) expression, and C-X-C chemokine receptor 4 (CXCR4) expression in MSCs and MSC apoptosis as well as migration through the hypoxia-inducible factor (HIF) pathway in vitro. The experimental rats were randomly divided into five groups: (I) control group, (II) monocrotaline (MCT) group, (III) MCT + non-preconditioned (Non-PC) MSC group, (IV) MCT + PGE1-preconditioned (PGE1-PC) MSC group, and (V) MCT+PGE1+YC-1-PCMSC group. We studied methane dicarboxylic aldehyde (MDA) levels, MSC homing to rat lungs, mean pulmonary artery pressure, pulmonary artery systolic pressure, right ventricular hypertrophy index, wall thickness index (%WT), and relative wall area index (%WA) of rat pulmonary arterioles. Results Preconditioning with PGE1 increased the protein levels of HIF-1 alpha (HIF-1α) in MSCs, which can reduce MSC apoptosis and increase the protein levels of CXCR4, MSC migration, and vascular endothelial growth factor secretion. Upon injection with PGE1-PCMSCs, the pulmonary artery systolic pressure, mean pulmonary artery pressure, right ventricular hypertrophy index, %WT, and %WA decreased in rats with PAH. PGE1-PCMSCs exhibited better therapeutic effects than non-PCMSCs. Interestingly, lificiguat (YC-1), an inhibitor of the HIF pathway, blocked the effects of PGE1 preconditioning. Conclusions Our findings indicate that PGE1 modulates the properties of MSCs by regulating the HIF pathway, providing insights into the mechanism by which PGE1 preconditioning can be used to improve the therapeutic potential of MSCs in PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03011-x.
Collapse
Affiliation(s)
- De-Tian Jiang
- Department of Cardiovascular Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Lei Tuo
- Department of Cardiovascular Surgery, Weifang Yidu Central Hospital, Qingzhou, Weifang, 262500, Shandong, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Wei-Dong Bing
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Qing-Xi Qu
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Guang-Min Song
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Yan-Wen Bi
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China.
| | - Wen-Yu Sun
- Department of Cardiovascular Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
9
|
Zhang XX, Liang X, Li SR, Guo KJ, Li DF, Li TF. Bone Marrow Mesenchymal Stem Cells Overexpressing HIF-1α Prevented the Progression of Glucocorticoid-Induced Avascular Osteonecrosis of Femoral Heads in Mice. Cell Transplant 2022; 31:9636897221082687. [PMID: 35287482 PMCID: PMC8928352 DOI: 10.1177/09636897221082687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoid (GC)-induced avascular osteonecrosis of femoral head (AOFH) is a devastating complication, and no cures are currently available for it. Previous studies have demonstrated that implantation of bone marrow mesenchymal stem cells (BMMSCs) may prevent the progression of pre-collapse AOFH. Based on previous observations, we hypothesized that GCs induce AOFH via the COX-2 (cyclooxygenase-2)-PGE-2 (prostaglandin E2)-HIF-1α (hypoxia-inducible factor-1α) axis, and that modification of BMMSCs may improve the efficacy of their implantation. BMMSCs isolated from wild-type (WT) mice were treated with dexamethasone (Dex) and the results showed that Dex repressed the expression of COX-2. Femoral head samples harvested from both WT and COX-2 knock-out (COX-2-/-) mice were subjected to micro-computed tomography and histological examinations. Compared with their WT littermates, COX-2-/- mice had larger trabecular separations, diminished microvasculature, and reduced HIF-1α expression in their femoral heads. In vitro angiogenesis assays with tube formation and fetal metatarsal sprouting demonstrated that Dex repressed angiogenesis and PGE-2 antagonized its effects. An AOFH model was successfully established in C57BL/6J mice. In vitro experiment showed that BMMSCs infected with Lentivirus encoding HIF-1α (Lenti-HIF-1α) resulted in a robust increase in the production of HIF-1α protein. Implantation of BMMSCs overexpressing HIF-1α into femoral heads of AOFH mice significantly reduced osteonecrotic areas and enhanced bone repair, thus largely preserving the structural integrity of femoral heads. Our studies provide strong rationales for early intervention with core decompression and implantation of modified BMMSCs for GC-induced AOFH, which may spare patients from expensive and difficult surgical procedures.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Sen-Rui Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Kuang-Jin Guo
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
11
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
12
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
13
|
Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front Immunol 2021; 12:703972. [PMID: 34276700 PMCID: PMC8281042 DOI: 10.3389/fimmu.2021.703972] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction resulting in oxidative stress could be associated with tissue and cell damage common in many T cell-mediated autoimmune diseases. Autoreactive CD4 T cell effector subsets (Th1,Th17) driving these diseases require increased glycolytic metabolism to upregulate key transcription factors (TF) like T-bet and RORγt that drive differentiation and proinflammatory responses. However, research in immunometabolism has demonstrated that mitochondrial-derived reactive oxygen species (ROS) act as signaling molecules contributing to T cell fate and function. Eliminating autoreactive T cells by targeting glycolysis or ROS production is a potential strategy to inhibit autoreactive T cell activation without compromising systemic immune function. Additionally, increasing self-tolerance by promoting functional immunosuppressive CD4 T regulatory (Treg) cells is another alternative therapeutic for autoimmune disease. Tregs require increased ROS and oxidative phosphorylation (OxPhos) for Foxp3 TF expression, differentiation, and anti-inflammatory IL-10 cytokine synthesis. Decreasing glycolytic activity or increasing glutathione and superoxide dismutase antioxidant activity can also be beneficial in inhibiting cytotoxic CD8 T cell effector responses. Current treatment options for T cell-mediated autoimmune diseases such as Type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) include global immunosuppression, antibodies to deplete immune cells, and anti-cytokine therapy. While effective in diminishing autoreactive T cells, they can also compromise other immune responses resulting in increased susceptibility to other diseases and complications. The impact of mitochondrial-derived ROS and immunometabolism reprogramming in autoreactive T cell differentiation could be a potential target for T cell-mediated autoimmune diseases. Exploiting these pathways may delay autoimmune responses in T1D.
