1
|
Chen Y, Kokic G, Dienemann C, Dybkov O, Urlaub H, Cramer P. Structure of the transcribing RNA polymerase II-Elongin complex. Nat Struct Mol Biol 2023; 30:1925-1935. [PMID: 37932450 PMCID: PMC10716050 DOI: 10.1038/s41594-023-01138-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Elongin is a heterotrimeric elongation factor for RNA polymerase (Pol) II transcription that is conserved among metazoa. Here, we report three cryo-EM structures of human Elongin bound to transcribing Pol II. The structures show that Elongin subunit ELOA binds the RPB2 side of Pol II and anchors the ELOB-ELOC subunit heterodimer. ELOA contains a 'latch' that binds between the end of the Pol II bridge helix and funnel helices, thereby inducing a conformational change near the polymerase active center. The latch is required for the elongation-stimulatory activity of Elongin, but not for Pol II binding, indicating that Elongin functions by allosterically regulating the conformational mobility of the polymerase active center. Elongin binding to Pol II is incompatible with association of the super elongation complex, PAF1 complex and RTF1, which also contain an elongation-stimulatory latch element.
Collapse
Affiliation(s)
- Ying Chen
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Goran Kokic
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Morgan MA, Mohammad Parast S, Iwanaszko M, Aoi Y, Yoo D, Dumar ZJ, Howard BC, Helmin KA, Liu Q, Thakur WR, Zeidner JM, Singer BD, Eichler EE, Shilatifard A. ELOA3: A primate-specific RNA polymerase II elongation factor encoded by a tandem repeat gene cluster. SCIENCE ADVANCES 2023; 9:eadj1261. [PMID: 37992162 PMCID: PMC10664989 DOI: 10.1126/sciadv.adj1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.
Collapse
Affiliation(s)
- Marc A. J. Morgan
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Saeid Mohammad Parast
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Zachary J. Dumar
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin C. Howard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qianli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - William R. Thakur
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D. Singer
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
3
|
López-Garrido MP, Carrascosa-Romero MC, Montero-Hernández M, Serrano-Martínez CM, Sánchez-Sánchez F. Case Report: Precision genetic diagnosis in a case of Dyggve-Melchior-Clausen syndrome reveals paternal isodisomy and heterodisomy of chromosome 18 with imprinting clinical implications. Front Genet 2022; 13:1005573. [PMID: 36468000 PMCID: PMC9716064 DOI: 10.3389/fgene.2022.1005573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 02/19/2024] Open
Abstract
A twelve-year-old patient with a previous clinical diagnosis of spondylocostal skeletal dysplasia and moderate intellectual disability was genetically analyzed through next generation sequencing of a targeted gene panel of 179 genes associated to skeletal dysplasia and mucopolysaccharidosis in order to stablish a precision diagnosis. A homozygous nonsense [c.62C>G; p.(Ser21Ter)] mutation in DYM gene was identified in the patient. Null mutations in DYM have been associated to Dyggve-Melchior-Clausen syndrome, which is a rare autosomal-recessive disorder characterized by skeletal dysplasia and mental retardation, compatible with the patient´s phenotype. To confirm the pathogenicity of this mutation, a segregation analysis was carried out, revealing that the mutation p(Ser21Ter) was solely inherited from the father, who is a carrier of the mutation, while the mother does not carry the mutation. With the suspicion that a paternal disomy could be causing the disease, a series of microsatellite markers in chromosome 18, where the DYM gene is harbored, was analyzed in all the members of the family. Haplotype analysis provided strong evidence of paternal isodisomy and heterodisomy in that chromosome, confirming the pathological effect of this mutation. Furthermore, the patient may have a compromised expression of the ELOA3 gene due to modifications in the genomic imprinting that may potentially increase the risk of digestive cancer. All these results highlight the importance of obtaining a precision diagnosis in rare diseases.
