1
|
Tang D, Guan W, Yang X, Li Z, Zhao W, Liu X. TIM8 Deficiency in Yeast Induces Endoplasmic Reticulum Stress and Shortens the Chronological Lifespan. Biomolecules 2025; 15:271. [PMID: 40001574 PMCID: PMC11853210 DOI: 10.3390/biom15020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Yeast TIM8 was initially identified as a homolog of human TIMM8A/DDP1, which is associated with human deafness-dystonia syndrome. Tim8p is located in the mitochondrial intermembrane space and forms a hetero-oligomeric complex with Tim13p to facilitate protein transport through the TIM22 translocation system. Previous research has indicated that TIM8 is not essential for yeast survival but does affect the import of Tim23p in the absence of the Tim8-Tim13 complex. Previous research on TIM8 has focused mainly on its involvement in the mitochondrial protein transport pathway, and the precise biological function of TIM8 remains incompletely understood. In this study, we provide the first report that yeast TIM8 is associated with the endoplasmic reticulum (ER) stress response and chronological senescence. We found that deletion of TIM8 leads to both oxidative stress and ER stress in yeast cells while increasing resistance to the ER stress inducer tunicamycin (TM), which is accompanied by an enhanced basic unfolded protein response (UPR). More importantly, TIM8 deficiency can lead to a shortened chronological lifespan (CLS) but does not affect the replicative lifespan (RLS). Moreover, we found that improving the antioxidant capacity further increased TM resistance in the tim8Δ strain. Importantly, we provide evidence that the knockdown of TIMM8A in ARPE-19 human retinal pigment epithelium cells can also induce ER stress, suggesting the potential function of the TIM8 gene in ER stress is conserved from budding yeast to higher eukaryotes. In summary, these results suggest novel roles for TIM8 in maintaining ER homeostasis and CLS maintenance.
Collapse
Affiliation(s)
- Dong Tang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| | - Wenbin Guan
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Xiaodi Yang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Zhongqin Li
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| |
Collapse
|
2
|
Zarges C, Riemer J. Oxidative protein folding in the intermembrane space of human mitochondria. FEBS Open Bio 2024; 14:1610-1626. [PMID: 38867508 PMCID: PMC11452306 DOI: 10.1002/2211-5463.13839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The mitochondrial intermembrane space hosts a machinery for oxidative protein folding, the mitochondrial disulfide relay. This machinery imports a large number of soluble proteins into the compartment, where they are retained through oxidative folding. Additionally, the disulfide relay enhances the stability of many proteins by forming disulfide bonds. In this review, we describe the mitochondrial disulfide relay in human cells, its components, and their coordinated collaboration in mechanistic detail. We also discuss the human pathologies associated with defects in this machinery and its protein substrates, providing a comprehensive overview of its biological importance and implications for health.
Collapse
Affiliation(s)
| | - Jan Riemer
- Institute for BiochemistryUniversity of CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
3
|
Anderson AJ, Crameri JJ, Ang C, Malcolm TR, Kang Y, Baker MJ, Palmer CS, Sharpe AJ, Formosa LE, Ganio K, Baker MJ, McDevitt CA, Ryan MT, Maher MJ, Stojanovski D. Human Tim8a, Tim8b and Tim13 are auxiliary assembly factors of mature Complex IV. EMBO Rep 2023; 24:e56430. [PMID: 37272231 PMCID: PMC10398661 DOI: 10.15252/embr.202256430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Jordan J Crameri
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Ching‐Seng Ang
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Tess R Malcolm
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
| | - Yilin Kang
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Megan J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Catherine S Palmer
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Megan J Maher
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVicAustralia
| | - Diana Stojanovski
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| |
Collapse
|
4
|
Liao X, Ruan X, Wu X, Deng Z, Qin S, Jiang H. Identification of Timm13 protein translocase of the mitochondrial inner membrane as a potential mediator of liver fibrosis based on bioinformatics and experimental verification. J Transl Med 2023; 21:188. [PMID: 36899394 PMCID: PMC9999505 DOI: 10.1186/s12967-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To explore the association between translocase of the inner mitochondrial membrane 13 (Timm13) and liver fibrosis. METHODS Gene expression profiles of GSE167033 were collected from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between liver disease and normal samples were analyzed using GEO2R. Gene Ontology and Enrichment function were performed, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the hub genes of the PPI network were calculated by MCODE plug-in in Cytoscape. We validated the transcriptional and post-transcriptional expression levels of the top correlated genes using fibrotic animal and cell models. A cell transfection experiment was conducted to silence Timm13 and detect the expression of fibrosis genes and apoptosis genes. RESULTS 21,722 genes were analyzed and 178 DEGs were identified by GEO2R analysis. The top 200 DEGs were selected and analyzed in STRING for PPI network analysis. Timm13 was one of the hub genes via the PPI network. We found that the mRNA levels of Timm13 in fibrotic liver tissue decreased (P < 0.05), and the mRNA and protein levels of Timm13 also decreased when hepatocytes were stimulated with transforming growth factor-β1. Silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes. CONCLUSIONS The results showed that Timm13 is closely related to liver fibrosis and silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes, which will provide novel ideas and targets for the clinical diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianbin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zhejun Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Ouattara N, Chen Z, Huang Y, Chen