1
|
Borges TJ, Murshid A, Theriault J, Calderwood SK. Molecular Chaperone Receptors: An Update. Methods Mol Biol 2023; 2693:193-208. [PMID: 37540436 DOI: 10.1007/978-1-0716-3342-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types, including immune cells. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that mammalian and eukaryotic Hsp70 binds avidly to at least three classes of receptor including: (1) c-type lectin receptors (CLR), (2) scavenger receptors (SR) and (3) lectins. However, the structural nature of the receptor-ligand interactions is not currently clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD), to the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains as well. In this chapter, we will discuss: (1) methods for the discovery of HSP receptors, (2) approaches to the study of individual receptors in cells that contain multiple such receptors and (3) methods for investigating HSP receptor function in vivo.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jimmy Theriault
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wicker-Planquart C, Dufour S, Tacnet-Delorme P, Bally I, Delneste Y, Frachet P, Housset D, Thielens NM. Molecular and Cellular Interactions of Scavenger Receptor SR-F1 With Complement C1q Provide Insights Into Its Role in the Clearance of Apoptotic Cells. Front Immunol 2020; 11:544. [PMID: 32296440 PMCID: PMC7137648 DOI: 10.3389/fimmu.2020.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
The scavenger receptor SR-F1 binds to and mediates the internalization of a wide range of ligands, and is involved in several immunological processes. We produced recombinant SR-F1 ectodomain and fragments deleted from the last 2 or 5 C-terminal epidermal growth factor-like modules and investigated their role in the binding of acetylated low density lipoprotein (AcLDL), complement C1q, and calreticulin (CRT). C1q measured affinity was in the 100 nM range and C1q interaction occurs via its collagen-like region. We identified two different binding regions on SR-F1: the N-terminal moiety interacts with C1q and CRT whereas the C-terminal moiety binds AcLDL. The role of SR-F1 N-linked glycans was also tested by mutating each of the three glycosylated asparagines. The three mutants retained binding activities for both AcLDL and C1q. A stable THP-1 cell line overexpressing SR-F1 was generated and C1q was shown to bind more strongly to the surface of SR-F1 overexpressing macrophages, with C1q/SR-F1 colocalization observed in some membrane areas. We also observed a higher level of CRT internalization for THP-1 SR-F1 cells. Increasing SR-F1 negatively modulated the uptake of apoptotic cells. Indeed, THP-1 cells overexpressing SR-F1 displayed a lower phagocytic capacity as compared with mock-transfected cells, which could be partially restored by addition of C1q in the extracellular milieu. Our data shed some light on the role of SR-F1 in efferocytosis, through its capacity to bind C1q and CRT, two proteins involved in this process.
Collapse
Affiliation(s)
| | - Samy Dufour
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabelle Bally
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie Allergologie, Angers, France
| | | | | | | |
Collapse
|
3
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach we have discovered that Hsp70 binds avidly to at least two classes of receptors including: (1) c-type lectin receptors (CLR) and (2) scavenger receptors (SR). However, the structural nature of the receptor-ligand interactions is not clear at this time. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD) as well as the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains. In this chapter we will discuss: (1) methods for discovery of HSP receptors, (2) approaches to the study of individual receptors in cells that contain multiple such receptors, and (3) methods for investigating HSP receptor function in vivo.
Collapse
|
5
|
SCARF-1 promotes adhesion of CD4 + T cells to human hepatic sinusoidal endothelium under conditions of shear stress. Sci Rep 2017; 7:17600. [PMID: 29242513 PMCID: PMC5730566 DOI: 10.1038/s41598-017-17928-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Liver-resident cells are constantly exposed to gut-derived antigens via portal blood and, as a consequence, they express a unique repertoire of scavenger receptors. Whilst there is increasing evidence that the gut contributes to chronic inflammatory liver disease, the role of scavenger receptors in regulating liver inflammation remains limited. Here, we describe for the first time the expression of scavenger receptor class F, member 1 (SCARF-1) on hepatic sinusoidal endothelial cells (HSEC). We report that SCARF-1 shows a highly localised expression pattern and co-localised with endothelial markers on sinusoidal endothelium. Analysis of chronically inflamed liver tissue demonstrated accumulation of SCARF-1 at sites of CD4+ T cell aggregation. We then studied the regulation and functional role of SCARF-1 in HSEC and showed that SCARF-1 expression by HSEC is regulated by proinflammatory cytokines and bacterial lipopolysaccharide (LPS). Furthermore, SCARF-1 expression by HSEC, induced by proinflammatory and gut-derived factors acts as a novel adhesion molecule, present in adhesive cup structures, that specifically supports CD4+ T cells under conditions of physiological shear stress. In conclusion, we show that SCARF-1 contributes to lymphocyte subset adhesion to primary human HSEC and could play an important role in regulating the inflammatory response during chronic liver disease.