Collapse
Affiliation(s)
- María-Pilar López-Garrido
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | | | - Minerva Montero-Hernández
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| | - Caridad-María Serrano-Martínez
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| | - Francisco Sánchez-Sánchez
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| |
Collapse
|
4
|
Goszczynski DE, Tinetti PS, Choi YH, Hinrichs K, Ross PJ. Genome activation in equine in vitro-produced embryos. Biol Reprod 2021; 106:66-82. [PMID: 34515744 DOI: 10.1093/biolre/ioab173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Wang Y, Hou L, Ardehali MB, Kingston RE, Dynlacht BD. Elongin A regulates transcription in vivo through enhanced RNA polymerase processivity. J Biol Chem 2021; 296:100170. [PMID: 33298525 PMCID: PMC7948402 DOI: 10.1074/jbc.ra120.015876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet, the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of serine2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.
Collapse
Affiliation(s)
- Yating Wang
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Liming Hou
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - M Behfar Ardehali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
6
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
7
|
Investigation of genetic factors underlying typical orofacial clefts: mutational screening and copy number variation. J Hum Genet 2014; 60:17-25. [PMID: 25391604 DOI: 10.1038/jhg.2014.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC.
Collapse
|
8
|
Edfeldt K, Ahmad T, Åkerström G, Janson ET, Hellman P, Stålberg P, Björklund P, Westin G. TCEB3C a putative tumor suppressor gene of small intestinal neuroendocrine tumors. Endocr Relat Cancer 2014; 21:275-84. [PMID: 24351681 DOI: 10.1530/erc-13-0419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small intestinal neuroendocrine tumors (SI-NETs), formerly known as midgut carcinoids, are rare and slow-growing neoplasms. Frequent loss of one copy of chromosome 18 in primary tumors and metastases has been observed. The aim of the study was to investigate a possible role of TCEB3C (Elongin A3), currently the only imprinted gene on chromosome 18, as a tumor suppressor gene in SI-NETs, and whether its expression is epigenetically regulated. Primary tumors, metastases, the human SI-NET cell line CNDT2.5, and two other cell lines were included. Immunohistochemistry, gene copy number determination by PCR, colony formation assay, western blotting, real-time quantitative RT-PCR, RNA interference, and quantitative CpG methylation analysis by pyrosequencing were performed. A large majority of tumors (33/43) showed very low to undetectable Elongin A3 expression and as expected 89% (40/45) displayed one gene copy of TCEB3C. The DNA hypomethylating agent 5-aza-2'-deoxycytidine induced TCEB3C expression in CNDT2.5 cells, in primary SI-NET cells prepared directly after surgery, but not in two other cell lines. Also siRNA to DNMT1 and treatment with the general histone methyltransferase inhibitor 3-deazaneplanocin A induced TCEB3C expression in a cell type-specific way. CpG methylation at the TCEB3C promoter was observed in all analyzed tissues and thus not related to expression. Overexpression of TCEB3C resulted in a 50% decrease in clonogenic survival of CNDT2.5 cells, but not of control cells. The results support a putative role of TCEB3C as a tumor suppressor gene in SI-NETs. Epigenetic repression of TCEB3C seems to be tumor cell type-specific and involves both DNA and histone methylation.
Collapse
Affiliation(s)
- Katarina Edfeldt
- Departments of Surgical Sciences Medical Sciences, Uppsala University Hospital, Uppsala University, Entrance 70, 3 tr, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rougeot J, Renard M, Randsholt NB, Peronnet F, Mouchel-Vielh E. The elongin complex antagonizes the chromatin factor Corto for vein versus intervein cell identity in Drosophila wings. PLoS One 2013; 8:e77592. [PMID: 24204884 PMCID: PMC3804554 DOI: 10.1371/journal.pone.0077592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023] Open
Abstract
Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG) and Enhancers of Trithorax and Polycomb (ETP) families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C), increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.