Collapse
Affiliation(s)
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Anti-inflammatory and cytoprotective potentials of Meloxicam solid dispersions prepared by different techniques on lipopolysaccharide-stimulated RAW 264.7 macrophages. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Seeger DR, Golovko SA, Grove BD, Golovko MY. Cyclooxygenase inhibition attenuates brain angiogenesis and independently decreases mouse survival under hypoxia. J Neurochem 2021; 158:246-261. [PMID: 33389746 PMCID: PMC8249483 DOI: 10.1111/jnc.15291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Although cyclooxygenase (COX) role in cancer angiogenesis has been studied, little is known about its role in brain angioplasticity. In the present study, we chronically infused mice with ketorolac, a non‐specific COX inhibitor that does not cross the blood–brain barrier (BBB), under normoxia or 50% isobaric hypoxia (10% O2 by volume). Ketorolac increased mortality rate under hypoxia in a dose‐dependent manner. Using in vivo multiphoton microscopy, we demonstrated that chronic COX inhibition completely attenuated brain angiogenic response to hypoxia. Alterations in a number of angiogenic factors that were reported to be COX‐dependent in other models were assayed at 24‐hr and 10‐day hypoxia. Intriguingly, hypoxia‐inducible factor 1 was unaffected under COX inhibition, and vascular endothelial growth factor receptor type 2 (VEGFR2) and C‐X‐C chemokine receptor type 4 (CXCR4) were significantly but slightly decreased. However, a number of mitogen‐activated protein kinases (MAPKs) were significantly reduced upon COX inhibition. We conclude that additional, angiogenic factor‐independent mechanism might contribute to COX role in brain angioplasticity, probably including mitogenic COX effect on endothelium. Our data indicate that COX activity is critical for systemic adaptation to chronic hypoxia, and BBB COX is essential for hypoxia‐induced brain angioplasticity. These data also indicate a potential risk for using COX inhibitors under hypoxia conditions in clinics. Further studies are required to elucidate a complete mechanism for brain long‐term angiogenesis regulation through COX activity.
Collapse
Affiliation(s)
- Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Bryon D Grove
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
16
|
Şimşek F, Işık Ü, Aktepe E, Kılıç F, Şirin FB, Bozkurt M. Comparison of Serum VEGF, IGF-1, and HIF-1α Levels in Children with Autism Spectrum Disorder and Healthy Controls. J Autism Dev Disord 2021; 51:3564-3574. [PMID: 33389301 DOI: 10.1007/s10803-020-04820-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine whether serum VEGF, IGF-1, and HIF-1α levels differed between Autism Spectrum Disorder (ASD) patients and healthy controls. A total of 40 children with ASD and 40 healthy controls aged 4-12 years were included. Serum levels of VEGF, IGF-1, and HIF-1α were measured using commercial enzyme-linked immunosorbent assay kits. Serum IGF-1 levels were found to be statistically significantly higher in the ASD group than in the control group. Serum HIF-1α levels were borderline significantly lower in the ASD group. There was no statistically significant difference in serum VEGF levels between the two groups. IGF-1 and HIF-1α may play a potential role in the etiopathogenesis of ASD.
Collapse
Affiliation(s)
- Fulya Şimşek
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey
| | - Ümit Işık
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey.
| | - Evrim Aktepe
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey
| | - Faruk Kılıç
- Department of Psychiatry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Fevziye Burcu Şirin
- Department of Biochemistry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Mustafa Bozkurt
- Department of Biochemistry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
17
|
Aliabadi F, Ajami M, Pazoki–Toroudi H. Why does COVID‐19 pathology have several clinical forms? Bioessays 2020; 42:e2000198. [DOI: 10.1002/bies.202000198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Department of Medicine Iran University of Medical Sciences Tehran Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamidreza Pazoki–Toroudi
- Physiology Research Center, Department of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Physiology, Department of Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
18
|
Hypoxia-inducible factor-1α mediates the expression of mature β cell-disallowed genes in hypoxia-induced β cell dedifferentiation. Biochem Biophys Res Commun 2019; 523:382-388. [PMID: 31866014 DOI: 10.1016/j.bbrc.2019.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Hypoxia affects the function of pancreatic β cells, and the molecular mechanism underlying hypoxia-related β cell dysfunction in human type 2 diabetes mellitus (T2DM) remains to be elucidated. In this study, by comparing the gene expression profiles of islets from nondiabetic and T2D subjects using gene chip array, we aimed to elucidate that hypoxia signaling pathways are activated in human T2DM islets. CoCl2 treatment, which was employed to mimic hypoxic stimulation in human islets, decreased insulin secretion, insulin content, and the functional gene expression of human islets. In parallel, the expression of mature β cell-disallowed genes was upregulated by CoCl2, including progenitor cell marker NGN3, β cell differentiation marker ALDH1A3, and genes that are typically inhibited in mature β cells, namely, GLUT1 and LDHA, indicating that CoCl2-mimicked hypoxia induced β cell dedifferentiation of human islets. This finding in human islets was confirmed in mouse β cell line NIT-1. By using Dimethyloxalylglycine (DMOG) to activate hypoxia-inducible factor-1α (HIF-1α) or siRNAs to knockdown HIF-1α, we found that HIF-1α was a key regulator of hypoxia-induced dedifferentiation of β cells by upregulating mature β cell-disallowed genes. Our findings suggested that HIF-1α activation might be an important contributor to β cell dedifferentiation in human T2DM islets, and HIF-1α-targeted therapies may have the potential to reverse β cell dedifferentiation of human T2DM islets.
Collapse
|
19
|
Olcina MM, Balanis NG, Kim RK, Aksoy BA, Kodysh J, Thompson MJ, Hammerbacher J, Graeber TG, Giaccia AJ. Mutations in an Innate Immunity Pathway Are Associated with Poor Overall Survival Outcomes and Hypoxic Signaling in Cancer. Cell Rep 2019; 25:3721-3732.e6. [PMID: 30590044 PMCID: PMC6405289 DOI: 10.1016/j.celrep.2018.11.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Complement-mediated cytotoxicity may act as a selective pressure for tumor overexpression of complement regulators. We hypothesize that the same selective pressure could lead to complement alterations at the genetic level. We find that, when analyzed as a pathway, mutations in complement genes occur at a relatively high frequency and are associated with changes in overall survival across a number of cancer types. Analysis of pathways expressed in patients with complement mutations that are associated with poor overall survival reveals crosstalk between complement and hypoxia in colorectal cancer. The importance of this crosstalk is highlighted by two key findings: hypoxic signaling is increased in tumors harboring complement mutations, and hypoxic tumor cells are resistant to complement-mediated cytotoxicity due, in part, to hypoxia-induced expression of complement regulator CD55. The range of strategies employed by tumors to dysregulate the complement system testifies to the importance of this pathway in tumor progression.
