1
|
Lama R, Pereiro P, Valenzuela-Muñoz V, Gallardo-Escárate C, Tort L, Figueras A, Novoa B. RNA-Seq analysis of European sea bass (Dicentrarchus labrax L.) infected with nodavirus reveals powerful modulation of the stress response. Vet Res 2020; 51:64. [PMID: 32398117 PMCID: PMC7218500 DOI: 10.1186/s13567-020-00784-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Nodavirus, or nervous necrosis virus (NNV), is the causative agent of viral encephalopathy and retinopathy (VER), a severe disease affecting numerous fish species worldwide. European sea bass, a cultured species of great economic importance, is highly susceptible to the disease. To better understand the response of this organism to NNV, we conducted RNA-Seq analysis of the brain and head kidney from experimentally infected and uninfected sea bass juveniles at 24 and 72 hours post-infection (hpi). Contrary to what was expected, we observed modest modulation of immune-related genes in the brain, the target organ of this virus, and some of these genes were even downregulated. However, genes involved in the stress response showed extremely high modulation. Accordingly, the genes encoding the enzymes implicated in the synthesis of cortisol were almost the only overexpressed genes in the head kidney at 24 hpi. This stress response was attenuated after 72 h in both tissues, and a progressive immune response against the virus was mounted. Moreover, experiments were conducted to determine how stress activation could impact NNV replication. Our results show the complex interplay between viral activity, the stress reaction and the immune response.
Collapse
Affiliation(s)
- Raquel Lama
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.,Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.
| |
Collapse
|
2
|
Manandhar D, Song L, Kabadi A, Kwon JB, Edsall LE, Ehrlich M, Tsumagari K, Gersbach CA, Crawford GE, Gordân R. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res 2017; 45:11684-11699. [PMID: 28977539 PMCID: PMC5714206 DOI: 10.1093/nar/gkx773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.
Collapse
Affiliation(s)
- Dinesh Manandhar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Ami Kabadi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Lee E Edsall
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Melanie Ehrlich
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Koji Tsumagari
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham NC 27708, USA
| |
Collapse
|
3
|
Zheng J, Jing W, Orentas RJ. Discovery of YB-1 as a new immunological target in neuroblastoma by vaccination in the context of regulatory T cell blockade. Acta Biochim Biophys Sin (Shanghai) 2009; 41:980-90. [PMID: 20011972 DOI: 10.1093/abbs/gmp092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in infancy and early childhood. Using the A/J mouse and a syngeneic neuroblastoma cell line AGN2a, we induced a strong anti-neuroblastoma cellular immune response when AGN2a transfected to express costimulatory molecules (CD80/CD86/CD54/CD137L) was used as a vaccine in the context of regulatory T cell blockade. Strong humoral immunity was induced by AGN2a-4p immunization in the context with regulatory T cell blockade. Serum from treated mice was used to screen an AGN2a cDNA expression library that was constructed with lambda ZAP express vector in order to identify tumor-associated antigens by SEREX. Twenty one clones were identified by sequencing and comparative analysis of gene pools. Most transcripts play some roles in the neuronal differentiation, cell metabolism, or have previously been identified as transcripts that are over-expressed in other malignancies. The most commonly identified tumor-associated antigen, using serum from AGN2a-4p immunization with Treg blockade mice, was YB-1 protein that also induced a T cell response. These results indicated that potential neuroblastoma-associated antigens were found by the sera from mice immunized with tumor cells expressing costimulatory molecules with regulatory T cell function blockade. The identification of YB-1 as tumor-associated antigens capable of eliciting a T cell response validates our experimental approach and argues for the antigens we have identified here to be evaluated as targets of effector immunity and as vaccine candidates.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/immunology
- Cell Line, Tumor
- DNA, Complementary
- DNA-Binding Proteins/blood
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Library
- Humans
- Immunity, Cellular/immunology
- Mice
- Neuroblastoma/immunology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Nuclear Proteins/blood
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Vaccination
- Y-Box-Binding Protein 1
Collapse
Affiliation(s)
- Jin Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | |
Collapse
|
4
|
