1
|
Freed C, Craige B, Donahue J, Cridland C, Williams SP, Pereira C, Kim J, Blice H, Owen J, Gillaspy G. Using native and synthetic genes to disrupt inositol pyrophosphates and phosphate accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae582. [PMID: 39474910 DOI: 10.1093/plphys/kiae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop. DDP1 expression in Arabidopsis decreased inositol pyrophosphates, activated phosphate starvation response marker genes, and increased phosphate accumulation. These changes corresponded with alterations in plant growth and sensitivity to exogenously applied phosphate. Pennycress plants expressing DDP1 displayed increases in phosphate accumulation, suggesting that these plants could potentially serve to reclaim phosphate from phosphate-polluted soils. We also identified a native Arabidopsis gene, Nucleoside diphosphate-linked moiety X 13 (NUDIX13), which we show encodes an enzyme homologous to DDP1 with similar substrate specificity. Arabidopsis transgenics overexpressing NUDIX13 had lower inositol pyrophosphate levels and displayed phenotypes similar to DDP1-overexpressing transgenics, while nudix13-1 mutants had increased levels of inositol pyrophosphates. Taken together, our data demonstrate that DDP1 and NUDIX13 can be used in strategies to regulate plant inositol pyrophosphates and could serve as potential targets for engineering plants to reclaim phosphate from polluted environments.
Collapse
Affiliation(s)
- Catherine Freed
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Janet Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caitlin Cridland
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chris Pereira
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jiwoo Kim
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Hannah Blice
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - James Owen
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - Glenda Gillaspy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Bessman MJ. A cryptic activity in the Nudix hydrolase superfamily. Protein Sci 2019; 28:1494-1500. [PMID: 31173659 PMCID: PMC6635765 DOI: 10.1002/pro.3666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The Nudix hydrolase superfamily is identified by a conserved cassette of 23 amino acids, and it is characterized by its pyrophosphorylytic activity on a wide variety of nucleoside diphosphate derivatives. Of the 13 members of the family in Escherichia coli, only one, Orf180, has not been identified with a substrate, although a host of nucleoside diphosphate compounds has been tested. Several reports have noted a strong similarity in the three-dimensional structure of the unrelated enzyme, isopentenyl diphosphate isomerase (IDI) to the Nudix structure, and the report that a Nudix enzyme was involved in the synthesis of geraniol, a product of the two substrates of IDI, prompted an investigation of whether the IDI substrates, isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DAPP) could be substrates of Orf180. This article demonstrates that Orf180 does have a very low activity on IPP, DAPP, and geranyl pyrophosphate (GPP). However, several of the other Nudix enzymes with established nucleoside diphosphate substrates hydrolyze these compounds at substantial rates. In fact, some Nudix hydrolases have higher activities on IPP, DAPP, and GPP than on their signature nucleoside diphosphate derivatives.
Collapse
Affiliation(s)
- Maurice J. Bessman
- Department of BiologyJohns Hopkins UniversityBaltimoreMaryland21218‐2684
| |
Collapse
|
5
|
Lynch JH, Sa N, Saeheng S, Raffaelli N, Roje S. Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae. PLoS One 2018; 13:e0198787. [PMID: 29902190 PMCID: PMC6002036 DOI: 10.1371/journal.pone.0198787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
The flavin cofactors FMN and FAD are required for a wide variety of biological processes, however, little is known about their metabolism. Here, we report the cloning and biochemical characterization of the Saccharomyces cerevisiae pyrophosphatase Fpy1p. Genetic and functional studies suggest that Fpy1p may play a key role in flavin metabolism and is the first-reported non-Nudix superfamily enzyme to display FAD pyrophosphatase activity. Characterization of mutant yeast strains found that deletion of fpy1 counteracts the adverse effects that are caused by deletion of flx1, a known mitochondrial FAD transporter. We show that Fpy1p is capable of hydrolyzing FAD, NAD(H), and ADP-ribose. The enzymatic activity of Fpy1p is dependent upon the presence of K+ and divalent metal cations, with similar kinetic parameters to those that have been reported for Nudix FAD pyrophosphatases. In addition, we report that the deletion of fpy1 intensifies the FMN-dependence of null mutants of the riboflavin kinase Fmn1p, demonstrate that fpy1 mutation abolishes the decreased fitness resulting from the deletion of the flx1 ORF, and offer a possible mechanism for the genetic interplay between fpy1, flx1 and fmn1.