X, Song P, Xiao Z, Li Q, Guan Y, Li Z, Jiang Y, Xu K, Pan S, Hu Y. Reduced mitochondrial size in hippocampus and psychiatric behavioral changes in the mutant mice with homologous mutation of Timm8a1-I23fs49X. Front Cell Neurosci 2022; 16:972964. [PMID: 36090790 PMCID: PMC9453755 DOI: 10.3389/fncel.2022.972964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Deafness-dystonia-optic neuronopathy (DDON) syndrome, a condition that predominantly affects males, is caused by mutations in translocase of mitochondrial inner membrane 8A (TIMM8A)/deafness dystonia protein 1 (DDP1) gene and characterized by progressive deafness coupled with other neurological abnormalities. In a previous study, we demonstrated the phenotype of male mice carrying the hemizygous mutation of Timm8a1-I23fs49X. In a follow-up to that study, this study aimed to observe the behavioral changes in the female mutant (MUT) mice with homologous mutation of Timm8a1 and to elucidate the underlying mechanism for the behavioral changes. Materials and methods Histological analysis, transmission electron microscopy (EM), Western blotting, hearing measurement by auditory brainstem response (ABR), and behavioral observation were compared between the MUT mice and wild-type (WT) littermates. Results The weight of the female MUT mice was less than that of the WT mice. Among MUT mice, both male and female mice showed hearing impairment, anxiety-like behavior by the elevated plus maze test, and cognitive deficit by the Morris water maze test. Furthermore, the female MUT mice exhibited coordination problems in the balance beam test. Although the general neuronal loss was not found in the hippocampus of the MUT genotype, EM assessment indicated that the mitochondrial size showing as aspect ratio and form factor in the hippocampus of the MUT strain was significantly reduced compared to that in the WT genotype. More importantly, this phenomenon was correlated with the upregulation of translation of mitochondrial fission process protein 1(Mtfp1)/mitochondrial 18 kDa protein (Mtp18), a key fission factor that is a positive regulator of mitochondrial fission and mitochondrial size. Interestingly, significant reductions in the size of the uterus and ovaries were noted in the female MUT mice, which contributed to significantly lower fertility in the MUT mice. Conclusion Together, a homologous mutation in the Timm8a1 gene caused the hearing impairment and psychiatric behavioral changes in the MUT mice; the latter phenotype might be related to a reduction in mitochondrial size regulated by MTP18.
Collapse
Affiliation(s)
- Niemtiah Ouattara
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xia Chen
- Department of Clinical Laboratory, Nanhai District People’s Hospital of Foshan, Foshan, China
| | - Pingping Song
- Department of Neurology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Guan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziang Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Suyue Pan,
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yafang Hu,
| |
Collapse
|
6
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
7
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
9
|
Habich M, Salscheider SL, Murschall LM, Hoehne MN, Fischer M, Schorn F, Petrungaro C, Ali M, Erdogan AJ, Abou-Eid S, Kashkar H, Dengjel J, Riemer J. Vectorial Import via a Metastable Disulfide-Linked Complex Allows for a Quality Control Step and Import by the Mitochondrial Disulfide Relay. Cell Rep 2020; 26:759-774.e5. [PMID: 30650365 DOI: 10.1016/j.celrep.2018.12.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates.
Collapse
Affiliation(s)
- Markus Habich
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Silja Lucia Salscheider
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Lena Maria Murschall
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Michaela Nicole Hoehne
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Manuel Fischer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Fabian Schorn
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carmelina Petrungaro
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Alican J Erdogan
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Shadi Abou-Eid
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Hamid Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jan Riemer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany.
| |
Collapse
|
10
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
11
|
Neighbors A, Moss T, Holloway L, Yu SH, Annese F, Skinner S, Saneto R, Steet R. Functional analysis of a novel mutation in the TIMM8A gene that causes deafness-dystonia-optic neuronopathy syndrome. Mol Genet Genomic Med 2020; 8:e1121. [PMID: 31903733 PMCID: PMC7057109 DOI: 10.1002/mgg3.1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background The rare, X‐linked neurodegenerative disorder, Mohr–Tranebjaerg syndrome (also called deafness‐dystonia‐optic neuronopathy [DDON] syndrome), is caused by mutations in the TIMM8A gene. DDON syndrome is characterized by dystonia, early‐onset deafness, and various other neurological manifestations. The TIMM8A gene product localizes to the intermembrane space in mitochondria where it functions in the import of nuclear‐encoded proteins into the mitochondrial inner membrane. Frameshifts or premature stops represent the majority of mutations in TIMM8A that cause DDON syndrome. However, missense mutations have also been reported that result in loss of the TIMM8A gene product. Methods We report a novel TIMM8A variant in a patient with DDON syndrome that alters the initiation codon and employed functional analyses to determine the significance of the variant and its impact on mitochondrial morphology. Results The novel base change in the TIMM8A gene (c.1A>T, p.Met1Leu) results in no detectable protein and a reduction in TIMM8A transcript abundance. We observed a commensurate decrease in the steady‐state level of the Tim13 protein (the binding partner of Tim8a) but no decrease in TIMM13 transcripts. Patient fibroblasts exhibited elongation and/or increased fusion of mitochondria, consistent with prior reports. Conclusion This case expands the spectrum of mutations that cause DDON syndrome and demonstrates effects on mitochondrial morphology that are consistent with prior reports.