Collapse
|
6
|
Schade J, Weidenmaier C. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett 2016; 590:3758-3771. [PMID: 27396949 DOI: 10.1002/1873-3468.12288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
Abstract
Cell wall glycopolymers (CWGs) of gram-positive bacteria have gained increasing interest with respect to their role in colonization and infection. In most gram-positive pathogens they constitute a large fraction of the cell wall biomass and represent major cell envelope determinants. Depending on their chemical structure they modulate interaction with complement factors and play roles in immune evasion or serve as nonprotein adhesins that mediate, especially under dynamic conditions, attachment to different host cell types. In particular, covalently peptidoglycan-attached CWGs that extend well above the cell wall seem to interact with glyco-receptors on host cell surfaces. For example, in the case of Staphylococcus aureus, the cell wall-attached teichoic acid (WTA) has been identified as a major CWG adhesin. A recent report indicates that a type-F scavenger receptor, termed SR-F1 (SREC-I), is the predominant WTA receptor in the nasal cavity and that WTA-SREC-I interaction plays an important role in S. aureus nasal colonization. Therefore, understanding the role of CWGs in complex processes that mediate colonization and infection will allow novel insights into the mechanisms of host-microbiota interaction.
Collapse
Affiliation(s)
- Jessica Schade
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany.,German Center for Infection Research (DZIF), Partnersite Tübingen, Germany
| |
Collapse
|
7
|
Murshid A, Borges TJ, Lang BJ, Calderwood SK. The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses. Front Immunol 2016; 7:226. [PMID: 27379091 PMCID: PMC4904184 DOI: 10.3389/fimmu.2016.00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Scavenger receptor expressed by endothelial cell-I (SREC-I) is a class F scavenger receptor expressed by immune cells with a significant role in CD8+- and CD4+-mediated T cell immunity. This receptor can also modulate the function of toll-like receptors (TLRs), which play essential roles in innate immunity. Earlier, it was found that human monocyte/macrophage THP1 cells and bone marrow-derived macrophages from mice exhibited increased responses to polyinosine–polycytidylic acid (poly I:C, PIC) and CpG (unmethylated) DNA and enhanced production of inflammatory cytokines with overexpressed SREC-I. Our data also showed that intracellular/endocytic TLR3 and TLR9 could directly interact with SREC-I in the presence of their respective ligands. We also observed that the internalized ligand along with TLR3/TLR9 colocalized in the endosome in macrophages and THP-1 cells overexpressing these receptors. In the absence of these ligands, there was no detectable colocalization between the SREC-I and endocytic TLRs. Earlier, it was shown that SREC-I stimulated double-stranded RNA/CpGDNA-mediated TLR3/TLR9 activation of the innate immune response by triggering signaling through the NF-κB, IRF3, and MAP kinase pathways leading to transcription of cytokine genes. We also established that SREC-I can associate with plasma membrane TLRs, such as TLR2 and TLR4. We demonstrated that SREC-I–TLR4 signals more efficiently from lipid microdomain in which lipopolysaccharide (LPS) can associate with SREC-I–TLR4 complex. We also proved that SREC-I is an alternate receptor for LPS capable of internalizing the complex and for endocytic TLR ligands as well. This binding activated endocytic TLR-mediated downstream cytokine production in THP1 cells and macrophages. Finally, SREC-I could also form complexes with TLR2 and induce the release of cytokines in the presence of bacterial, viral, and fungal ligands.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Thiago J Borges
- Biomedical Research Institute, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Benjamin J Lang
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
8
|
Thoracic Myoepithelial Tumors: A Pathologic and Molecular Study of 8 Cases With Review of the Literature. Am J Surg Pathol 2016; 40:212-23. [PMID: 26645726 DOI: 10.1097/pas.0000000000000560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thoracic myoepithelial tumors (MTs) are a rare group of tumors showing predominant or exclusive myoepithelial differentiation. They are poorly characterized from both a morphologic and genetic standpoint, in particular features that separate benign from malignant behavior. We examined the histologic and immunohistochemical features of 8 primary thoracic MTs and performed fluorescence in situ hybridization for EWSR1, FUS, PLAG1, and HMGA2, as well as several partner genes. Half (4/8) of the MTs occurred in large airways, and 3 had infiltrative borders. All cases showed immunoreactivity for epithelial markers, in conjunction with S100 protein or myogenic markers. MTs showed morphologic characteristics analogous to MTs at other sites, with no tumors having ductal differentiation. Necrosis and/or lymphovascular invasion was present in 5 cases, with mitotic activity ranging from 0 to 6 mitoses/2 mm² (mean 1). Metastases occurred in 2 cases, and no patients died of disease. Gene rearrangements were identified in half of the cases, with EWSR1-PBX1, EWSR1-ZNF444, and FUS-KLF17 fusions identified in 1 case each and 1 case having EWSR1 rearrangement with no partner identified. No cases were found to have HMGA2 or PLAG1 abnormalities. Compared with fusion-negative tumors, fusion-positive tumors tended to occur in patients who were younger (50 vs. 58 y), female (1:3 vs. 3:1 male:female ratio), and demonstrated predominantly spindle and clear cell morphology. Using a combined data set of our case series with 16 cases from the literature, poor prognosis was significantly correlated with metastases (P=0.003), necrosis (P=0.027), and ≥5 mitoses/2 mm²/10 high-power field (P=0.005). In summary, we identify a subset of thoracic MTs harboring rearrangements in EWSR1 or FUS, and our data suggest that necrosis and increased mitotic activity correlate with aggressive clinical behavior.