Collapse
Affiliation(s)
- Joseph H. Lynch
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Nadia Raffaelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
6
|
Vibrio Phage KVP40 Encodes a Functional NAD + Salvage Pathway. J Bacteriol 2017; 199:JB.00855-16. [PMID: 28167526 DOI: 10.1128/jb.00855-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/22/2017] [Indexed: 01/10/2023] Open
Abstract
The genome of T4-type Vibrio bacteriophage KVP40 has five genes predicted to encode proteins of pyridine nucleotide metabolism, of which two, nadV and natV, would suffice for an NAD+ salvage pathway. NadV is an apparent nicotinamide phosphoribosyltransferase (NAmPRTase), and NatV is an apparent bifunctional nicotinamide mononucleotide adenylyltransferase (NMNATase) and nicotinamide-adenine dinucleotide pyrophosphatase (Nudix hydrolase). Genes encoding the predicted salvage pathway were cloned and expressed in Escherichia coli, the proteins were purified, and their enzymatic properties were examined. KVP40 NadV NAmPRTase is active in vitro, and a clone complements a Salmonella mutant defective in both the bacterial de novo and salvage pathways. Similar to other NAmPRTases, the KVP40 enzyme displayed ATPase activity indicative of energy coupling in the reaction mechanism. The NatV NMNATase activity was measured in a coupled reaction system demonstrating NAD+ biosynthesis from nicotinamide, phosphoribosyl pyrophosphate, and ATP. The NatV Nudix hydrolase domain was also shown to be active, with preferred substrates of ADP-ribose, NAD+, and NADH. Expression analysis using reverse transcription-quantitative PCR (qRT-PCR) and enzyme assays of infected Vibrio parahaemolyticus cells demonstrated nadV and natV transcription during the early and delayed-early periods of infection when other KVP40 genes of nucleotide precursor metabolism are expressed. The distribution and phylogeny of NadV and NatV proteins among several large double-stranded DNA (dsDNA) myophages, and also those from some very large siphophages, suggest broad relevance of pyridine nucleotide scavenging in virus-infected cells. NAD+ biosynthesis presents another important metabolic resource control point by large, rapidly replicating dsDNA bacteriophages.IMPORTANCE T4-type bacteriophages enhance DNA precursor synthesis through reductive reactions that use NADH/NADPH as the electron donor and NAD+ for ADP-ribosylation of proteins involved in transcribing and translating the phage genome. We show here that phage KVP40 encodes a functional pyridine nucleotide scavenging pathway that is expressed during the metabolic period of the infection cycle. The pathway is conserved in other large, dsDNA phages in which the two genes, nadV and natV, share an evolutionary history in their respective phage-host group.
Collapse
|
7
|
Complete Genome Sequence of Carbapenemase-Producing Klebsiella pneumoniae Myophage Matisse. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01136-15. [PMID: 26430049 PMCID: PMC4591321 DOI: 10.1128/genomea.01136-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections in the United States. Due to the emergence of multidrug-resistant strains, phages targeting K. pneumoniae may be a useful alternative against this pathogen. Here, we announce the complete genome of K. pneumoniae pseudo-T-even myophage Matisse and describe its features.
Collapse
|
8
|
Complete Genome Sequence of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Myophage Miro. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01137-15. [PMID: 26430050 PMCID: PMC4591322 DOI: 10.1128/genomea.01137-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen frequently associated with antibiotic-resistant nosocomial infections. Bacteriophage therapy against K. pneumoniae may be possible to combat these infections. The following describes the complete genome sequence and key features of the pseudo-T-even K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae myophage Miro.