Collapse
Affiliation(s)
- Monica M Olcina
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan K Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - B Arman Aksoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Thompson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Park SM, Li Q, Ryu MO, Nam A, An JH, Yang JI, Kim SM, Song WJ, Youn HY. Preconditioning of canine adipose tissue-derived mesenchymal stem cells with deferoxamine potentiates anti-inflammatory effects by directing/reprogramming M2 macrophage polarization. Vet Immunol Immunopathol 2019; 219:109973. [PMID: 31765882 DOI: 10.1016/j.vetimm.2019.109973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
Preconditioning with hypoxia or hypoxia-mimetic agents has been tried with mesenchymal stem cells (MSCs) to improve the secretion of anti-inflammatory factors. These preconditioning procedures upregulate hypoxia inducible factor (HIF) 1-alpha leading to the transcription of HIF-dependent tissue protective and anti-inflammatory genes. Due to the limited number of studies exploring the activity of deferoxamine (DFO)-a hypoxia-mimetic agent-in MSCs, we aimed to determine whether DFO can enhance the secretion of anti-inflammatory substances in canine adipose tissue-derived (cAT)-MSCs. Furthermore, we investigated whether this activity of DFO could affect macrophage polarization and activate anti-inflammatory reactions. cAT-MSCs preconditioned with DFO exhibited enhanced secretion of anti-inflammatory factors such as prostaglandin E2 and tumor necrosis factor-α-stimulated gene-6. To evaluate the interaction between DFO preconditioned cAT-MSCs and macrophages, RAW 264.7 cells were co-cultured with cAT-MSCs using the Transwell system, and changes in the expression of factors related to macrophage polarization were analyzed using the quantitative real-time PCR and western blot assays. When RAW 264.7 cells were co-cultured with DFO preconditioned cAT-MSCs, the expression of M1 and M2 markers decreased and increased, respectively, compared to co-culturing with non-preconditioned cAT-MSCs. Thus, cAT-MSCs preconditioned with DFO can more effectively direct and reprogram macrophage polarization into the M2 phase, an anti-inflammatory state.
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiang Li
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ok Ryu
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Aryung Nam
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-In Yang
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Kim
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
22
|
Madrigal‐Martínez A, Constâncio V, Lucio‐Cazaña FJ, Fernández‐Martínez AB. PROSTAGLANDIN E
2
stimulates cancer‐related phenotypes in prostate cancer PC3 cells through cyclooxygenase‐2. J Cell Physiol 2018; 234:7548-7559. [DOI: 10.1002/jcp.27515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vera Constâncio
- Departamento de Biología de Sistemas Universidad de Alcalá Madrid Spain
| | | | | |
Collapse
|
23
|
Pourjafar M, Saidijam M, Mansouri K, Malih S, Ranjbar Nejad T, Shabab N, Najafi R. Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin Exp Pharmacol Physiol 2017; 43:769-76. [PMID: 27161651 DOI: 10.1111/1440-1681.12590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Stem cell-based therapies is a promising approach for regenerative therapy in various diseases. Some obstacles remain to be solved before clinical application of the cell therapy is realized, including increasing the survival of transplanted stem cells, reducing loss of transplanted cells, and maintaining adequate vascular supply. Recently, stem cell preconditioning with chemical and pharmacological agents has been shown to increase therapeutic efficacy. The present study investigated the effect of endothelin-1 (ET-1) on survival, angiogenesis, and migration of mesenchymal stem cells (MSCs), in vitro. MSCs were treated with various concentrations of ET-1 and the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), angiopoietin-4 (Ang-4) and matrix metalloproteinase-2 (MMP-2) were examined. Caspase 3 activity and prostaglandin E2 (PGE2) were determined by ELISA assay. MSCs migration and tube formation potential were assessed using scratch test and three dimensional vessel formation assay. ET-1 enhanced the MSCs viability. In ET-1- treated MSCs, expression of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2, Ang-4 and MMP-2 were increased compared to control groups. Elevation of all these genes were reversed by celecoxib (50 μmol/L), a selective COX-2 inhibitor. PGE2 generation, MSCs migration and tube formation were enhanced by ET-1 conditioning, whereas caspase-3 activity was reduced in these cells, compared to the control group. The results presented here reveal that preconditioning of MSCs with ET-1 has strong cytoprotective effects through activation of survival signalling molecules and trophic factors.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Malih
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebeh Ranjbar Nejad
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Maghsudlu M, Farashahi Yazd E. Heat-induced inflammation and its role in esophageal cancer. J Dig Dis 2017; 18:431-444. [PMID: 28749599 DOI: 10.1111/1751-2980.12511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Esophageal cancer, the sixth most common cause of death from cancer worldwide, consists of different histological types and displays various patterns of incidence. Esophageal adenocarcinoma and esophageal squamous cell carcinoma are the most prevalent types. As epidemiological studies report that ingesting hot substances is one major risk factor for squamous cell carcinoma, evaluating the effect of this external stress on esophagus cells seems desirable. This specific kind of stress brings about cellular changes and stabilizes them by affecting different cellular features such as genetic stability, membrane integrity and the regulation of signaling pathways. It also causes tissue injury by affecting the extracellular matrix and cell viability. Thus, one of the main consequences of thermal injury is the activation of the immune system, which can result in chronic inflammation. The genetic alteration that has occurred during thermal injury and the consequent reduction in the function of repair systems is further strengthened by chronic inflammation, thereby increasing the probability that mutated cell lines may appear. The molecules that present in this circumstance, such as heat shock proteins, cytokines, chemokines and other inflammatory factors, affect intercellular signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells, signal transducer activator of transcription-3 and hypoxia-inducible factor 1α in supporting the survival and emergence of mutant phenotypes and the consequent malignant progression in altered cell lines. This investigation of these effective factors and their probable role in the tumorigenic path may improve current understanding.