Collapse
|
9
|
Johnson DC, Weinhold N, Mitchell J, Chen B, Stephens OW, Försti A, Nickel J, Kaiser M, Gregory WA, Cairns D, Jackson GH, Hoffmann P, Noethen MM, Hillengass J, Bertsch U, Barlogie B, Davis FE, Hemminki K, Goldschmidt H, Houlston RS, Morgan GJ. Genetic factors influencing the risk of multiple myeloma bone disease. Leukemia 2016; 30:883-8. [PMID: 26669972 PMCID: PMC4832071 DOI: 10.1038/leu.2015.342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 01/18/2023]
Abstract
A major complication of multiple myeloma (MM) is the development of osteolytic lesions, fractures and bone pain. To identify genetic variants influencing the development of MM bone disease (MBD), we analyzed MM patients of European ancestry (totaling 3774), which had been radiologically surveyed for MBD. Each patient had been genotyped for ~6 00 000 single-nucleotide polymorphisms with genotypes for six million common variants imputed using 1000 Genomes Project and UK10K as reference. We identified a locus at 8q24.12 for MBD (rs4407910, OPG/TNFRSF11B, odds ratio=1.38, P=4.09 × 10(-9)) and a promising association at 19q13.43 (rs74676832, odds ratio=1.97, P=9.33 × 10(-7)). Our findings demonstrate that germline variation influences MBD and highlights the importance of RANK/RANKL/OPG pathway in MBD development. These findings will contribute to the development of future strategies for prevention of MBD in the early precancerous phases of MM.
Collapse
Affiliation(s)
- D C Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - N Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - J Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - B Chen
- German Cancer Research Center, Heidelberg, Germany
| | - O W Stephens
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Försti
- German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - J Nickel
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - M Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - W A Gregory
- Leeds Institute of Molecular Medicine, Section of Clinical Trials Research, University of Leeds, Leeds, UK
| | - D Cairns
- Leeds Institute of Molecular Medicine, Section of Clinical Trials Research, University of Leeds, Leeds, UK
| | - G H Jackson
- Department of Haematology, Newcastle University, Newcastle-Upon-Tyne, UK
| | - P Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - M M Noethen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - J Hillengass
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - U Bertsch
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - B Barlogie
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - F E Davis
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K Hemminki
- German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - H Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center of Tumor Diseases, Heidelberg, Germany
| | - R S Houlston
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - G J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells 2015; 4:178-201. [PMID: 26010753 PMCID: PMC4493455 DOI: 10.3390/cells4020178] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SRs) are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL), though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.
Collapse
Affiliation(s)
- Izma Abdul Zani
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sam L Stephen
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nadeem A Mughal
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - David Russell
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS One 2015; 10:e0122529. [PMID: 25836976 PMCID: PMC4383338 DOI: 10.1371/journal.pone.0122529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/20/2015] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor associated with endothelial cells I (SREC-I) was shown to be expressed in immune cells and to play a role in the endocytosis of peptides and antigen presentation. As our previous studies indicated that SREC-I required intact Toll-like receptor 4 (TLR4) expression for its functions in tumor immunity, we examined potential interactions between these two receptors. We have shown here that SREC-I became associated with TLR4 on binding bacterial lipopolysaccharides (LPS) in RAW 264.7 and HEK 293 cells overexpressing these two receptors. The receptors then became internalized together in intracellular endosomes. SREC-I promoted TLR4-induced signal transduction through the NF-kB and MAP kinase pathways, leading to enhanced inflammatory cytokine release. Activation of inflammatory signaling through SREC-I/TLR4 complexes appeared to involve recruitment of the receptors into detergent-insoluble, cholesterol-rich lipid microdomains that contained the small GTPase Cdc42 and the non-receptor tyrosine kinase c-src. Under conditions of SREC-I activation by LPS, TLR4 activity required Cdc42 as well as cholesterol and actin polymerization for signaling through NF-kB and MAP kinase pathways in RAW 264.7 cells. SREC-I appeared to respond differently to another ligand, the molecular chaperone Hsp90 that, while triggering SREC-I-TLR4 binding caused only faint activation of the NF-kB pathway. Our experiments therefore indicated that SREC-I could bind LPS and might be involved in innate inflammatory immune responses to extracellular danger signals in RAW 264.7 cells or bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Jianlin Gong
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Thiago J. Borges
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Dmitriev P, Petrov A, Ansseau E, Stankevicins L, Charron S, Kim E, Bos TJ, Robert T, Turki A, Coppée F, Belayew A, Lazar V, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. The Krüppel-like factor 15 as a molecular link between myogenic factors and a chromosome 4q transcriptional enhancer implicated in facioscapulohumeral dystrophy. J Biol Chem 2011; 286:44620-31. [PMID: 21937448 DOI: 10.1074/jbc.m111.254052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.