Collapse
|
9
|
Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. PLANT & CELL PHYSIOLOGY 2012; 53:1106-16. [PMID: 22505691 DOI: 10.1093/pcp/pcs054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although flavins, riboflavin (RF), FMN and FAD, are essential for primary and secondary metabolism in plants, the metabolic regulation of flavins is still largely unknown. Recently, we found that an Arabidopsis Nudix hydrolase, AtNUDX23, has FAD pyrophosphohydrolase activity and is distributed in plastids. Levels of RF and FAD but not FMN in Arabidopsis leaves significantly increased under continuous light and decreased in the dark. The transcript levels of AtNUDX23 as well as genes involved in flavin metabolism (AtFADS, AtRibF1, AtRibF2, AtFMN/FHy, LS and AtRibA) significantly increased under continuous light. The pyrophosphohydrolase activity toward FAD was enhanced in AtNUDX23-overexpressing (OX-NUDX23) plants and reduced in AtNUDX23-suppressed (KD-nudx23) plants, compared with the control plants. Interestingly intracellular levels of RF, FMN and FAD significantly decreased in not only OX-NUDX23 but also KD-nudx23 plants. The transcript levels of the flavin metabolic genes also decreased in both plants. Similarly, the increase in intracellular levels on treatment with flavins caused a reduction in the transcript levels of genes involved in flavin metabolism. These results suggest that negative feedback regulation of the metabolism of flavins through the hydrolysis of FAD by AtNUDX23 in plastids is involved in flavin homeostasis in plant cells.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Jiang YL, Zhang JW, Yu WL, Cheng W, Zhang CC, Frolet C, Di Guilmi AM, Vernet T, Zhou CZ, Chen Y. Structural and enzymatic characterization of the streptococcal ATP/diadenosine polyphosphate and phosphodiester hydrolase Spr1479/SapH. J Biol Chem 2011; 286:35906-35914. [PMID: 21865160 PMCID: PMC3195627 DOI: 10.1074/jbc.m111.228585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 08/04/2011] [Indexed: 01/07/2023] Open
Abstract
Spr1479 from Streptococcus pneumoniae R6 is a 33-kDa hypothetical protein of unknown function. Here, we determined the crystal structures of its apo-form at 1.90 Å and complex forms with inorganic phosphate and AMP at 2.30 and 2.20 Å, respectively. The core structure of Spr1479 adopts a four-layer αββα-sandwich fold, with Fe(3+) and Mn(2+) coordinated at the binuclear center of the active site (similar to metallophosphoesterases). Enzymatic assays showed that, in addition to phosphodiesterase activity for bis(p-nitrophenyl) phosphate, Spr1479 has hydrolase activity for diadenosine polyphosphate (Ap(n)A) and ATP. Residues that coordinate with the two metals are indispensable for both activities. By contrast, the streptococcus-specific residue Trp-67, which binds to phosphate in the two complex structures, is indispensable for the ATP/Ap(n)A hydrolase activity only. Moreover, the AMP-binding pocket is conserved exclusively in all streptococci. Therefore, we named the protein SapH for streptococcal ATP/Ap(n)A and phosphodiester hydrolase.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun-Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Li Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wang Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen-Chen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cecile Frolet
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Anne-Marie Di Guilmi
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Thierry Vernet
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
11
|
Gunawardana D, Likic VA, Gayler KR. A comprehensive bioinformatics analysis of the Nudix superfamily in Arabidopsis thaliana. Comp Funct Genomics 2009; 2009:820381. [PMID: 19590748 PMCID: PMC2707057 DOI: 10.1155/2009/820381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4) was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.