Collapse
Affiliation(s)
- Mohaddese Maghsudlu
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
Reina-Torres E, Wen JC, Liu KC, Li G, Sherwood JM, Chang JYH, Challa P, Flügel-Koch CM, Stamer WD, Allingham RR, Overby DR. VEGF as a Paracrine Regulator of Conventional Outflow Facility. Invest Ophthalmol Vis Sci 2017; 58:1899-1908. [PMID: 28358962 PMCID: PMC5374885 DOI: 10.1167/iovs.16-20779] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) regulates microvascular endothelial permeability, and the permeability of Schlemm's canal (SC) endothelium influences conventional aqueous humor outflow. We hypothesize that VEGF signaling regulates outflow facility. Methods We measured outflow facility (C) in enucleated mouse eyes perfused with VEGF-A164a, VEGF-A165b, VEGF-D, or inhibitors to VEGF receptor 2 (VEGFR-2). We monitored VEGF-A secretion from human trabecular meshwork (TM) cells by ELISA after 24 hours of static culture or cyclic stretch. We used immunofluorescence microscopy to localize VEGF-A protein within the TM of mice. Results VEGF-A164a increased C in enucleated mouse eyes. Cyclic stretch increased VEGF-A secretion by human TM cells, which corresponded to VEGF-A localization in the TM of mice. Blockade of VEGFR-2 decreased C, using either of the inhibitors SU5416 or Ki8751 or the inactive splice variant VEGF-A165b. VEGF-D increased C, which could be blocked by Ki8751. Conclusions VEGF is a paracrine regulator of conventional outflow facility that is secreted by TM cells in response to mechanical stress. VEGF affects facility via VEGFR-2 likely at the level of SC endothelium. Disruption of VEGF signaling in the TM may explain why anti-VEGF therapy is associated with decreased outflow facility and sustained ocular hypertension.
Collapse
Affiliation(s)
- Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Joanne C Wen
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Katy C Liu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Pratap Challa
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Cassandra M Flügel-Koch
- Department of Anatomy II, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Zasłona Z, Pålsson-McDermott EM, Menon D, Haneklaus M, Flis E, Prendeville H, Corcoran SE, Peters-Golden M, O'Neill LAJ. The Induction of Pro-IL-1β by Lipopolysaccharide Requires Endogenous Prostaglandin E 2 Production. THE JOURNAL OF IMMUNOLOGY 2017; 198:3558-3564. [PMID: 28298525 DOI: 10.4049/jimmunol.1602072] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
PGE2 has been shown to increase the transcription of pro-IL-1β. However, recently it has been demonstrated that PGE2 can block the maturation of IL-1β by inhibiting the NLRP3 inflammasome in macrophages. These apparently conflicting results have led us to reexamine the effect of PGE2 on IL-1β production. We have found that in murine bone marrow-derived macrophages, PGE2 via the cAMP/protein kinase A pathway is potently inducing IL-1β transcription, as well as boosting the ability of LPS to induce IL-1β mRNA and pro-IL-1β while inhibiting the production of TNF-α. This results in an increase in mature IL-1β production in macrophages treated with ATP. We also examined the effect of endogenously produced PGE2 on IL-1β production. By blocking PGE2 production with indomethacin, we made a striking finding that endogenous PGE2 is essential for LPS-induced pro-IL-1β production, suggesting a positive feedback loop. The effect of endogenous PGE2 was mediated by EP2 receptor. In primary human monocytes, where LPS alone is sufficient to induce mature IL-1β, PGE2 boosted LPS-induced IL-1β production. PGE2 did not inhibit ATP-induced mature IL-1β production in monocytes. Because PGE2 mediates the pyrogenic effect of IL-1β, these effects might be especially relevant for the role of monocytes in the induction of fever. A positive feedback loop from IL-1β and back to PGE2, which itself is induced by IL-1β, is likely to be operating. Furthermore, fever might therefore occur in the absence of a septic shock response because of the inhibiting effect of PGE2 on TNF-α production.
Collapse
Affiliation(s)
- Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Eva M Pålsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Deepthi Menon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Moritz Haneklaus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Ewelina Flis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Sarah E Corcoran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Marc Peters-Golden
- Division of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| |
Collapse
|
27
|
Pourjafar M, Saidijam M, Mansouri K, Ghasemibasir H, Karimi dermani F, Najafi R. All-trans retinoic acid preconditioning enhances proliferation, angiogenesis and migration of mesenchymal stem cell in vitro and enhances wound repair in vivo. Cell Prolif 2017; 50:e12315. [PMID: 27862498 PMCID: PMC6529123 DOI: 10.1111/cpr.12315] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Stem cell therapy is considered to be a suitable alternative in treatment of a number of diseases. However, there are challenges in their clinical application in cell therapy, such as to reduce survival and loss of transplanted stem cells. It seems that chemical and pharmacological preconditioning enhances their therapeutic efficacy. In this study, we investigated effects of all-trans retinoic acid (ATRA) on survival, angiogenesis and migration of mesenchymal stem cells (MSCs) in vitro and in a wound-healing model. MATERIALS AND METHODS MSCs were treated with a variety of concentrations of ATRA, and mRNA expression of cyclo-oxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2) and Ang-4 were examined by qRT-PCR. Prostaglandin E2 (PGE2) levels were measured using an ELISA kit and MSC angiogenic potential was evaluated using three-dimensional tube formation assay. Finally, benefit of ATRA-treated MSCs in wound healing was determined with a rat excisional wound model. RESULTS In ATRA-treated MSCs, expressions of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2 and Ang-4 increased compared to control groups. Overexpression of the related genes was reversed by celecoxib, a selective COX-2 inhibitor. Tube formation and in vivo wound healing of ATRA-treated MSCs were also significantly enhanced compared to untreated MSCs. CONCLUSION Pre-conditioning of MSCs with ATRA increased efficacy of cell therapy by activation of survival signalling pathways, trophic factors and release of pro-angiogenic molecules.