Collapse
Affiliation(s)
- Julien Rougeot
- Université Pierre et Marie Curie-Paris 6, UMR7622, Paris, France ; Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Kawauchi J, Inoue M, Fukuda M, Uchida Y, Yasukawa T, Conaway RC, Conaway JW, Aso T, Kitajima S. Transcriptional properties of mammalian elongin A and its role in stress response. J Biol Chem 2013; 288:24302-15. [PMID: 23828199 DOI: 10.1074/jbc.m113.496703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription. We present evidence that Elongin A associates with the IIO form of RNAPII at sites of newly transcribed RNA and is relocated to dotlike domains distinct from those containing RNAPII when cells are treated with the kinase inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole. Significantly, Elongin A is required for maximal induction of transcription of the stress response genes ATF3 and p21 in response to several stimuli. Evidence from structure-function studies argues that Elongin A transcription elongation activity, but not its ubiquitination activity, is most important for its function in induction of transcription of ATF3 and p21. Taken together, our data provide new insights into the function of Elongin A in RNAPII transcription and bring to light a previously unrecognized role for Elongin A in the regulation of stress response genes.
Collapse
Affiliation(s)
- Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y. NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 2010; 38:4834-43. [PMID: 20385596 PMCID: PMC2919730 DOI: 10.1093/nar/gkq249] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nucleotides function in a variety of biological reactions; however, they can undergo various chemical modifications. Such modified nucleotides may be toxic to cells if not eliminated from the nucleotide pools. We performed a screen for modified-nucleotide binding proteins and identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an inosine triphosphate (ITP)/xanthosine triphosphate (XTP)/GTP-binding protein. Recombinant NUDT16 hydrolyzes purine nucleoside diphosphates to the corresponding nucleoside monophosphates. Among 29 nucleotides examined, the highest kcat/Km values were for inosine diphosphate (IDP) and deoxyinosine diphosphate (dIDP). Moreover, NUDT16 moderately hydrolyzes (deoxy)inosine triphosphate ([d]ITP). NUDT16 is mostly localized in the nucleus, and especially in the nucleolus. Knockdown of NUDT16 in HeLa MR cells caused cell cycle arrest in S-phase, reduced cell proliferation, increased accumulation of single-strand breaks in nuclear DNA as well as increased levels of inosine in RNA. We thus concluded that NUDT16 is a (deoxy)inosine diphosphatase that may function mainly in the nucleus to protect cells from deleterious effects of (d)ITP.
Collapse
Affiliation(s)
- Teruaki Iyama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
12
|
Beyrouthy MJ, Alexander KE, Baldwin A, Whitfield ML, Bass HW, McGee D, Hurt MM. Identification of G1-regulated genes in normally cycling human cells. PLoS One 2008; 3:e3943. [PMID: 19079774 PMCID: PMC2600614 DOI: 10.1371/journal.pone.0003943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 11/18/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.
Collapse
Affiliation(s)
- Maroun J. Beyrouthy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Amy Baldwin
- The Channing Laboratory, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael L. Whitfield
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Dan McGee
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
13
|
Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J 2008; 27:3256-66. [PMID: 19037258 DOI: 10.1038/emboj.2008.249] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/05/2008] [Indexed: 01/21/2023] Open
Abstract
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II (pol II) by suppressing transient pausing of the pol II at many sites along the DNA. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, which can form an isolable Elongin BC subcomplex. Here, we have shown that both the ubiquitylation and proteasomal degradation of the largest subunit of pol II (Rpb1) following UV-irradiation are significantly suppressed in Elongin A-deficient cells; however, in both cases suppression is rescued by transfection of wild-type Elongin A. Moreover, we have demonstrated that the Elongin A-Elongin BC complex is capable of assembling with the Cul5/Rbx2 module, and that this hetero-pentamer complex efficiently ubiquitylates Rpb1 in vitro. Mechanistic studies indicate that colocalization of Elongin A and Cul5 in cells and the interaction of Elongin A with the Ser5-phosphorylated form of Rpb1 are strongly enhanced following UV-irradiation. Taken together, our results suggest that mammalian Elongin A is directly involved in ubiquitylation and degradation of Rpb1 following DNA damage.