Collapse
Affiliation(s)
- Addison Neighbors
- Greenwood Genetic Center, Greenwood, SC, USA.,University of South Carolina School of Medicine, Columbia, SC, USA
| | - Tonya Moss
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Seok-Ho Yu
- Greenwood Genetic Center, Greenwood, SC, USA
| | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Russell Saneto
- Program for Mitochondrial Medicine and Metabolism, Division of Pediatric Neurology, Neuroscience Institute, Seattle's Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
12
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
13
|
Heinemeyer T, Stemmet M, Bardien S, Neethling A. Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA Cell Biol 2018; 38:23-40. [PMID: 30481057 DOI: 10.1089/dna.2018.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are critical for cellular survival, and for their proper functioning, translocation of ∼1500 proteins across the mitochondrial membranes is required. The translocase of the outer (TOMM) and inner mitochondrial membrane (TIMM) complexes are major components of this translocation machinery. Through specific processes, preproteins and other molecules are imported, translocated, and directed to specific mitochondrial compartments for their function. In this study, we review the association of subunits of these complexes with human disease. Pathogenic mutations have been identified in the TIMM8A (DDP) and DNAJC19 (TIMM14) genes and are linked to Mohr-Tranebjærg syndrome and dilated cardiomyopathy syndrome (with and without ataxia), respectively. Polymorphisms in TOMM40 have been associated with Alzheimer's disease, frontotemporal lobar degeneration, Parkinson's disease with dementia, dementia with Lewy bodies, nonpathological cognitive aging, and various cardiovascular-related traits. Furthermore, reduced protein expression levels of several complex subunits have been associated with Parkinson's disease, Meniere's disease, and cardiovascular disorders. However, increased mRNA and protein levels of complex subunits are found in cancers. This review highlights the importance of the mitochondrial import machinery in human disease and stresses the need for further studies. Ultimately, this knowledge may prove to be critical for the development of therapeutic modalities for these conditions.
Collapse
Affiliation(s)
- Thea Heinemeyer
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Monique Stemmet
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Annika Neethling
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| |
Collapse
|
14
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Protein trafficking in the mitochondrial intermembrane space: mechanisms and links to human disease. Biochem J 2017; 474:2533-2545. [PMID: 28701417 PMCID: PMC5509380 DOI: 10.1042/bcj20160627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria fulfill a diverse range of functions in cells including oxygen metabolism, homeostasis of inorganic ions and execution of apoptosis. Biogenesis of mitochondria relies on protein import pathways that are ensured by dedicated multiprotein translocase complexes localized in all sub-compartments of these organelles. The key components and pathways involved in protein targeting and assembly have been characterized in great detail over the last three decades. This includes the oxidative folding machinery in the intermembrane space, which contributes to the redox-dependent control of proteostasis. Here, we focus on several components of this system and discuss recent evidence suggesting links to human proteopathy.
Collapse
|
16
|
Habich M, Riemer J. Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells. Methods Mol Biol 2017; 1567:105-138. [PMID: 28276016 DOI: 10.1007/978-1-4939-6824-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Import, folding, and activity regulation of mitochondrial proteins are important for mitochondrial function. Cysteine residues play crucial roles in these processes as their thiol groups can undergo (reversible) oxidation reactions. For example, during import of many intermembrane space (IMS) proteins, cysteine oxidation drives protein folding and translocation over the outer membrane. Mature mitochondrial proteins can undergo changes in the redox state of specific cysteine residues, for example, as part of their enzymatic reaction cycle or as adaptations to changes of the local redox environment which might influence their activity. Here we describe methods to study changes in cysteine residue redox states in intact cells. These approaches allow to monitor oxidation-driven protein import as well as changes of cysteine redox states in mature proteins during oxidative stress or during the reaction cycle of thiol-dependent enzymes like oxidoreductases.