Collapse
Affiliation(s)
- M. Pourjafar
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - M. Saidijam
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - K. Mansouri
- Medical Biology Research CenterKermanshah University of Medical, SciencesKermanshahIran
| | - H. Ghasemibasir
- Department of PathologyHamedan University of Medical SciencesHamedanIran
| | - F. Karimi dermani
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - R. Najafi
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
28
|
Promigratory and proangiogenic effects of AdipoRon on bone marrow-derived mesenchymal stem cells: an in vitro study. Biotechnol Lett 2016; 39:39-44. [PMID: 27627895 DOI: 10.1007/s10529-016-2214-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To investigate the effect of AdipoRon on major factors involved in survival, migration and neovascularization of rat bone marrow-derived mesenchymal stem cells. RESULTS AdipoRon promoted the MSCs viability. Real-time PCR indicated that the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1) C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor matrix metalloproteinase-2 (MMP-2) and MMP-9 were upregulated in AdipoRon-treated MSCs compared to control groups. Prostaglandin E2 (PGE2) level, as well as migration ability of MSCs (scratch assay) was enhanced by AdipoRon preconditioning. CONCLUSION Preconditioning of MSCs with AdipoRon prior to transplantation could enhance cell survival, angiogenesis and migration via activating the COX-2/PGE2/HIF-1 pathway and other contributing factors.
Collapse
|
29
|
Ranjbarnejad T, Saidijam M, Tafakh MS, Pourjafar M, Talebzadeh F, Najafi R. Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Hum Exp Toxicol 2016; 36:692-700. [PMID: 27481098 DOI: 10.1177/0960327116660865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Colorectal cancer is the fourth leading cause of death. Various natural compounds are known to have antitumor properties. Garcinol, a polyisoprenylated benzophenone, has antioxidant and anti-inflammatory properties. In the current study, we investigated the anticancer activity of garcinol on human colorectal adenocarcinoma cell line (HT-29) human colon cancer cells. METHODS HT-29 cells were treated with various concentrations of garcinol for 24 h. The effect of garcinol on HT-29 cells proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; the mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were examined by quantitative real-time polymerase chain reaction; apoptosis was detected by proportion of sub-G1 cell; caspase 3 activity and prostaglandin E2 (PGE2) level were determined by enzyme-linked immunosorbent assay and HT-29 cells migration was assessed using scratch test. RESULTS Garcinol preconditioning markedly decreased the expression of mPGES-1, HIF-1α, VEGF, CXCR4, MMP-2, and MMP-9. The proportion of cells in sub-G1 phase and caspase 3 activity were increased by garcinol treatment whereas the cell proliferation, PGE2 level, and cell migration were decreased in these cells, compared to the control group. CONCLUSION Our findings suggest that garcinol plays a critical role in elevating apoptosis and inhibiting HT-29 cells proliferation, angiogenesis, and invasion by suppressing the mPGES-1/PGE2/HIF-1α signaling pathways.
Collapse
Affiliation(s)
- T Ranjbarnejad
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Saidijam
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Sadat Tafakh
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Pourjafar
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - F Talebzadeh
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - R Najafi
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Sato T, Kishimoto Y, Asakawa S, Mizuno N, Hiratsuka M, Hirasawa N. Involvement of COX-2 in nickel elution from a wire implanted subcutaneously in mice. Toxicology 2016; 363-364:37-45. [PMID: 27452194 DOI: 10.1016/j.tox.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 11/24/2022]
Abstract
Many types of medical alloys include nickel (Ni), and the elution of Ni ions from these materials causes toxicities and inflammation. We have previously reported that inflammation enhances Ni elution, although the molecular mechanisms underlying this effect remain unclear. In this study, we investigated how inflammatory responses enhanced Ni elution in a wire-implantation mouse model. Subcutaneous implantation of Ni wire induced the expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) mRNA in the surrounding tissues. Immunostaining analysis showed that cells expressing COX-2 were mainly fibroblast-like cells 8h after implantation of a Ni wire, but were mainly infiltrated leukocytes at 24h. NiCl2 induced the expression of COX-2 mRNA in primary fibroblasts, neutrophils, RAW 264 cells, and THP-1 cells, indicating that Ni ions can induce COX-2 expression in various types of cells. The elution of Ni ions from the implanted Ni wire at 8h was reduced by dexamethasone (Dex), indomethacin (Ind), or celecoxib (Cel) treatment. Ni wire implantation induced an increase in mRNA levels for anaerobic glycolytic pathway components glucose transporter 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 4 (MCT4); the expression of these genes was also inhibited by Dex, Ind, and Cel. In primary fibroblasts, the expression of these mRNAs and the production of lactate were induced by NiCl2 and further potentiated by PGE2. Furthermore, Ni wire-induced infiltration of inflammatory leukocytes was significantly reduced by Dex, Ind, or Cel. Depletion of neutrophils with a specific antibody caused reduction of both leukocyte infiltration and Ni elution. These results indicate that Ni ions eluted from wire induced COX-2 expression, which further promoted elution of Ni ions by increasing lactate production and leukocyte infiltration. Since COX inhibitors and Dex reduced the elution of Ni ions, these drugs may be useful for prevention of metal-related inflammation and allergy.
Collapse
Affiliation(s)
- Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yu Kishimoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
31
|
Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. Int J Mol Sci 2016; 17:ijms17071061. [PMID: 27384557 PMCID: PMC4964437 DOI: 10.3390/ijms17071061] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa.