Collapse
|
14
|
Yasukawa T, Sugimura K, Fukuda M, Yamazaki K, Kitajima S, Okumura K, Aso T. Functional characterization of a mammalian transcription factor, Elongin A. Biochem Biophys Res Commun 2006; 352:237-43. [PMID: 17112477 DOI: 10.1016/j.bbrc.2006.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/06/2006] [Indexed: 11/17/2022]
Abstract
Elongin A is the transcriptionally active subunit of the Elongin complex that strongly stimulates the rate of elongation by RNA polymerase II (pol II) by suppressing the transient pausing of the polymerase at many sites along the DNA template. We have recently shown that Elongin A-deficient mice are embryonic lethal, and mouse embryonic fibroblasts (MEFs) derived from Elongin A(-/-) embryos display not only increased apoptosis but also senescence-like phenotypes accompanied by the activation of p53. To further understand the function of Elongin A in vivo, we have carried out the structure-function analysis of Elongin A and identified sequences critical to its nuclear localization and direct interaction with pol II. Moreover, we have analyzed the replication fork movement in wild-type and Elongin A(-/-) MEFs, and shown the possibility that the genomic instability observed in Elongin A(-/-) MEFs might be caused by the replication fork collapse due to Elongin A deficiency.
Collapse
Affiliation(s)
- Takashi Yasukawa
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ling Y, Smith AJ, Morgan GT. A sequence motif conserved in diverse nuclear proteins identifies a protein interaction domain utilised for nuclear targeting by human TFIIS. Nucleic Acids Res 2006; 34:2219-29. [PMID: 16648364 PMCID: PMC1450333 DOI: 10.1093/nar/gkl239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The three structural domains of transcription elongation factor TFIIS are conserved from yeast to human. Although the N-terminal domain is not needed for transcriptional activity, a similar sequence has been identified previously in other transcription factors. We found this conserved sequence, the LW motif, in another three human proteins that are predominantly nuclear localized. We investigated two examples to determine whether the LW motif is actually a dedicated nuclear targeting signal. However, in one of the newly identified proteins, hIWS1 (human Iws1), a region containing classic nuclear localization signals (NLS) rather than the LW motif was necessary and sufficient for nuclear targeting in HeLa cells. In contrast, human TFIIS does not possess an NLS and only constructs containing the LW motif were efficiently targeted to nuclei. Moreover, mutations in the motif could cause cytoplasmic accumulation of TFIIS and enabled a structure/function assay for the domain based on the efficiency of nuclear targeting. Finally, GST pull-down assays showed that the LW motif is part of a protein-binding domain. We suggest that the targeting role the LW motif plays in TFIIS arises from its more general function as a protein interaction domain, enabling TFIIS to bind a carrier protein(s) that accomplishes nuclear import.
Collapse
Affiliation(s)
| | | | - Garry T. Morgan
- To whom correspondence should be addressed. Tel: +44 115 823 0390; Fax: +44 115 823 0313;
| |
Collapse
|
16
|
Gerber M, Tenney K, Conaway JW, Conaway RC, Eissenberg JC, Shilatifard A. Regulation of Heat Shock Gene Expression by RNA Polymerase II Elongation Factor, Elongin A. J Biol Chem 2005; 280:4017-20. [PMID: 15611125 DOI: 10.1074/jbc.c400487200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The elongation stage of transcription by RNA polymerase II (Pol II) has emerged as an essential regulated step. Elongin A (EloA) is the largest subunit of the Elongin complex that can increase the catalytic rate of mRNA synthesis by Pol II. We recently demonstrated that the Elongin A homologue in Drosophila, dEloA, is essential and has properties consistent with those of a Pol II elongation factor in vivo. The goal of this study was to test whether dEloA is required for heat shock gene transcription, since heat shock gene expression is thought to be controlled at the level of Pol II elongation. Here, we demonstrate that dEloA is rapidly recruited to heat shock loci with Pol II in response to heat shock. Furthermore, through the use of RNA interference in vivo, we show that dEloA is required for the proper expression of one of these genes, HSP70, and that its requirement for heat shock gene expression is exerted after the initiation of transcription at heat shock loci. Our data represent the first demonstration of an essential role for an RNA polymerase II elongation factor in the regulation of heat shock gene expression in an animal model.