Collapse
Affiliation(s)
- Petr Dmitriev
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Murshid A, Theriault J, Gong J, Calderwood SK. Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 2011; 787:289-302. [PMID: 21898244 DOI: 10.1007/978-1-61779-295-3_22] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by cell surface receptors expressed on a wide range of cell types. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that Hsp70 binds to a least two classes of receptor: c-type lectin receptors (CLR) and scavenger receptors (SR). However, the nature of the receptor-ligand interactions is not yet clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD) as well as the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains. In this chapter, we discuss (1) methods for determining HSP receptors, (2) approaches to study of individual receptors in cells that contain multiple such receptors, and (3) methods for investigating HSP receptor function in vivo.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
14
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Chen X, Gong X, Liu Y, Feng H, Qiu L, Hu Z, Zhang J. A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics 2009; 10:241. [PMID: 19463170 PMCID: PMC2694838 DOI: 10.1186/1471-2164-10-241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 05/22/2009] [Indexed: 12/12/2022] Open
Abstract
Background The human zinc finger protein 191 (ZNF191) is a member of the SCAN domain family of Krüppel-like zinc finger transcription factors. ZNF191 shows 94% identity to its mouse homologue zinc finger protein 191(Zfp191), which is the most highly conserved among the human-mouse SCAN family member orthologues pairs. Zfp191 is widely expressed during early embryogenesis and in adult organs. Moreover, Zfp191-/- embryos have been shown to be severely retarded in development and die approximately at embryonic day E7.5. ZNF191 can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. In addition, ZNF191 displays a suppressive effect on the transcription; however, little downstream targets have identified. Results We searched for ZNF191 target genes by using a transient overexpression and knockdown strategy in the human embryo kidney (HEK293) cells. Microarray analyses identified 6094 genes modulated by overexpression of ZNF191 and 3332 genes regulated by knockdown of ZNF191, using a threshold of 1.2-fold. Several interested candidate genes, validated by real time RT-PCR, were correlated well with the array data. Interestingly, 1456 genes were identified in both transient overexpression and transient knockdown strategies. The GenMAPP and MappFinder software packages were further used for pathway analysis of these significantly altered genes. Several gene pathways were found to be involved in processes of the regulation of kinase activity, transcription, angiogenesis, brain development and response to DNA damage. Conclusion Our analysis reveals for the first time that ZNF191 is a pleiotropic factor that has a role in hematopoiesis, brain development and cancers.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem Biophys Res Commun 2008; 368:298-304. [DOI: 10.1016/j.bbrc.2008.01.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/13/2008] [Indexed: 11/20/2022]
|
17
|
Luo K, Li J, Cui Y, Xu M, Yuan J, Tang W, Wan B, Yu L. Identification and characterization of the human SCAN domain zinc-finger gene ZNF449. Mol Biol Rep 2007; 33:51-7. [PMID: 16636917 DOI: 10.1007/s11033-005-3966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2005] [Indexed: 10/24/2022]
Abstract
Zinc-finger proteins play important roles in various cellular functions, including cell proliferation, differentiation, and apoptosis. In this study, we identified a gene encoding a zinc finger protein named ZNF449, which was isolated from human testis cDNA library and mapped to Xq26.3 by searching the UCSC genomic database. The ZNF449 cDNA consists of 4035 nucleotides and has a 518-amino acids open reading frame. The predicted protein contains a leucine-rich region (LER or SCAN domain) at the N-terminus. At the C-terminus of the protein, there are 7 C(2)H(2) (Cys2-His2) zinc-finger motifs. The expression pattern of ZNF449 showed that it was ubiquitously expressed in 18 human adult tissues. ZNF449 protein was located in the nucleus when overexpressed in cultured cells. These results indicate that ZNF449 is a member of the zinc-finger family and it may function as a transcription factor.
Collapse
Affiliation(s)
- Kuntian Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Chen X, Yang H, Wang S, Guo B, Yu L, Wang Z, Fu J. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp Cell Res 2006; 312:3990-8. [PMID: 17064688 DOI: 10.1016/j.yexcr.2006.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/19/2006] [Accepted: 08/23/2006] [Indexed: 11/20/2022]
Abstract
Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191(+/-) mice are normal and fertile. Homozygous Zfp191(-/-) embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191(-/-) and Zfp191(+/-) embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191(-/-) cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191(+/-) intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2006; 182:1-15. [PMID: 15904923 DOI: 10.1016/j.atherosclerosis.2005.03.036] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/10/2005] [Accepted: 03/24/2005] [Indexed: 01/14/2023]
Abstract
Scavenger receptors are integral membrane proteins that bind a wide variety of ligands including modified or oxidised low-density lipoproteins, apoptotic cells and pathogens. Modified low-density lipoprotein accumulation is thought to be an early event in vascular disease and thus scavenger receptor function is critical in this context. The scavenger receptor family has at least eight different subclasses (A-H) which bear little sequence homology to each other but recognize common ligands. Here we review our current understanding of the scavenger receptor subclasses with emphasis on their genetics, protein structure, biochemical properties, membrane trafficking, intracellular signalling and links to disease states. We also highlight emerging areas where scavenger receptors play roles in cell and animal physiology.