Collapse
Affiliation(s)
- Markus Habich
- Institute for Biochemistry, University of Cologne, Zuelpicher Str 47a, 50674, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Zuelpicher Str 47a, 50674, Cologne, Germany.
| |
Collapse
|
17
|
Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell Tissue Res 2016; 367:59-72. [DOI: 10.1007/s00441-016-2481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
|
18
|
Chatzi A, Manganas P, Tokatlidis K. Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1298-306. [PMID: 27033519 PMCID: PMC5405047 DOI: 10.1016/j.bbamcr.2016.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/05/2023]
Abstract
Mitochondria are fundamental organelles with a complex internal architecture that fulfill important diverse functions including iron–sulfur cluster assembly and cell respiration. Intense work for more than 30 years has identified the key protein import components and the pathways involved in protein targeting and assembly. More recently, oxidative folding has been discovered as one important mechanism for mitochondrial proteostasis whilst several human disorders have been linked to this pathway. We describe the molecular components of this pathway in view of their putative redox regulation and we summarize available evidence on the connections of these pathways to human disorders. Mitochondria are the cell center of iron–sulfur cluster assembly and cell respiration. The MIA pathway has recently been linked to Fe/S pathways, Ca2 + uptake and apoptosis. Mitochondria along with the ER and peroxisomes are major sources of ROS. Many diseases have been linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Phanee Manganas
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK; Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| |
Collapse
|
19
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
20
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
22
|
Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 2014; 588:2484-95. [DOI: 10.1016/j.febslet.2014.05.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
23
|
Hood DA, Uguccioni G, Vainshtein A, D'souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol 2013; 1:1119-34. [PMID: 23733637 DOI: 10.1002/cphy.c100074] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria have paradoxical functions within cells. Essential providers of energy for cellular survival, they are also harbingers of cell death (apoptosis). Mitochondria exhibit remarkable dynamics, undergoing fission, fusion, and reticular expansion. Both nuclear and mitochondrial DNA (mtDNA) encode vital sets of proteins which, when incorporated into the inner mitochondrial membrane, provide electron transport capacity for ATP production, and when mutated lead to a broad spectrum of diseases. Acute exercise can activate a set of signaling cascades in skeletal muscle, leading to the activation of the gene expression pathway, from transcription, to post-translational modifications. Research has begun to unravel the important signals and their protein targets that trigger the onset of mitochondrial adaptations to exercise. Exercise training leads to an accumulation of nuclear- and mtDNA-encoded proteins that assemble into functional complexes devoted to mitochondrial respiration, reactive oxygen species (ROS) production, the import of proteins and metabolites, or apoptosis. This process of biogenesis has important consequences for metabolic health, the oxidative capacity of muscle, and whole body fitness. In contrast, the chronic muscle disuse that accompanies aging or muscle wasting diseases provokes a decline in mitochondrial content and function, which elicits excessive ROS formation and apoptotic signaling. Research continues to seek the molecular underpinnings of how regular exercise can be used to attenuate these decrements in organelle function, maintain skeletal muscle health, and improve quality of life.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
24
|
Ceh-Pavia E, Spiller MP, Lu H. Folding and biogenesis of mitochondrial small Tim proteins. Int J Mol Sci 2013; 14:16685-705. [PMID: 23945562 PMCID: PMC3759932 DOI: 10.3390/ijms140816685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 01/15/2023] Open
Abstract
Correct and timely folding is critical to the function of all proteins. The importance of this is illustrated in the biogenesis of the mitochondrial intermembrane space (IMS) “small Tim” proteins. Biogenesis of the small Tim proteins is regulated by dedicated systems or pathways, beginning with synthesis in the cytosol and ending with assembly of individually folded proteins into functional complexes in the mitochondrial IMS. The process is mostly centered on regulating the redox states of the conserved cysteine residues: oxidative folding is crucial for protein function in the IMS, but oxidized (disulfide bonded) proteins cannot be imported into mitochondria. How the redox-sensitive small Tim precursor proteins are maintained in a reduced, import-competent form in the cytosol is not well understood. Recent studies suggest that zinc and the cytosolic thioredoxin system play a role in the biogenesis of these proteins. In the IMS, the mitochondrial import and assembly (MIA) pathway catalyzes both import into the IMS and oxidative folding of the small Tim proteins. Finally, assembly of the small Tim complexes is a multistep process driven by electrostatic and hydrophobic interactions; however, the chaperone function of the complex might require destabilization of these interactions to accommodate the substrate. Here, we review how folding of the small Tim proteins is regulated during their biogenesis, from maintenance of the unfolded precursors in the cytosol, to their import, oxidative folding, complex assembly and function in the IMS.