Collapse
Affiliation(s)
- Mark Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 538] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
18
|
Gerber M, Eissenberg JC, Kong S, Tenney K, Conaway JW, Conaway RC, Shilatifard A. In vivo requirement of the RNA polymerase II elongation factor elongin A for proper gene expression and development. Mol Cell Biol 2004; 24:9911-9. [PMID: 15509793 PMCID: PMC525478 DOI: 10.1128/mcb.24.22.9911-9919.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B and C subunits appear to act as regulatory subunits. While much is known about the in vitro properties of elongin A and other members of this class of elongation factors, the physiological role(s) of these proteins remain largely unclear. To elucidate in vivo functions of elongin A, we have characterized its Drosophila homologue (dEloA). dEloA associates with transcriptionally active puff sites within Drosophila polytene chromosomes and exhibits many of the expected biochemical and cytological properties consistent with a Pol II-associated elongation factor. RNA interference-mediated depletion of dEloA demonstrated that elongin A is an essential factor that is required for proper metamorphosis. Consistent with this observation, dEloA expression peaks during the larval stages of development, suggesting that this factor may be important for proper regulation of developmental events during these stages. The discovery of the role of elongin A in an in vivo model system defines the novel contribution played by RNA polymerase II elongation machinery in regulation of gene expression that is required for proper development.
Collapse
Affiliation(s)
- Mark Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V. Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 2004; 23:4232-42. [PMID: 15359273 PMCID: PMC524382 DOI: 10.1038/sj.emboj.7600326] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 06/21/2004] [Indexed: 11/09/2022] Open
Abstract
TFIIS, an elongation factor encoded by DST1 in Saccharomyces cerevisiae, stimulates transcript cleavage in arrested RNA polymerase II. Two components of the RNA polymerase II machinery, Med13 (Srb9) and Spt8, were isolated as two-hybrid partners of the conserved TFIIS N-terminal domain. They belong to the Cdk8 module of the Mediator and to a subform of the SAGA co-activator, respectively. Co-immunoprecipitation experiments showed that TFIIS can bind the Cdk8 module and SAGA in cell-free extracts. spt8Delta and dst1Delta mutants were sensitive to nucleotide-depleting drugs and epistatic to null mutants of the RNA polymerase II subunit Rpb9, suggesting that their elongation defects are mediated by Rpb9. rpb9Delta, spt8Delta and dst1Delta were lethal in cells lacking the Rpb4 subunit. The TFIIS N-terminal domain is also strictly required for viability in rpb4Delta, although it is not needed for binding to RNA polymerase II or for transcript cleavage. It is proposed that TFIIS and the Spt8-containing form of SAGA co-operate to rescue RNA polymerase II from unproductive elongation complexes, and that the Cdk8 module temporarily blocks transcription during transcript cleavage.
Collapse
Affiliation(s)
- Maxime Wery
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Elena Shematorova
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette Cedex, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Benoît Van Driessche
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Jean Vandenhaute
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Pierre Thuriaux
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette Cedex, France
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bât. 144, 91191 Gif-sur-Yvette Cedex, France. Tel.: +33 1 69 08 35 86; Fax: +33 1 69 08 47 12; E-mail:
| | - Vincent Van Mullem
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| |
Collapse
|
20
|
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. ACTA ACUST UNITED AC 2004; 1677:79-86. [PMID: 15020049 DOI: 10.1016/j.bbaexp.2003.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
The transcription elongation complex, once thought to be composed of merely the DNA template, RNA polymerase II and the nascent RNA transcript, is now burgeoning as a unit as multifaceted and complicated as the transcription initiation complex. Studies concentrated in defining the elongation stage of transcription during the past recent years have resulted in the discovery of a diverse collection of transcription elongation factors that are either directly involved in the regulation of the rate of the elongating RNA polymerase II or can modulate messenger RNA (mRNA) processing and transport. Such studies have demonstrated that the elongation stage of transcription is highly regulated and has opened a new era of studies defining the molecular role of such transcription elongation factors in cellular development, differentiation and disease progression. Recent studies on the role of RNA polymerase II elongation factors in regulating of the overall rate of transcription both in vitro and in vivo, histone modification by methylation and organismal development will be reviewed here.