Collapse
|
32
|
Shin JI, Lim HY, Kim HW, Seung BJ, Ju JH, Sur JH. Analysis of Obesity-Related Factors and their Association with Aromatase Expression in Canine Malignant Mammary Tumours. J Comp Pathol 2016; 155:15-23. [PMID: 27290646 DOI: 10.1016/j.jcpa.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/06/2016] [Accepted: 05/07/2016] [Indexed: 12/01/2022]
|
33
|
Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 2015; 16:32-43. [PMID: 25559953 DOI: 10.1631/jzus.b1400221] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
Collapse
Affiliation(s)
- Zhao-Ji Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Olivetto E, Simoni E, Guaran V, Astolfi L, Martini A. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects. Hear Res 2015; 327:58-68. [DOI: 10.1016/j.heares.2015.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/19/2023]
|
35
|
Marginean A, Sharma-Walia N. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells. Transl Res 2015; 166:111-33. [PMID: 25814167 DOI: 10.1016/j.trsl.2015.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 01/03/2023]
Abstract
Lipoxin A4 (LXA4) is an endogenously produced host molecule with anti-inflammatory resolution effects. Previous studies demonstrated it to be involved in anti-vascular endothelial growth factor (VEGF)-mediated angiogenesis and in a possible anticancer role via interaction with its receptor, lipoxin A 4 receptor (ALXR). Here, we examined the effects of LXA4 and its epimer 15-epi-LXA4 in inhibiting proinflammatory and angiogenic functions in a human Kaposi's sarcoma tumor-derived cell line (KS-IMM). KS-IMM cells expressed increased levels of inflammatory cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LO) pathway enzymes when compared with human microvascular dermal endothelial cells (HMVEC-d). KS-IMM cells secreted high levels of prostaglandin E2 (PGE2) and chemotactic leukotriene B4 (LTB4). Treatment with LXA4 or 15-epi-LXA4 effectively reduced the levels of COX-2, 5-LO proteins, and secretion of PGE2 and LTB4 in KS-IMM cells. LXA4 or 15-epi-LXA4 treatment also decreased secretion of proinflammatory interleukin 6 (IL-6) and IL-8 cytokines but induced the secretion of anti-inflammatory IL-10. LXA4 treatment reduced the phosphorylation of VEGF receptor (VEGFR) and ephrin family receptor tyrosine kinases. LXA4 treatment effectively induced dephosphorylation of multiple cellular kinases such as Focal Adhesion Kinase, Protein kinase B, nuclear factor kappa-light-chain-enhancer of activated B cells, and Extracellular signal-regulated kinases (ERK)1/2, and reduced angiogenic factor VEGF-C secretion in KS cells. LX treatment drastically induced the Src-homology 2 domain-containing phosphatase tyrosine (Y542) phosphatase and reduced VEGFR-2 phosphorylation at sites Y1059, Y1175, and Y1212. Treatment of KS-IMM cells with LXA4 resulted in selective localization of VEGFR-2 in nonlipid raft (non-LR) and ALXR to LR fractions. These results demonstrated that LXA4 or 15-epi-LXA4 induce anti-inflammatory and antiangiogenic effects in KS cells and suggest that treatment with LXs is an attractive novel strategy against KS.
Collapse
Affiliation(s)
- Alexandru Marginean
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill.
| |
Collapse
|
36
|
Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, Xiao W. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res 2015; 43:5081-98. [PMID: 25897119 PMCID: PMC4446437 DOI: 10.1093/nar/gkv379] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α are the main regulators of cellular responses to hypoxia. Post-translational modifications of HIF-1α and 2α are necessary to modulate their functions. The methylation of non-histone proteins by Set7, an SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. In this study, we show that Set7 methylates HIF-1α at lysine 32 and HIF-2α at lysine K29; this methylation inhibits the expression of HIF-1α/2α targets by impairing the occupancy of HIF-α on hypoxia response element of HIF target gene promoter. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 exhibit upregulated HIF target genes. Set7 inhibitor blocks HIF-1α/2α methylation to enhance HIF target gene expression. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 or inhibition of Set7 by the inhibitor subjected to hypoxia display an increased glucose uptake and intracellular adenosine triphosphate levels. These findings define a novel modification of HIF-1α/2α and demonstrate that Set7-medited lysine methylation negatively regulates HIF-α transcriptional activity and HIF-1α-mediated glucose homeostasis.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Zhu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Xiaoqian Leng
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Madrigal-Martínez A, Cazaña FJL, Fernández-Martínez YAB. Role of intracellular prostaglandin E₂ in cancer-related phenotypes in PC3 cells. Int J Biochem Cell Biol 2014; 59:52-61. [PMID: 25462156 DOI: 10.1016/j.biocel.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been shown to play a role in prostate cancer. In PGE2-treated LNCaP cells, up-regulation of HIF-1α requires the internalization of PGE2, which is in sharp contrast with the generally accepted view that PGE2 acts through EP receptors located at the cell membrane. Here we aimed to study in androgen-independent PC3 cells the role of intracellular PGE2 in several events linked to prostate cancer progression. To this end, we used bromocresol green, an inhibitor of prostaglandin uptake that blocked the immediate rise in intracellular immunoreactive PGE2 following treatment with 16,16-dimethyl-PGE2. Bromocresol green prevented the stimulatory effect of 16,16-dimethyl-PGE on cell proliferation, adhesion, migration and invasion and on HIF-1α expression and activity, the latter assessed as the HIF-dependent activation of (i) a hypoxia response element-luciferase plasmid construct, (ii) production of angiogenic factor vascular endothelial growth factor-A and (iii) in vitro angiogenesis. The basal phenotype of PC3 cells was also affected by bromocresol green, that substantially lowered expression of HIF-1α, production of vascular endothelial growth factor-A and cell proliferation. These results, and the fact that we found functional intracellular EP receptors in PC3 cells, suggest that PGE2-dependent intracrine mechanisms play a role in prostate cancer Therefore, inhibition of the prostaglandin uptake transporter might be a novel therapeutic approach for the treatment of prostate cancer.
Collapse
|
38
|
Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One 2014; 9:e99743. [PMID: 24926985 PMCID: PMC4057320 DOI: 10.1371/journal.pone.0099743] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/16/2014] [Indexed: 11/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite decades of research, the treatment options for lung cancer patients remain inadequate, either to offer a cure or even a substantial survival advantage owing to its intrinsic resistance to chemotherapy. Our results propose the effectiveness of capsaicin in down-regulating VEGF expression in non-small cell lung carcinoma (NSCLC) cells in hypoxic environment. Capsaicin-treatment re-activated p53-SMAR1 positive feed-back loop in these cells to persuade p53-mediated HIF-1α degradation and SMAR1-induced repression of Cox-2 expression that restrained HIF-1α nuclear localization. Such signal-modulations consequently down regulated VEGF expression to thwart endothelial cell migration and network formation, pre-requisites of angiogenesis in tumor micro-environment. The above results advocate the candidature of capsaicin in exclusively targeting angiogenesis by down-regulating VEGF in tumor cells to achieve more efficient and cogent therapy of resistant NSCLC.