Collapse
Affiliation(s)
- Jane E Murphy
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
20
|
Luo K, Yuan J, Shan Y, Li J, Xu M, Cui Y, Tang W, Wan B, Zhang N, Wu Y, Yu L. Activation of transcriptional activities of AP1 and SRE by a novel zinc finger protein ZNF445. Gene 2005; 367:89-100. [PMID: 16368201 DOI: 10.1016/j.gene.2005.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/17/2005] [Accepted: 09/24/2005] [Indexed: 11/29/2022]
Abstract
Zinc finger proteins play important roles in various cellular functions, including cell proliferation, differentiation, and apoptosis. Mitogen-activated protein kinase (MAPK) signal transduction pathways are one of the most common mechanisms in eukaryotic cell regulation. Many transcription factors are important targets of MAPKs. In this study, we identified a novel gene encoding a zinc finger protein named ZNF445. The ZNF445 mRNA consists of 9105 nucleotides and has a 1031-amino acid open reading frame. The predicted 119-kDa protein contains a leucine-rich region (LER or SCAN domain) at the N-terminus, followed by a well-conserved Krüppel-associated box (KRAB) domain. At the C-terminus of the protein, there are 14 C2H2 (Cys2-His2) zinc finger motifs. ZNF445 gene is mapped to chromosome 3p21.32. Northern blot analysis indicates that a 9.1 kb transcript specific for ZNF445 is expressed in uterus, thymus, small intestine, colon, pancreas, peripheral blood leukocyte, and especially at a higher level in the testis and skeletal muscle in human adult tissues. ZNF445 protein was located in the nucleus when overexpressed in cultured cells. Reporter gene assays showed that ZNF445 is a transcriptional repressor, and overexpression of ZNF445 in the HEK 293T cells activates the transcriptional activities of AP1 and SRE. Deletion studies showed that the SCAN domain of ZNF445 may be involved in this activation. Furthermore, we found that expression of ZNF445 can increase p42/44 MAPK, MEK and Raf-1 phosphorylation. These results clearly indicate that ZNF445 is a member of the zinc finger transcription factor family and may function in MAPK pathway through Raf-1/MEK/p42/44 MAPK signals.
Collapse
Affiliation(s)
- Kuntian Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, 200433, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Edelstein LC, Collins T. The SCAN domain family of zinc finger transcription factors. Gene 2005; 359:1-17. [PMID: 16139965 DOI: 10.1016/j.gene.2005.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 12/29/2022]
Abstract
Zinc finger transcription factor genes represent a significant portion of the genes in the vertebrate genome. Some Cys2His2 type zinc fingers are associated with conserved protein domains that help to define these regulators. A novel domain of this type, the SCAN domain, is a highly conserved 84-residue motif that is found near the N-terminus of a subfamily of C2H2 zinc finger proteins. The SCAN domain, which is also known as the leucine rich region, functions as a protein interaction domain, mediating self-association or selective association with other proteins. Here we define the mouse SCAN domain and annotate the mouse SCAN family members. In addition to a single SCAN domain, some of the members of the mouse SCAN family members have a conserved N-terminal motif, a KRAB domain, SANT domains and a variable number of C2H2 type zinc fingers (3-14). The genes encoding mouse SCAN domains are clustered, often in tandem arrays, and are capable of generating isoforms that may affect the function of family members. Although the function of most of the family members is not known, an overview of selected members of this group of transcription factors suggests that some of the mouse SCAN domain family members play roles in cell survival and differentiation.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Prandini MH, Dreher I, Bouillot S, Benkerri S, Moll T, Huber P. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 2005; 24:2992-3001. [PMID: 15735710 PMCID: PMC2800996 DOI: 10.1038/sj.onc.1208483] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial (VE)-cadherin is exclusively expressed at interendothelial junctions of normal and tumour vessels. In this report, we characterized the transcriptional activity of the human VE-cadherin promoter. Transient transfection assays revealed that sequences at positions --1135/-744 and -166/-5 base pairs are critical for promoter activity in endothelial cells. We show that specific sequences in the proximal region interact with Ets and Sp1 family members. Transgenic mice were created and the human VE-cadherin promoter was able to confer correct temporal and spatial expression on the LacZ gene in embryos. In adults, the transgene was specifically and strongly expressed in the lung, heart, ovary, spleen and kidney glomeruli, whereas expression was weak or absent in the vasculature of other organs, including the brain, thymus, liver and skeletal muscle. Neovessels in tumour grafts and Matrigel implants harboured strong stainings, indicating that promoter activity is enhanced in angiogenic situations. Furthermore, Matrigel and transfection assays showed that VE-cadherin promoter is subjected to bFGF induction. Transgene expression was also noticed in extravascular sites of the central nervous system, suggesting that silencer elements may be located elsewhere in the gene. These results are a first step towards addressing the organ- and tumour-specific regulation of the VE-cadherin gene.
Collapse
Affiliation(s)
- Marie-Hélène Prandini
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Stéphanie Bouillot
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Souhila Benkerri
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Philippe Huber
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
- * Correspondence should be adressed to: Philippe Huber
| |
Collapse
|
23
|
Shi Y, Tokunaga O. Chlamydia pneumoniae (C. pneumoniae) infection upregulates atherosclerosis-related gene expression in human umbilical vein endothelial cells (HUVECs). Atherosclerosis 2005; 177:245-53. [PMID: 15530896 DOI: 10.1016/j.atherosclerosis.2004.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 06/09/2004] [Accepted: 07/13/2004] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence that supports a role of infection in atherosclerosis, with possible mechanism by injuring to the endothelium and inducing an autoimmune response to heat shock proteins (HSPs). In this study, a cDNA array, containing 588 human cardiovascular genes, was utilized to analyze the gene expression profile of Chlamydia pneumoniae (C. pneumoniae) infected human umbilical vein endothelial cells (HUVECs). After 48h of C. pneumoniae infection, the HUVECs were harvested and subjected to immunofluorescent staining, electron microscopy, cDNA array hybridization, RT-PCR, and immunoblotting. This study found a panel of human host genes that were upregulated by C. pneumoniae. The majority of these genes were related to complex lipid metabolism, adhesion receptors, hormones, hormone receptors, and a metalloproteinase that may contribute to atherosclerosis in vivo. Representatives of upregulated gene products, i.e., heat shock protein 60 (HSP60), macrophage scavenger receptor, cytochrome P450, and VEGF165R were immunofluorescently detected in HUVECs, with their greater expression induced by C. pneumoniae infection. These findings supported the opinion that C. pneumoniae might contribute to atherosclerotic development in vivo.