Collapse
Affiliation(s)
- Ali Shilatifard
- Department of Biochemistry and the Cancer Center, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
21
|
Kong SE, Shilatifard A, Conaway RC, Conaway JW. Preparation and assay of RNA polymerase II elongation factors elongin and ELL. Methods Enzymol 2004; 371:276-83. [PMID: 14712707 DOI: 10.1016/s0076-6879(03)71020-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Stephanie E Kong
- Stowers Institute Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Ali Shilatifard
- Edward A. Doisey Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
23
|
Tamura K, Miyata K, Sugahara K, Onishi S, Shuin T, Aso T. Identification of EloA-BP1, a novel Elongin A binding protein with an exonuclease homology domain. Biochem Biophys Res Commun 2003; 309:189-95. [PMID: 12943681 DOI: 10.1016/s0006-291x(03)01556-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit, and two positive regulatory B and C subunits. Although the NH(2)-terminal approximately 120 amino acid region of Elongin A is dispensable for its transcriptional activity in vitro, it shares significant sequence similarity with the NH(2)-terminus of other class of transcription factors SII and CRSP70, suggesting that the NH(2)-terminus mediates interactions important for the regulation of transcription in vivo. To identify proteins that can bind to these conserved sequences, a human B cell cDNA library was screened using the NH(2)-terminus of Elongin A as bait in a yeast two-hybrid system. Here, we report on the cloning and characterization of a novel human exonuclease domain-containing protein, Elongin A-binding protein 1 (EloA-BP1). EloA-BP1 is composed of 1221 amino acids and its mRNA is ubiquitously expressed. Double immunofluorescence labeling in COS7 cells suggested that EloA-BP1 and Elongin A are colocalized to the cell nucleus. By using an in vitro binding assay, we show that EloA-BP1 is capable of binding not only the NH(2)-terminal approximately 120 amino acid region of Elongin A, but also that of SII. Although the purified EloA-BP1 had no detectable effect on the rate of transcription elongation in vitro, it may play some role in the regulation of elongation in vivo.
Collapse
Affiliation(s)
- Kenji Tamura
- Department of Functional Genomics, Faculty of Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Yamazaki K, Aso T, Ohnishi Y, Ohno M, Tamura K, Shuin T, Kitajima S, Nakabeppu Y. Mammalian elongin A is not essential for cell viability but is required for proper cell cycle progression with limited alteration of gene expression. J Biol Chem 2003; 278:13585-9. [PMID: 12604609 DOI: 10.1074/jbc.c300047200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongin A is a transcription elongation factor that increases the overall rate of mRNA chain elongation by RNA polymerase II. To investigate the function of Elongin A in vivo, the two alleles of the Elongin A gene have been disrupted by homologous recombination in murine embryonic stem (ES) cells. The Elongin A-deficient ES cells are viable, but show a slow growth phenotype because they undergo a delayed mitosis. The cDNA microarray and RNase protection assay using the wild-type and Elongin A-deficient ES cells indicate that the expression of only a small subset of genes is affected in the mutant cells. Taken together, our results suggest that Elongin A regulates transcription of a subset but not all of genes and reveal a linkage between Elongin A function and cell cycle progression.
Collapse
Affiliation(s)
- Katsuhisa Yamazaki
- Medical Institute of Bioregulation, Kyushu University, and CREST, Japan Science and Technology Corporation, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|