Collapse
|
39
|
Frey JL, Stonko DP, Faugere MC, Riddle RC. Hypoxia-inducible factor-1α restricts the anabolic actions of parathyroid hormone. Bone Res 2014; 2:14005. [PMID: 26273518 PMCID: PMC4472139 DOI: 10.1038/boneres.2014.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/24/2013] [Accepted: 01/01/2014] [Indexed: 11/29/2022] Open
Abstract
The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1α in osteoanabolic signaling, we assessed the effect of Hif-1α loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1α in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1α protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1α-mediated suppression of β-catenin transcriptional activity. Together, these data indicate that Hif-1α functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1α function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH.
Collapse
Affiliation(s)
- Julie L Frey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - David P Stonko
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone & Mineral Metabolism, University of Kentucky , Lexington, KY, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA ; Veterans Administration Medical Center , Baltimore, MD, USA
| |
Collapse
|
40
|
Zhang J, Han C, Zhu H, Song K, Wu T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1629-39. [PMID: 23608225 DOI: 10.1016/j.ajpath.2013.01.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/10/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
41
|
Bocca C, Ievolella M, Autelli R, Motta M, Mosso L, Torchio B, Bozzo F, Cannito S, Paternostro C, Colombatto S, Parola M, Miglietta A. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opin Ther Targets 2013; 18:121-35. [PMID: 24325753 DOI: 10.1517/14728222.2014.860447] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cyclooxygenase-2 (COX-2) is overexpressed in several malignancies and is implicated in breast cancer progression. OBJECTIVES We investigated whether changes in COX-2 expression may affect epithelial-to-mesenchymal transition (EMT) and then invasive potential of human breast cancer cells, in relationship with hypoxia. COX-2-null MCF-7 human breast cancer cells, MCF-7 cells transiently expressing COX-2 and COX-2-expressing MDA-MB-231 cells were employed. RESULTS COX-2 overexpression resulted in downregulation of E-cadherin and β-catenin, upregulation of vimentin, N-cadherin and SNAI1, suggesting EMT occurrence. COX-2-overexpressing MCF-7 cells were also characterized by increased invasiveness and release of matrix-metalloproteinase-9. The above-mentioned characteristics, homologous to those detected in highly invasive MDA-MB-231 cells, were reverted by treatment of COX-2-overexpressing MCF-7 cells with celecoxib, a COX-2-specific inhibitor, partly through the inhibition of COX-2-related intracellular generation of reactive oxygen species. Hypoxia further exacerbated COX-2 expression, EMT changes and invasive ability in both COX-2-overexpressing MCF-7 cells and MDA-MB-231 cells. Finally, immunohistochemistry performed on samples from normal and neoplastic human breast tissues revealed that COX-2-positive malignant cells were also positive for EMT-related antigens, hypoxia-inducible factor (HIF)-2α and the oxidative stress marker heme oxygenase. CONCLUSIONS These findings support the existence of a direct link between COX-2 overexpression, EMT and invasiveness in human breast cancer cells, emphasizing the role of hypoxic microenvironment.
Collapse
Affiliation(s)
- Claudia Bocca
- University of Torino, Department of Clinical and Biological Sciences , C.so Raffaello, 30 - 10125 Torino , Italy +39 0116707756 ; +39 0116707753 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mitomi H, Yamada H, Ito H, Shibata TN, Yamasaki Y, Nomoto S, Kusaba A, Yamashita H, Ozaki S. Hypoxia-induced endogenous prostaglandin E2 negatively regulates hypoxia-enhanced aberrant overgrowth of rheumatoid synovial tissue. Mod Rheumatol 2013. [DOI: 10.3109/s10165-012-0794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Blood 2013; 123:203-7. [PMID: 24167196 DOI: 10.1182/blood-2013-07-516336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a number of immunologic disorders. For effective transplant, HSCs must traffic from the peripheral blood to supportive bone marrow niches. We previously showed that HSC trafficking can be enhanced by ex vivo treatment of hematopoietic grafts with 16-16 dimethyl prostaglandin E2 (dmPGE2). While exploring regulatory molecules involved in dmPGE2 enhancement, we found that transiently increasing the transcription factor hypoxia-inducible factor 1-α (HIF1α) is required for dmPGE2-enhanced CXCR4 upregulation and enhanced migration and homing of stem and progenitor cells and that pharmacologic manipulation of HIF1α is also capable of enhancing homing and engraftment. We also now identify the specific hypoxia response element required for CXCR4 upregulation. These data define a precise mechanism through which ex vivo pulse treatment with dmPGE2 enhances the function of hematopoietic stem and progenitor cells; these data also define a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.
Collapse
|
44
|
Jung HJ, Kwon HJ. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. MOLECULAR BIOSYSTEMS 2013; 9:930-9. [PMID: 23475074 DOI: 10.1039/c3mb25426g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive small molecules are powerful tools used to evaluate protein function under physiological and pathological conditions. Over recent decades, utilization of a variety of biologically active small molecules in basic research and clinical applications has provided tremendous benefits in understanding the molecular mechanisms of biology and accelerating drug development. This review focuses on recent advances in the identification of new small molecules and their target proteins for exploring angiogenesis at the molecular level. In particular, we focus on the oxygen-sensing role of ubiquinol-cytochrome c reductase binding protein (UQCRB) of mitochondrial Complex III through identification of the protein target and the mode of action of a natural small molecule, terpestacin. The positive feedback approach of chemistry and biology provides a new way to explore functional roles of proteins and to translate this information into practical applications.