Collapse
Affiliation(s)
- Efrain Ceh-Pavia
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
25
|
Luo LF, Hou CC, Yang WX. Nuclear factors: roles related to mitochondrial deafness. Gene 2013; 520:79-89. [PMID: 23510774 DOI: 10.1016/j.gene.2013.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
Hearing loss (HL) is a common disorder with mitochondrial dysfunction as one of the major causes leading to deafness. Mitochondrial dysfunction may be caused by either mutations in nuclear genes leading to defective nuclear-encoded proteins or mutations in mitochondrial genes leading to defective mitochondrial-encoded products. The specific nuclear genes involved in HL can be classified into two categories depending on whether mitochondrial gene mutations co-exist (modifier genes) or not (deafness-causing genes). TFB1M, MTO1, GTPBP3, and TRMU are modifier genes. A mutation in any of these modifier genes may lead to a deafness phenotype when accompanied by the mitochondrial gene mutation. OPA1, TIMM8A, SMAC/DIABLO, MPV17, PDSS1, BCS1L, SUCLA2, C10ORF2, COX10, PLOG1and RRM2B are deafness-causing genes. A mutation in any of these deafness-causing genes will directly induce variable phenotypic HL.
Collapse
Affiliation(s)
- Ling-Feng Luo
- Institute of Cell and Developmental Biology, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
26
|
Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013; 14:2916-27. [PMID: 23364613 PMCID: PMC3588022 DOI: 10.3390/ijms14022916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
Collapse
Affiliation(s)
- Hugo Fraga
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| | - Salvador Ventura
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| |
Collapse
|
27
|
Finsterer J. Inherited Mitochondrial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:187-213. [DOI: 10.1007/978-94-007-2869-1_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Herrmann JM, Riemer J. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J Biol Chem 2011; 287:4426-33. [PMID: 22157015 DOI: 10.1074/jbc.r111.270678] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
99% of all mitochondrial proteins are synthesized in the cytosol, from where they are imported into mitochondria. In contrast to matrix proteins, many proteins of the intermembrane space (IMS) lack presequences and are imported in an oxidation-driven reaction by the mitochondrial disulfide relay. Incoming polypeptides are recognized and oxidized by the IMS-located receptor Mia40. Reoxidation of Mia40 is facilitated by the sulfhydryl oxidase Erv1 and the respiratory chain. Although structurally unrelated, the mitochondrial disulfide relay functionally resembles the Dsb (disufide bond) system of the bacterial periplasm, the compartment from which the IMS was derived 2 billion years ago.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
29
|
Engl G, Florian S, Tranebjærg L, Rapaport D. Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology. Hum Mol Genet 2011; 21:287-99. [DOI: 10.1093/hmg/ddr458] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Sinicrope FA, Broaddus R, Joshi N, Gerner E, Half E, Kirsch I, Lewin J, Morlan B, Hong WK. Evaluation of difluoromethylornithine for the chemoprevention of Barrett's esophagus and mucosal dysplasia. Cancer Prev Res (Phila) 2011; 4:829-39. [PMID: 21636549 DOI: 10.1158/1940-6207.capr-10-0243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with Barrett's esophagus (BE) and dysplasia are candidates for chemopreventive strategies to reduce cancer risk. We determined the effects of difluoromethylornithine (DMFO) on mucosal polyamines, gene expression, and histopathology in BE. Ten patients with BE and low-grade dysplasia participated in a single-arm study of DFMO (0.5 g/m(2)/d) given continuously for 6 months. Esophagoscopy with biopsies was conducted at baseline, 3, 6, and 12 months. Dysplasia was graded by a gastrointestinal pathologist. Audiology was assessed (at baseline and at 6 months). Mucosal polyamines were measured by high-performance liquid chromatography. Microarray-based gene expression was analyzed using a cDNA two-color chip. DFMO suppressed levels of the polyamines putrescine (P = 0.02) and spermidine (P = 0.02) and the spermidine/spermine ratio (P < 0.01) in dysplastic BE (6 months vs. baseline) that persisted at 6 months following drug cessation. Among the top 25 modulated genes, we found those regulating p53-mediated cell signaling (RPL11), cell-cycle regulation (cyclin E2), and cell adhesion and invasion (Plexin1). DFMO downregulated Krüppel-like factor 5 (KLF5), a transcription factor promoting cell proliferation, and suppressed RFC5 whose protein interacts with proliferating cell nuclear antigen. Histopathology showed regression of dysplasia (n = 1), stable disease (n = 8), and progression to high-grade dysplasia (n = 1). Polyamines were suppressed in the responder to a greater extent than in stable cases. DFMO was well tolerated, and one patient had subclinical, unilateral ototoxicity. DFMO suppressed mucosal polyamines and modulated genes that may be mechanistically related to its chemopreventive effect. Further study of DFMO for the chemoprevention of esophageal cancer in BE patients is warranted.