Lindstrand A, Malmgren H, Sahlén S, Xin H, Schoumans J, Blennow E. Molecular cytogenetic characterization of a constitutional, highly complex intrachromosomal rearrangement of chromosome 1, with 14 breakpoints and a 0.5 Mb submicroscopic deletion. Am J Med Genet A 2009; 146A:3217-22. [PMID: 19006217 DOI: 10.1002/ajmg.a.32570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A Lindstrand
- Department of Molecular Medicine and Surgery, Clinical Genetics Unit, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
5
|
Szapary D, Song LN, He Y, Simons SS. Differential modulation of glucocorticoid and progesterone receptor transactivation. Mol Cell Endocrinol 2008; 283:114-26. [PMID: 18215457 PMCID: PMC2275900 DOI: 10.1016/j.mce.2007.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/29/2007] [Indexed: 01/13/2023]
Abstract
The determinants of the different biological activities of progesterone receptors (PRs) vs. glucocorticoid receptors (GRs), which bind to the same DNA sequences, remain poorly understood. The mechanisms by which differential expression of a common target gene can be achieved by PR and GR include unequal agonist steroid concentrations for half maximal induction (EC50) and dissimilar amounts of residual partial agonist activity for antisteroids in addition to the more common changes in total gene induction, or Vmax. Several factors are known to alter some or all of these three parameters for GR-regulated gene induction and some (i.e., the corepressors NCoR and SMRT) modulate the EC50 and partial agonist activity for GR and PR induction of the same gene in opposite directions. The current study demonstrates that other factors known to modulate GR properties (GME, GMEB-2, Ubc9, and STAMP) can also differentially interact with PRs or alter several of the above induction parameters under otherwise identical conditions. These results support the hypothesis that the modulation of EC50, partial agonist activity, and Vmax by a given factor is not limited to one receptor in a specific cell line. Furthermore, the number of factors that unequally modulate PR and GR induction parameters is now greatly expanded, thereby increasing the possible mechanisms for differential gene regulation by PRs vs. GRs.
Collapse
Affiliation(s)
- Daniele Szapary
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD 20892-1772, United States
| | | | | | | |
Collapse
|
6
|
Humphrey EL, Williams JHH, Davie MWJ, Marshall MJ. Effects of dissociated glucocorticoids on OPG and RANKL in osteoblastic cells. Bone 2006; 38:652-61. [PMID: 16298558 DOI: 10.1016/j.bone.2005.10.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/12/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
Glucocorticoids are effective anti-inflammatory and immunosuppressive agents, but their use is often associated with debilitating side effects such as glucocorticoid-induced osteoporosis. Newly developed glucocorticoid analogues such as the so-called dissociated glucocorticoids are potent immunosuppressants and have the potential for fewer side effects. The effects of these new analogues on osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) in osteoblastic cells have not been studied. OPG and RANKL are osteoblast-derived proteins pivotal to the regulation of bone mass. RANKL stimulates bone resorption by increasing osteoclast differentiation, activation and survival. OPG is the decoy receptor for RANKL and thus inhibits bone resorption. Here, we show that dexamethasone, prednisolone, deflazacort and the dissociated glucocorticoids, RU24858, RU40066, RU24782, AL438-F1 and ZK216348 significantly inhibit OPG production in two human osteoblastic cell lines (MG63 and hFOB). The potency for OPG inhibition was ligand and cell-type specific. In both cell types, dexamethasone and prednisolone were the most potent ligands inhibiting OPG production with IC(50)s of approximately 0.1 nM and 10 nM respectively. In MG63 cells, deflazacort and the RU compounds were the next most potent ligands followed by AL438-F1 and ZK216348. In hFOB cells, however, the RU compounds were the least potent ligands with an IC(50) 74 times higher than in MG63 cells. In contrast, the level of maximum inhibition or effectiveness of OPG inhibition did not vary between cell types but did vary according to the ligand. Dexamethasone, prednisolone, deflazacort and the RU compounds all inhibited OPG production by a maximum of approximately 70-80%, whereas AL438-F1 and ZK 216348 inhibited OPG production by a maximum of only 40-50% at 1 microM. All of the dissociated glucocorticoids and deflazacort were poor stimulators of RANKL gene expression stimulating by only approximately 1-3-fold compared to 7-fold by prednisolone. These data demonstrate that deflazacort and the dissociated glucocorticoids are weak stimulators of the RANKL:OPG ratio compared to prednisolone. Therefore, these compounds have the potential to cause less bone loss than that seen with prednisolone, though this was not investigated here.