Collapse
Affiliation(s)
- Yu Shi
- Department of Pathology, School of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | |
Collapse
|
24
|
Sumanas S, Jorniak T, Lin S. Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 2005; 106:534-41. [PMID: 15802528 PMCID: PMC1895181 DOI: 10.1182/blood-2004-12-4653] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zebrafish cloche (clo) mutation affects the earliest known step in differentiation of blood and endothelial cells in vertebrates. We established clo/gata1-GFP transgenic line with erythroid-specific green fluorescent protein (GFP) expression, which allowed differentiation of clo and wild-type siblings at the midsomitogenesis stages before morphologically visible phenotypes appeared. To discover novel genes potentially involved in hematopoietic and vascular development, we performed microarray analysis of more than 15,000 zebrafish genes or expressed sequence tags (ESTs) in clo mutant embryos. We isolated the full-length sequences and determined the expression patterns for 8 novel cDNAs that were significantly down-regulated in clo-/- embryos. Dual specificity phosphatase 5 (dusp5), cadherin 5 (cdh5; VE-cadherin), aquaporin 8 (aqp8), adrenomedullin receptor (admr), complement receptor C1qR-like (crl), scavenger receptor class F, member 1 (scarf1), and ETS1-like protein (etsrp) were specifically expressed in the vascular endothelial cells, while retinol binding protein 4 (rbp4) was expressed in the yolk syncytial layer and the hypochord. Further functional studies of these novel genes should help to elucidate critical early steps leading to the formation of vertebrate blood vessels.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Antigens, CD
- Aquaporins/genetics
- Cadherins/genetics
- Endothelium, Vascular/embryology
- Expressed Sequence Tags
- Gene Expression Regulation, Developmental
- Green Fluorescent Proteins/genetics
- In Situ Hybridization
- Ion Channels/genetics
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Mutation
- Oligonucleotide Array Sequence Analysis
- Protein Tyrosine Phosphatases/genetics
- Receptors, Adrenomedullin
- Receptors, Complement/genetics
- Receptors, Immunologic/genetics
- Receptors, Peptide/genetics
- Receptors, Scavenger
- Recombinant Proteins/genetics
- Retinol-Binding Proteins/genetics
- Scavenger Receptors, Class F
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Saulius Sumanas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 C. Young Dr South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
25
|
Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 2004; 279:51250-7. [PMID: 15371419 DOI: 10.1074/jbc.m406202200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Calreticulin and gp96 (GRP94) traffic associated peptides into the major histocompatibility complex class-I cross-presentation pathway of antigen-presenting cells (APCs). Efficient accession of the cross-presentation pathway requires APC receptor-mediated endocytosis of the chaperone/peptide complexes. Previously, scavenger receptor class-A (SRA) was shown to play a substantial role in trafficking gp96 and calreticulin into macrophages, accounting for half of total receptor-mediated uptake. However, the scavenger receptor ligand fucoidin competed the chaperone uptake beyond that accounted for by SRA, indicating that another scavenger receptor(s) may also contribute. Consistent with this hypothesis, we showed that the residual calreticulin uptake into SRA(-/-) macrophages is competed by the scavenger receptor ligand acetylated low density lipoprotein (LDL). We now report that an additional scavenger receptor, SREC-I (scavenger receptor expressed by endothelial cell-I), mediates the endocytosis of calreticulin and gp96. Ectopic expression of SREC-I in Chinese hamster ovary cells yielded chaperone recognition and uptake, and these processes were competed by the inhibitory ligands fucoidin and acetylated (Ac)LDL. Although AcLDL competes for the chaperone interactions with SRA and SREC, we showed that not all of the scavenger receptors, which bind AcLDL, bind calreticulin or gp96. The overexpression of SREC-I in macrophages increased chaperone endocytosis, indicating that SREC-I functions in APCs and that the cytosolic components necessary for the endocytosis of SREC-I and its cargo are present and not limiting in APCs. These data identify a novel class of ligands for SREC-I and provide insight into the mechanisms by which APCs and potentially endothelial cells traffic chaperone/antigen complexes.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- CHO Cells
- Calreticulin/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/physiology
- Cricetinae
- DNA, Complementary/metabolism
- Dendritic Cells/cytology
- Dose-Response Relationship, Drug
- Endocytosis
- Fluorescent Dyes/pharmacology
- HSP70 Heat-Shock Proteins/chemistry
- Ligands
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Macrophages/chemistry
- Macrophages/metabolism
- Macrophages, Peritoneal/metabolism
- Membrane Proteins/chemistry
- Mice
- Mice, Inbred C57BL
- Molecular Chaperones/chemistry
- Peptides/chemistry
- Polysaccharides/chemistry
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Receptors, LDL/chemistry
- Receptors, LDL/physiology
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Scavenger Receptors, Class F
- Transfection
Collapse
Affiliation(s)
- Brent Berwin