Collapse
Affiliation(s)
- Hye Jin Jung
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | | |
Collapse
|
45
|
Samarajeewa NU, Yang F, Docanto MM, Sakurai M, McNamara KM, Sasano H, Fox SB, Simpson ER, Brown KA. HIF-1α stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma. Breast Cancer Res 2013; 15:R30. [PMID: 23566437 PMCID: PMC3672802 DOI: 10.1186/bcr3410] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/24/2013] [Accepted: 04/03/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Aromatase/genetics
- Aromatase/metabolism
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chromatin Immunoprecipitation
- Dinoprostone/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Oxytocics/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Nirukshi U Samarajeewa
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Fangyuan Yang
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Maria M Docanto
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Minako Sakurai
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Keely M McNamara
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
- Department of Pathology, Melbourne University, Parkville, VIC 3010, Australia
| | - Evan R Simpson
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Kristy A Brown
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
46
|
Tang CM, Yu J. Hypoxia-inducible factor-1 as a therapeutic target in cancer. J Gastroenterol Hepatol 2013; 28:401-5. [PMID: 23173651 DOI: 10.1111/jgh.12038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that immortalizes tumors by inducing key genes in cancer biology, including angiogenesis, glycolysis, invasion, and metastasis. Overexpression of HIF-1α is thus associated with resistance to cancer chemotherapy and increased patient mortality in several cancer phenotypes. In the present review, we summarize the role of intratumoral hypoxia and bioactive lipids in enhancing HIF-1 activity, critically discussing the potential for HIF-1α inhibitors in cancer chemotherapy. Considering preclinical studies, HIF-1 inhibitors appear to have antitumor effects and thus represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ceen-Ming Tang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong
| | | |
Collapse
|
47
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
48
|
Abstract
Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.
Collapse
Affiliation(s)
- Jemma Evans
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|
49
|
Mitomi H, Yamada H, Ito H, Nozaki Shibata T, Yamasaki Y, Nomoto S, Kusaba A, Yamashita H, Ozaki S. Hypoxia-induced endogenous prostaglandin E2 negatively regulates hypoxia-enhanced aberrant overgrowth of rheumatoid synovial tissue. Mod Rheumatol 2012. [PMID: 23183906 DOI: 10.1007/s10165-012-0794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE During isometric exercise, the synovial joint tissue is prone to hypoxia, which is further enhanced in the presence of synovial inflammation. Hypoxia is also known to induce inflammatory cascades, suggesting that periodic hypoxia perpetuates synovitis in rheumatoid arthritis. We previously established an ex vivo cellular model of rheumatoid arthritis using the synovial tissue-derived inflammatory cells, which reproduced aberrant synovial overgrowth and pannus-like tissue development in vitro. Using this model, we investigated the regulatory mechanism of synovial cells against hypoxia in rheumatoid arthritis. METHODS Inflammatory cells that infiltrated synovial tissue from patients with rheumatoid arthritis were collected without enzyme digestion, and designated as synovial tissue-derived inflammatory cells. Under normoxia or periodic hypoxia twice a week, their single-cell suspension was cultured in medium alone to observe an aberrant overgrowth of inflammatory tissue in vitro. Cytokines produced in the culture supernatants were measured by enzyme-linked immunosorbent assay kits. RESULTS Primary culture of the synovial tissue-derived inflammatory cells under periodic hypoxia resulted in the attenuation of the spontaneous growth of inflammatory tissue in vitro compared to the culture under normoxia. Endogenous prostaglandin E2 (PGE2) production was enhanced under periodic hypoxia. When endogenous PGE2 was blocked by indomethacin, the aberrant tissue overgrowth was more enhanced under hypoxia than normoxia. Indomethacin also enhanced the production of tumor necrosis factor-α (TNF-α), macrophage colony-stimulating factor (M-CSF), and matrix metalloproteinase-9 (MMP-9) under periodic hypoxia compared to normoxia. The EP4-specific antagonist reproduced the effect of indomethacin. Exogenous PGE1 and EP4-specific agonist effectively inhibited the aberrant overgrowth and the production of the inflammatory mediators under periodic hypoxia as well as normoxia. CONCLUSIONS The enhancing effect of periodic hypoxia on the aberrant overgrowth of rheumatoid synovial tissue was effectively down-regulated by the simultaneously induced endogenous PGE2.
Collapse
Affiliation(s)
- Hirofumi Mitomi
- Division of Rheumatology and Allergology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pringels S, Van Damme N, De Craene B, Pattyn P, Ceelen W, Peeters M, Grooten J. Clinical procedure for colon carcinoma tissue sampling directly affects the cancer marker-capacity of VEGF family members. BMC Cancer 2012; 12:515. [PMID: 23148666 PMCID: PMC3534223 DOI: 10.1186/1471-2407-12-515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022] Open
Abstract
Background mRNA levels of members of the Vascular Endothelial Growth Factor family (VEGF-A, -B, -C, -D, Placental Growth Factor/PlGF) have been investigated as tissue-based markers of colon cancer. These studies, which used specimens obtained by surgical resection or colonoscopic biopsy, yielded contradictory results. We studied the effect of the sampling method on the marker accuracy of VEGF family members. Methods Comparative RT-qPCR analysis was performed on healthy colon and colon carcinoma samples obtained by biopsy (n = 38) or resection (n = 39) to measure mRNA expression levels of individual VEGF family members. mRNA levels of genes encoding the eicosanoid enzymes cyclooxygenase 2 (COX2) and 5-lipoxygenase (5-LOX) and of genes encoding the hypoxia markers glucose transporter 1 (GLUT-1) and carbonic anhydrase IX (CAIX) were included as markers for cellular stress and hypoxia. Results Expression levels of COX2, 5-LOX, GLUT-1 and CAIX revealed the occurrence in healthy colon resection samples of hypoxic cellular stress and a concurrent increment of basal expression levels of VEGF family members. This increment abolished differential expression of VEGF-B and VEGF-C in matched carcinoma resection samples and created a surgery-induced underexpression of VEGF-D. VEGF-A and PlGF showed strong overexpression in carcinoma samples regardless of the sampling method. Conclusions Sampling-induced hypoxia in resection samples but not in biopsy samples affects the marker-reliability of VEGF family members. Therefore, biopsy samples provide a more accurate report on VEGF family mRNA levels. Furthermore, this limited expression analysis proposes VEGF-A and PlGF as reliable, sampling procedure insensitive mRNA-markers for molecular diagnosis of colon cancer.
Collapse
Affiliation(s)
- Sarah Pringels
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, 9052, Belgium
| | | | | | | | | | | | | |
Collapse
|