Collapse
|
31
|
Oxidation-driven protein import into mitochondria: Insights and blind spots. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:981-9. [DOI: 10.1016/j.bbamem.2010.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/21/2022]
|
32
|
Sideris DP, Tokatlidis K. Oxidative protein folding in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1189-204. [PMID: 20214493 DOI: 10.1089/ars.2010.3157] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disulfide bond formation is a crucial step for oxidative folding and necessary for the acquisition of a protein's native conformation. Introduction of disulfide bonds is catalyzed in specialized subcellular compartments and requires the coordinated action of specific enzymes. The intermembrane space of mitochondria has recently been found to harbor a dedicated machinery that promotes the oxidative folding of substrate proteins by shuttling disulfide bonds. The newly identified oxidative pathway consists of the redox-regulated receptor Mia40 and the sulfhydryl oxidase Erv1. Proteins destined to the intermembrane space are trapped by a disulfide relay mechanism that involves an electron cascade from the incoming substrate to Mia40, then on to Erv1, and finally to molecular oxygen via cytochrome c. This thiol-disulfide exchange mechanism is essential for the import and for maintaining the structural stability of the incoming precursors. In this review we describe the mechanistic parameters that define the interaction and oxidation of the substrate proteins in light of the recent publications in the mitochondrial oxidative folding field.
Collapse
Affiliation(s)
- Dionisia P Sideris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | | |
Collapse
|
33
|
Abstract
Mitochondria possess a dedicated-chaperone system in the intermembrane space, the small Tims that are ubiquitous in all eukaryotes from yeast to man. They escort membrane proteins to the outer or the inner membrane for proper insertion. These mitochondrial chaperones do not require external energy to perform their function and have structural similarities to other ATP-independent chaperones. Here, we discuss their structural properties and how these relate to their chaperoning function in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Nikos Petrakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | | | | |
Collapse
|
34
|
Fontanesi F, Diaz F, Barrientos A. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using yeast models of OXPHOS deficiencies. ACTA ACUST UNITED AC 2009; Chapter 19:Unit19.5. [PMID: 19806592 DOI: 10.1002/0471142905.hg1905s63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. Several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, this unit describes the creation and study of yeast models of mitochondrial OXPHOS deficiencies.
Collapse
Affiliation(s)
- Flavia Fontanesi
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
35
|
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta Gen Subj 2009; 1800:223-34. [PMID: 19682549 DOI: 10.1016/j.bbagen.2009.07.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Acute contractile activity of skeletal muscle initiates the activation of signaling kinases. This promotes the phosphorylation of transcription factors, leading to enhanced DNA binding and transcriptional activation and/or repression. The mRNA products of nuclear genes encoding mitochondrial proteins are translated in the cytosol and imported into pre-existing mitochondria. When contractile activity is repeated, the recapitulation of these cellular events progressively leads to an expansion of the mitochondrial reticulum within muscle. This has physiologically relevant health benefit, including enhanced lipid metabolism and reduced muscle fatigability. In aging skeletal muscle, the response to contractile activity appears to be attenuated, suggesting that a greater contractile stimulus is required to attain a similar phenotype adaptation. This review summarizes our current understanding of the effects of exercise on the gene expression pathway leading to organelle biogenesis in muscle.
Collapse
|
36
|
Zolghadr K, Mortusewicz O, Rothbauer U, Kleinhans R, Goehler H, Wanker EE, Cardoso MC, Leonhardt H. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol Cell Proteomics 2008; 7:2279-87. [PMID: 18622019 DOI: 10.1074/mcp.m700548-mcp200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic high throughput screens have yielded large sets of potential protein-protein interactions now to be verified and further investigated. Here we present a simple assay to directly visualize protein-protein interactions in single living cells. Using a modified lac repressor system, we tethered a fluorescent bait at a chromosomal lac operator array and assayed for co-localization of fluorescent prey fusion proteins. With this fluorescent two-hybrid assay we successfully investigated the interaction of proteins from different subcellular compartments including nucleus, cytoplasm, and mitochondria. In combination with an S phase marker we also studied the cell cycle dependence of protein-protein interactions. These results indicate that the fluorescent two-hybrid assay is a powerful tool to investigate protein-protein interactions within their cellular environment and to monitor the response to external stimuli in real time.
Collapse
Affiliation(s)
- Kourosh Zolghadr
- Munich Center for Integrated Protein Science (CiPSM) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hell K. The Erv1–Mia40 disulfide relay system in the intermembrane space of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:601-9. [DOI: 10.1016/j.bbamcr.2007.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/26/2022]
|
38
|
Ivanova E, Jowitt TA, Lu H. Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates. J Mol Biol 2008; 375:229-39. [PMID: 18022191 DOI: 10.1016/j.jmb.2007.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/28/2007] [Accepted: 10/13/2007] [Indexed: 11/25/2022]
Abstract
Protein assembly is a crucial process in biology, because most proteins must assemble into complexes to perform their function in the cell. The mitochondrial Tim9-Tim10 translocase complex, located in the mitochondrial intermembrane space, plays an essential chaperone-like role during the import of mitochondrial membrane proteins. The complex consists of three molecules of each subunit arranged alternately in a ring-shaped structure. While structural and functional studies have indicated a dynamic nature of the complex, little is known about the assembly process and the mechanism of its function. Here we investigated the assembly process of yeast Tim9-Tim10 complex in real time, using stopped-flow fluorescence coupled with Trp mutagenesis, and stopped-flow light scattering techniques. We show that different parts of the proteins are assembled at different rates; also assembly intermediates consisting four subunits arise transiently before formation of the final hexameric Tim9-Tim10 complex. Interestingly, the assembly intermediate has more organised N-terminal helices that form an inner layer of the complex, but not the C-terminal helices, which form the outer layer of the complex. In addition, using analytical ultracentrifugation techniques, we show that Tim9 forms a homo-dimer while Tim10 is a monomer. A four-step assembly pathway of Tim9-Tim10 complex, involving formation of hetero-dimer and tetramer assembly intermediates, is proposed. This study provides the first description of the assembly pathway of this translocase complex, and insight into the mechanism of its function.