- Department of Pathology and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Tamura Y, Osuga JI, Adachi H, Tozawa RI, Takanezawa Y, Ohashi K, Yahagi N, Sekiya M, Okazaki H, Tomita S, Iizuka Y, Koizumi H, Inaba T, Yagyu H, Kamada N, Suzuki H, Shimano H, Kadowaki T, Tsujimoto M, Arai H, Yamada N, Ishibashi S. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. J Biol Chem 2004; 279:30938-44. [PMID: 15145948 DOI: 10.1074/jbc.m313088200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor expressed by endothelial cells I (SREC-I) is a novel endocytic receptor for acetylated low density lipoprotein (LDL). Here we show that SREC-I is expressed in a wide variety of tissues, including macrophages and aortas. Lipopolysaccharide (LPS) robustly stimulated the expression of SREC-I in macrophages. In an initial attempt to clarify the role of SREC-I in the uptake of modified lipoproteins as well as in the development of atherosclerosis, we generated mice with a targeted disruption of the SREC-I gene by homologous recombination in embryonic stem cells. To exclude the overwhelming effect of the type A scavenger receptor (SR-A) on the uptake of Ac-LDL, we further generated mice lacking both SR-A and SREC-I (SR-A(-/-);SREC-I(-/-)) by cross-breeding and compared the uptake and degradation of Ac-LDL in the isolated macrophages. The contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 85 and 5%, respectively, in a non-stimulated condition. LPS increased the uptake and degradation of Ac-LDL by 1.8-fold. In this condition, the contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 90 and 6%, respectively. LPS increased the absolute contribution of SR-A and SREC-I by 1.9- and 2.3-fold, respectively. On the other hand, LPS decreased the absolute contribution of other pathways by 31%. Consistently, LPS did not increase the expression of other members of the scavenger receptor family such as CD36. In conclusion, SREC-I serves as a major endocytic receptor for Ac-LDL in LPS-stimulated macrophages lacking SR-A, suggesting that it has a key role in the development of atherosclerosis in concert with SR-A.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Base Sequence
- Biological Transport, Active
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- DNA Primers/genetics
- Endocytosis
- Gene Expression
- Lipopolysaccharides/pharmacology
- Lipoproteins, LDL/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Tissue Distribution
Collapse
Affiliation(s)
- Yoshiaki Tamura
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meerarani P, Reiterer G, Toborek M, Hennig B. Zinc Modulates PPARγ Signaling and Activation of Porcine Endothelial Cells. J Nutr 2003; 133:3058-64. [PMID: 14519784 DOI: 10.1093/jn/133.10.3058] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery endothelial cells were exposed to the membrane-permeable zinc chelator N,N,N'N'-tetrakis (2-pyridylmethyl)-ethylene diamine (TPEN), thiazolidinedione (TZD; PPARgamma agonist) or bisphenol A diglycidyl ether (BADGE; PPARgamma antagonist). Subsequently, endothelial cells were activated by treatment with linoleic acid (90 micro mol/L) for 6 h. Zinc chelation by TPEN increased the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1, decreased PPARgamma expression and activation as well as up-regulated interleukin (IL)-6 expression and production. These effects were fully reversed by zinc supplementation. In addition, exposure to TZD down-regulated linoleic acid-induced DNA binding activity of NF-kappaB and AP-1, whereas BADGE further induced activation of these oxidative stress-sensitive transcription factors. Most importantly, the TZD-mediated down-regulation of NF-kappaB and AP-1 and reduced inflammatory response were impaired during zinc chelation. These data suggest that zinc plays a critical role in PPARgamma signaling in linoleic acid-induced endothelial cell activation and indicate that PPARgamma signaling is impaired during zinc deficiency.
Collapse
Affiliation(s)
- Purushothaman Meerarani
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY 40546-0215, USA
| | | | | | | |
Collapse
|
28
|
Yingling J, Toyo-Oka K, Wynshaw-Boris A. Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet 2003; 73:475-88. [PMID: 12905154 PMCID: PMC1180674 DOI: 10.1086/378096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Accepted: 06/30/2003] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jessica Yingling
- Departments of Pediatrics and Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | | | | |
Collapse
|
29
|
Sander TL, Stringer KF, Maki JL, Szauter P, Stone JR, Collins T. The SCAN domain defines a large family of zinc finger transcription factors. Gene 2003; 310:29-38. [PMID: 12801630 DOI: 10.1016/s0378-1119(03)00509-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The SCAN domain is a highly conserved dimerization motif that is vertebrate-specific and found near the N-terminus of C(2)H(2) zinc finger proteins (SCAN-ZFP). Although the function of most SCAN-ZFPs is unknown, some have been implicated in the transcriptional regulation of growth factors, genes involved in lipid metabolism, as well as other genes involved in cell survival and differentiation. Here we utilize a bioinformatics approach to define the structures and gene locations of the 71 members of the human SCAN domain family, as well as to assess the conserved syntenic segments in the mouse genome and identify potential orthologs. The genes encoding SCAN domains are clustered, often in tandem arrays, in both the human and mouse genomes and are capable of generating isoforms that may affect the function of family members. Twenty-three members of the mouse SCAN family appear to be orthologous with human family members, and human-specific cluster expansions were observed. Remarkably, the SCAN domains in lower vertebrates are not associated with C(2)H(2) zinc finger genes, but are contained in large retrovirus-like polyproteins. Collectively, these studies define a large family of vertebrate-specific transcriptional regulators that may have rapidly expanded during recent evolution.