Collapse
Affiliation(s)
- E L Humphrey
- Charles Salt Centre, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | | | | | | |
Collapse
|
7
|
Tsuruma K, Nakagawa T, Morimoto N, Minami M, Hara H, Uehara T, Nomura Y. Glucocorticoid modulatory element-binding protein 1 binds to initiator procaspases and inhibits ischemia-induced apoptosis and neuronal injury. J Biol Chem 2006; 281:11397-404. [PMID: 16497673 DOI: 10.1074/jbc.m510597200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are divided into two classes: initiator caspases, which include caspase-8 and -9 and possess long prodomains, and effector caspases, which include caspase-3 and -7 and possess short prodomains. Recently, we demonstrated that glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the prodomain of procaspase-2, thereby disrupting its autoactivation and the induction of apoptosis. Here we show that GMEB1 is also capable of binding to procaspase-8 and -9. GMEB1 attenuated the Fas-mediated activation of these caspases and the subsequent apoptosis. The knockdown of endogenous GMEB1 using RNA interference revealed that cells with decreased GMEB1 expression are more sensitive to stress and undergo accelerated apoptosis. Transgenic mice expressing a neurospecific GMEB1 had smaller cerebral infarcts and less brain swelling than wild-type mice in response to transient focal ischemia. These results suggest that GMEB1 is an endogenous regulator that selectively binds to initiator procaspases and inhibits caspase-induced apoptosis.
Collapse
Affiliation(s)
- Kazuhiro Tsuruma
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Mammalian cell nuclei exhibit discrete sites where specific proteins characteristically localize. PML nuclear bodies (PML NBs) (nuclear domain 10s (ND10s)) are the primary localization site for the promyelocytic leukemia (PML) protein and the SP100 autoantigen. The observations that some PML and SP100 isoforms can function as transcriptional regulators, that both the size and number of PML bodies increase in response to interferon treatment, and that many mammalian viruses encode proteins that mediate disruption of PML bodies suggest that these sites suppress viral infection, perhaps by repressing viral gene expression. We hypothesized that a component of PML NBs functions as a repressor of gene expression. To test this hypothesis, we characterized the effect of PML or SP100 isoforms on expression of transfected reporter genes. PML-I, PML-VI, and SP100A did not repress reporter gene expression. In contrast, SP100B repressed reporter gene expression, especially under conditions in which the reporter gene expression was elevated by a viral transactivator or addition of trichostatin A to the culture medium. The SP100B DNA binding domain was required for repression. SP100B had no detectable effect on the amount, methylation pattern, or topological form of plasmid DNA in the nuclei of transfected cells. The demonstrated repressive activity of SP100B supports the hypothesis that SP100B is a component of an innate immune response that represses expression of ectopic DNA.
Collapse
Affiliation(s)
- Kent W Wilcox
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
9
|
Cho S, Kagan BL, Blackford JA, Szapary D, Simons SS. Glucocorticoid Receptor Ligand Binding Domain Is Sufficient for the Modulation of Glucocorticoid Induction Properties by Homologous Receptors, Coactivator Transcription Intermediary Factor 2, and Ubc9. Mol Endocrinol 2005; 19:290-311. [PMID: 15539428 DOI: 10.1210/me.2004-0134] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several factors modulate the position of the dose-response curve of steroid receptor-agonist complexes and the partial agonist activity of antagonist complexes, thereby causing differential gene activation by circulating hormones and unequal gene repression during endocrine therapies with antisteroids. We now ask whether the modulatory activity of three factors (homologous receptor, coactivator transcription intermediary factor 2, and Ubc9) requires the same or different domains of glucocorticoid receptors (GRs). In all cases, we find that neither the amino terminal half of the receptor, which contains the activation function-1 activation domain, nor the DNA binding domain is required. This contrasts with the major role of activation function-1 in determining the amount of gene expression and partial agonist activity of antisteroids with most steroid receptors. However, the situation is more complicated with Ubc9, where GR N-terminal sequences prevent the actions of Ubc9, but not added GR or transcription intermediary factor 2, at low GR concentrations. Inhibition is relieved by deletion of these sequences or by replacement with the comparable region of progesterone receptors but not by overexpression of the repressive sequences. These results plus the binding of C-terminal GR sequences to the suppressive N-terminal domain implicate an intramolecular mechanism for the inhibition of Ubc9 actions at low GR concentrations. A shift from noncooperative to cooperative steroid binding at high GR concentrations suggests that conformational changes reposition the inhibitory N-terminal sequence to allow Ubc9 interaction with elements of the ligand binding domain. Collectively, these results indicate a dominant role of GR C-terminal sequences in the modulation of the dose-response curve and partial agonist activity of GR complexes. They also reveal mechanistic differences both among individual modulators and between the ability of the same factors to regulate the total amount of gene expression.