Collapse
Affiliation(s)
- Ekaterina Ivanova
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
39
|
An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. Am J Hum Genet 2008; 82:88-99. [PMID: 18179888 DOI: 10.1016/j.ajhg.2007.09.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/21/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022] Open
Abstract
We have identified a large multigenerational Austrian family displaying a novel form of X-linked recessive myopathy. Affected individuals develop an adult-onset scapulo-axio-peroneal myopathy with bent-spine syndrome characterized by specific atrophy of postural muscles along with pseudoathleticism or hypertrophy and cardiac involvement. Known X-linked myopathies were excluded by simple-tandem-repeat polymorphism (STRP) and single-nucleotide polymorphism (SNP) analysis, direct gene sequencing, and immunohistochemical analysis. STRP analysis revealed significant linkage at Xq25-q27.1. Haplotype analysis based on SNP microarray data from selected family members confirmed this linkage region on the distal arm of the X chromosome, thereby narrowing down the critical interval to 12 Mb. Sequencing of functional candidate genes led to the identification of a missense mutation within the four and a half LIM domain 1 gene (FHL1), which putatively disrupts the fourth LIM domain of the protein. Mutation screening of FHL1 in a myopathy family from the UK exhibiting an almost identical phenotype revealed a 3 bp insertion mutation within the second LIM domain. FHL1 on Xq26.3 is highly expressed in skeletal and cardiac muscles. Western-blot analysis of muscle biopsies showed a marked decrease in protein expression of FHL1 in patients, in concordance with the genetic data. In summary, we have to our knowledge characterized a new disorder, X-linked myopathy with postural muscle atrophy (XMPMA), and identified FHL1 as the causative gene. This is the first FHL protein to be identified in conjunction with a human genetic disorder and further supports the role of FHL proteins in the development and maintenance of muscle tissue. Mutation screening of FHL1 should be considered for patients with uncharacterized myopathies and cardiomyopathies.
Collapse
|
40
|
Abstract
About 10% to 15% of the nuclear genes of eukaryotic organisms encode mitochondrial proteins. These proteins are synthesized in the cytosol and recognized by receptors on the surface of mitochondria. Translocases in the outer and inner membrane of mitochondria mediate the import and intramitochondrial sorting of these proteins; ATP and the membrane potential are used as energy sources. Chaperones and auxiliary factors assist in the folding and assembly of mitochondrial proteins into their native, three-dimensional structures. This review summarizes the present knowledge on the import and sorting of mitochondrial precursor proteins, with a special emphasis on unresolved questions and topics of current research.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, 81377 München, Germany.
| | | |
Collapse
|
41
|
Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, Angiuoli SV, White O, Botstein D, Dolinski K. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS One 2007; 2:e766. [PMID: 17712414 PMCID: PMC1942082 DOI: 10.1371/journal.pone.0000766] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/18/2007] [Indexed: 02/07/2023] Open
Abstract
Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.
Collapse
Affiliation(s)
- Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Michael S. Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Charles Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel V. Angiuoli
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Owen White
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
42
|
MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:509-23. [PMID: 17300922 PMCID: PMC2702852 DOI: 10.1016/j.bbadis.2006.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/31/2022]
Abstract
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, 133 Piez Hall, State University of New York at Oswego, Oswego, NY 13126, USA.
| | | |
Collapse
|
43
|
Kothapalli KS, Anthony JC, Pan BS, Hsieh AT, Nathanielsz PW, Brenna JT. Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS One 2007; 2:e370. [PMID: 17426818 PMCID: PMC1847718 DOI: 10.1371/journal.pone.0000370] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; "L", LCPUFA, with 0.33%DHA-0.67%ARA; "L3", LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA.