Collapse
Affiliation(s)
- Tara L Sander
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tamura Y, Adachi H, Osuga JI, Ohashi K, Yahagi N, Sekiya M, Okazaki H, Tomita S, Iizuka Y, Shimano H, Nagai R, Kimura S, Tsujimoto M, Ishibashi S. FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 2003; 278:12613-7. [PMID: 12473645 DOI: 10.1074/jbc.m210211200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are nonenzymatically glycosylated proteins, which accumulate in vascular tissues in aging and diabetes. Receptors for AGEs include scavenger receptors, which recognize acetylated low density lipoproteins (Ac-LDL) such as scavenger receptor class AI/AII (SR-A), cell surface glycoprotein CD36, scavenger receptor class B type I (SR-BI), and lectin-like oxidized low density lipoprotein receptor-1. The broad ligand repertoire of these receptors as well as the diversity of the receptors for AGEs have prompted us to examine whether AGEs are also recognized by the novel scavenger receptors, which we have recently isolated from a cDNA library prepared from human umbilical vein endothelial cells, such as the scavenger receptor expressed by endothelial cells-I (SREC-I); the fasciclin EGF-like, laminin-type EGF-like, and link domain-containing scavenger receptor-1 (FEEL-1); and its paralogous protein, FEEL-2. At 4 degrees C, (125)I-AGE-bovine serum albumin (BSA) exhibited high affinity specific binding to Chinese hamster ovary (CHO) cells overexpressing FEEL-1 (CHO-FEEL-1) and FEEL-2 (CHO-FEEL-2) with K(d) of 2.55 and 1.68 microg/ml, respectively, but not to CHO cells expressing SREC (CHO-SREC) and parent CHO cells. At 37 degrees C, (125)I-AGE-BSA was taken up and degraded by CHO-FEEL-1 and CHO-FEEL-2 cells but not by CHO-SREC and parent CHO cells. Thus, the ability to bind Ac-LDL is not necessarily a prerequisite to bind AGEs. The (125)I-AGE-BSA binding to CHO-FEEL-1 and CHO-FEEL-2 cells was effectively inhibited by Ac-LDL and polyanionic SR-A inhibitors such as fucoidan, polyinosinic acids, and dextran sulfate but not by native LDL, oxidized LDL, or HDL. FEEL-1, which is expressed by the liver and vascular tissues, may recognize AGEs, thereby contributing to the development of diabetic vascular complications and atherosclerosis.
Collapse
Affiliation(s)
- Yoshiaki Tamura
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cardoso C, Leventer RJ, Ward HL, Toyo-oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 2003; 72:918-30. [PMID: 12621583 PMCID: PMC1180354 DOI: 10.1086/374320] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/09/2003] [Indexed: 01/04/2023] Open
Abstract
Deletions of 17p13.3, including the LIS1 gene, result in the brain malformation lissencephaly, which is characterized by reduced gyration and cortical thickening; however, the phenotype can vary from isolated lissencephaly sequence (ILS) to Miller-Dieker syndrome (MDS). At the clinical level, these two phenotypes can be differentiated by the presence of significant dysmorphic facial features and a more severe grade of lissencephaly in MDS. Previous work has suggested that children with MDS have a larger deletion than those with ILS, but the precise boundaries of the MDS critical region and causative genes other than LIS1 have never been fully determined. We have completed a physical and transcriptional map of the 17p13.3 region from LIS1 to the telomere. Using fluorescence in situ hybridization, we have mapped the deletion size in 19 children with ILS, 11 children with MDS, and 4 children with 17p13.3 deletions not involving LIS1. We show that the critical region that differentiates ILS from MDS at the molecular level can be reduced to 400 kb. Using somatic cell hybrids from selected patients, we have identified eight genes that are consistently deleted in patients classified as having MDS. In addition, deletion of the genes CRK and 14-3-3 epsilon delineates patients with the most severe lissencephaly grade. On the basis of recent functional data and the creation of a mouse model suggesting a role for 14-3-3 epsilon in cortical development, we suggest that deletion of one or both of these genes in combination with deletion of LIS1 may contribute to the more severe form of lissencephaly seen only in patients with MDS.
Collapse
Affiliation(s)
- Carlos Cardoso
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Richard J. Leventer
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Heather L. Ward
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Kazuhito Toyo-oka
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - June Chung
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Alyssa Gross
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Christa L. Martin
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Judith Allanson
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Daniela T. Pilz
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Ann H. Olney
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Osvaldo M. Mutchinick
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Shinji Hirotsune
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - Anthony Wynshaw-Boris
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - William B. Dobyns
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| | - David H. Ledbetter
- Department of Human Genetics, University of Chicago, Chicago; INSERM U491, Faculté de Médecine La Timone, Marseille; Department of Neurology and Murdoch Children's Research Institute, Royal Children’s Hospital, Melbourne; Departments of Pediatrics and Medicine, University of California–San Diego School of Medicine, La Jolla, CA; Division of Genetics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa; Institute for Medical Genetics, University Hospital of Wales, Cardiff; Center for Human Genetics, University of Nebraska Medical Center, Omaha; Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico; and Research Institute for Genomic Medicine, Saitama Medical School, Hidaka City, Japan
| |
Collapse
|