Collapse
Affiliation(s)
- Sehyung Cho
- Steriod Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/LMCB, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Jensik PJ, Huggenvik JI, Collard MW. Identification of a nuclear export signal and protein interaction domains in deformed epidermal autoregulatory factor-1 (DEAF-1). J Biol Chem 2004; 279:32692-9. [PMID: 15161925 DOI: 10.1074/jbc.m400946200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deformed epidermal autoregulatory factor-1 (DEAF-1) is a DNA-binding protein required for embryonic development and linked to clinical depression and suicidal behavior in humans. Although primarily nuclear, cytoplasmic localization of DEAF-1 has been observed, and this suggests the presence of a nuclear export signal (NES). Using a series of fluorescent fusion proteins, an NES with a novel spacing of leucines (LXLX(6)LLX(5)LX(2)L) was identified near the COOH-terminal MYND domain at amino acids 454-476. The NES was leptomycin B-sensitive and mutation of the leucine residues decreased or eliminated nuclear export activity. In vitro pull downs and an in vivo fluorescent protein interaction assay identified a DEAF-1/DEAF-1 protein interaction domain within the NES region. DNA binding had been previously mapped to a positively charged surface patch in the novel DNA binding fold called the "SAND" domain. A second protein-protein interaction domain was identified at amino acids 243-306 that contains the DNA-binding SAND domain and also an adjacent zinc binding motif and a monopartite nuclear localization signal (NLS). Deletion of these adjacent sequences or mutation of the conserved cysteines or histidine in the zinc binding motif not only inhibits protein interaction but also eliminates DNA binding, demonstrating that DEAF-1 protein-protein interaction is required for DNA recognition. The identification of an NES and NLS provides a basis for the control of DEAF-1 subcellular localization and function, whereas the requirement of protein-protein interaction by the SAND domain appears to be unique among this class of transcription factors.
Collapse
Affiliation(s)
- Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | |
Collapse
|
11
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 635] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|
12
|
He Y, Szapary D, Simons SS. Modulation of induction properties of glucocorticoid receptor-agonist and -antagonist complexes by coactivators involves binding to receptors but is independent of ability of coactivators to augment transactivation. J Biol Chem 2002; 277:49256-66. [PMID: 12376547 DOI: 10.1074/jbc.m205536200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coactivators such as TIF2 and SRC-1 modulate the positioning of the dose-response curve for agonist-bound glucocorticoid receptors (GRs) and the partial agonist activity of antiglucocorticoid complexes. These properties of coactivators differ from their initially defined activities of binding to, and increasing the total levels of transactivation by, agonist-bound steroid receptors. We now report that constructs of TIF2 and SRC-1 lacking the two activation domains (AD1 and AD2) have significantly less ability to increase transactivation but retain most of the activity for modulating the dose-response curve and partial agonist activity. Mammalian two-hybrid experiments show that the minimum TIF2 segment with modulatory activity (TIF2.4) does not interact with p300, CREB-binding protein, or PCAF, which also modulates GR activities. DRIP150 and DRIP205 have been implicated in coactivator actions but are unable to modulate GR activities. The absence of synergism by PCAF or DRIP150 with SRC-1 or TIF2, respectively, further suggests that these other factors are not involved. The ability of a TIF2.4 fragment (i.e. TIF2.37), which is not known to interact with proteins, to block the actions of TIF2.4 suggests that an unidentified binder mediates the modulatory activity of TIF2. Pull-down experiments with GST/TIF2.4 demonstrate a direct interaction of TIF2 with GR in a hormone-dependent fashion that requires the receptor interaction domains of TIF2 and is equally robust with agonists and most antiglucocorticoids. These observations, which are confirmed in mammalian two-hybrid assays, suggest that the capacity of coactivators such as TIF2 to modulate the partial agonist activity of antisteroids is mediated by the binding of coactivators to GR-antagonist complexes. In conclusion, the modulatory activity of coactivators with GR-agonist and -antagonist complexes is mechanistically distinct from the ability of coactivators to augment the total levels of transactivation and appears to involve the binding to both GR-steroid complexes and an unidentified TIF2-associated factor(s).
Collapse
Affiliation(s)
- Yuanzheng He
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|