Collapse
Affiliation(s)
- Kumar S.D. Kothapalli
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Joshua C. Anthony
- Mead Johnson and Company, Evansville, Indiana, United States of America
| | - Bruce S. Pan
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Andrea T. Hsieh
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| |
Collapse
|
44
|
Herrmann JM, Köhl R. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. ACTA ACUST UNITED AC 2007; 176:559-63. [PMID: 17312024 PMCID: PMC2064014 DOI: 10.1083/jcb.200611060] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intermembrane space (IMS) of mitochondria, the compartment that phylogenetically originated from the periplasm of bacteria, contains machinery to catalyze the oxidative folding of proteins (Mesecke, N., N. Terziyska, C. Kozany, F. Baumann, W. Neupert, K. Hell, and J.M. Herrmann. 2005. Cell. 121:1059-1069; Rissler, M., N. Wiedemann, S. Pfannschmidt, K. Gabriel, B. Guiard, N. Pfanner, and A. Chacinska. 2005. J. Mol. Biol. 353: 485-492; Tokatlidis, K. 2005. Cell. 121:965-96). This machinery introduces disulfide bonds into newly imported precursor proteins, thereby locking them in a folded conformation. Because folded proteins cannot traverse the translocase of the outer membrane, this stably traps the proteins in the mitochondria. The principle of protein oxidation in the IMS presumably has been conserved from the bacterial periplasm and has been adapted during evolution to drive the vectorial translocation of proteins from the cytosol into the mitochondria.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
45
|
Kim HT, Edwards MJ, Tyson J, Quinn NP, Bitner-Glindzicz M, Bhatia KP. Blepharospasm and limb dystonia caused by Mohr-Tranebjaerg syndrome with a novel splice-site mutation in the deafness/dystonia peptide gene. Mov Disord 2007; 22:1328-31. [PMID: 17534980 DOI: 10.1002/mds.21351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mohr-Tranebjaerg syndrome (MTS) is an X-linked disorder characterized by childhood-onset progressive deafness, dystonia, spasticity, mental deterioration, and blindness. It is due to mutations in the deafness/dystonia peptide (DDP1) gene. We describe a sporadic 42-year-old man with MTS presenting with postlingual deafness, adult-onset progressive dystonia with marked arm tremor, mild spasticity of the legs, and visual disturbance due to a novel mutation (g to a transition at the invariant gt of the 5' splice donor site of exon 1) in the DDP1 gene. This case, and a review of previously reported cases, highlights a variety of potential diagnostic pitfalls in this condition.
Collapse
Affiliation(s)
- Hee T Kim
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 2006; 21:123-33. [PMID: 16387659 DOI: 10.1016/j.molcel.2005.11.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/20/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022]
Abstract
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.
Collapse
Affiliation(s)
- Chaille T Webb
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
47
|
Aguirre LA, del Castillo I, Macaya A, Medá C, Villamar M, Moreno-Pelayo MA, Moreno F. A novel mutation in the gene encoding TIMM8a, a component of the mitochondrial protein translocase complexes, in a Spanish familial case of deafness-dystonia (Mohr–Tranebjaerg) syndrome. Am J Med Genet A 2006; 140:392-7. [PMID: 16411215 DOI: 10.1002/ajmg.a.31079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Hofmann S, Rothbauer U, Mühlenbein N, Baiker K, Hell K, Bauer MF. Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J Mol Biol 2006; 353:517-28. [PMID: 16185709 DOI: 10.1016/j.jmb.2005.08.064] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/17/2005] [Accepted: 08/26/2005] [Indexed: 11/16/2022]
Abstract
A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.
Collapse
Affiliation(s)
- Sabine Hofmann
- Institute of Diabetes Research, Academic Hospital Munich-Schwabing, Koelner Platz 1, D-80804 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer's disease? ACTA ACUST UNITED AC 2005; 49:618-32. [PMID: 16269322 DOI: 10.1016/j.brainresrev.2005.03.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 12/11/2022]
Abstract
This review summarizes recent findings that suggest a causal connection between mitochondrial abnormalities and sporadic Alzheimer's disease (AD). Genetic causes of AD are known only for a small proportion of familial AD patients, but for a majority of sporadic AD patients, genetic causal factors are still unknown. Currently, there are no early detectable biomarkers for sporadic AD, and there is a lack of understanding of the pathophysiology of the disease. Findings from recent genetic studies of AD pathogenesis suggest that mitochondrial defects may play an important role in sporadic AD progression, and that mitochondrial abnormalities and oxidative damage may play a significant role in the progression of familial AD. Findings from biochemical studies, in vitro studies, gene expression studies, and animal model studies of AD are reviewed, and the possible contribution of mitochondrial mutations to late-onset sporadic AD is discussed.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
50
|
Herrmann JM, Hell K. Chopped, trapped or tacked--protein translocation into the IMS of mitochondria. Trends Biochem Sci 2005; 30:205-11. [PMID: 15817397 DOI: 10.1016/j.tibs.2005.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All proteins of the intermembrane space (IMS) of mitochondria are synthesized in the cytosol. The mechanisms by which these polypeptides are transported into the IMS are strikingly different from other protein-translocation processes in the cell. Recent studies suggest that IMS proteins reach their destination by three alternative principles that differ in the energy sources employed to drive the translocation reactions. The first class of proteins uses both hydrolysis of matrix ATP and the electrochemical potential of the inner membrane. The second class depends on the energy gain of protein folding, and the third on the association of the proteins to high-affinity binding sites in the IMS.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 Munich, Germany.
| | | |
Collapse
|