Collapse
Affiliation(s)
- D. Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - V. A. Likic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. R. Gayler
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S. Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:289-301. [PMID: 18798872 DOI: 10.1111/j.1365-313x.2008.03686.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mutant pqr-216 from an Arabidopsis activation-tagged line showed a phenotype of increased tolerance to oxidative stress after treatment with 3 mum paraquat (PQ). Based on the phenotype of transgenic plants overexpressing the genes flanking the T-DNA insert, it was clear that enhanced expression of a Nudix (nucleoside diphosphates linked to some moiety X) hydrolase gene, AtNUDX2 (At5g47650), was responsible for the tolerance. It has been reported that the AtNUDX2 protein has pyrophosphatase activities towards both ADP-ribose and NADH (Ogawa et al., 2005). Interestingly, the pyrophosphatase activity toward ADP-ribose, but not NADH, was increased in pqr-216 and Pro(35S):AtNUDX2 plants compared with control plants. The amount of free ADP-ribose was lower in the Pro(35S):AtNUDX2 plants, while the level of NADH was similar to those in control plants under both normal conditions and oxidative stress. Depletion of NAD(+) and ATP resulting from activation of poly(ADP-ribosyl)ation under oxidative stress was observed in the control Arabidopsis plants. Such alterations in the levels of these molecules were significantly suppressed in the Pro(35S):AtNUDX2 plants. The results indicate that overexpression of AtNUDX2, encoding ADP-ribose pyrophosphatase, confers enhanced tolerance of oxidative stress on Arabidopsis plants, resulting from maintenance of NAD(+) and ATP levels by nucleotide recycling from free ADP-ribose molecules under stress conditions.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631 8505, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Ogawa T, Yoshimura K, Miyake H, Ishikawa K, Ito D, Tanabe N, Shigeoka S. Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1412-24. [PMID: 18815383 PMCID: PMC2577243 DOI: 10.1104/pp.108.128413] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/22/2008] [Indexed: 05/18/2023]
Abstract
Nudix (for nucleoside diphosphates linked to some moiety X) hydrolases act to hydrolyze ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or dinucleoside polyphosphates. Arabidopsis (Arabidopsis thaliana) contains 27 genes encoding Nudix hydrolase homologues (AtNUDX1 to -27) with a predicted distribution in the cytosol, mitochondria, and chloroplasts. Previously, cytosolic Nudix hydrolases (AtNUDX1 to -11 and -25) were characterized. Here, we conducted a characterization of organelle-type AtNUDX proteins (AtNUDX12 to -24, -26, and -27). AtNUDX14 showed pyrophosphohydrolase activity toward both ADP-ribose and ADP-glucose, although its K(m) value was approximately 100-fold lower for ADP-ribose (13.0+/-0.7 microm) than for ADP-glucose (1,235+/-65 microm). AtNUDX15 hydrolyzed not only reduced coenzyme A (118.7+/-3.4 microm) but also a wide range of its derivatives. AtNUDX19 showed pyrophosphohydrolase activity toward both NADH (335.3+/-5.4 microm) and NADPH (36.9+/-3.5 microm). AtNUDX23 had flavin adenine dinucleotide pyrophosphohydrolase activity (9.1+/-0.9 microm). Both AtNUDX26 and AtNUDX27 hydrolyzed diadenosine polyphosphates (n=4-5). A confocal microscopic analysis using a green fluorescent protein fusion protein showed that AtNUDX15 is distributed in mitochondria and AtNUDX14 -19, -23, -26, and -27 are distributed in chloroplasts. These AtNUDX mRNAs were detected ubiquitously in various Arabidopsis tissues. The T-DNA insertion mutants of AtNUDX13, -14, -15, -19, -20, -21, -25, -26, and -27 did not exhibit any phenotypical differences under normal growth conditions. These results suggest that Nudix hydrolases in Arabidopsis control a variety of metabolites and are pertinent to a wide range of physiological processes.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Wakamatsu T, Nakagawa N, Kuramitsu S, Masui R. Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8. J Bacteriol 2008; 190:1108-17. [PMID: 18039767 PMCID: PMC2223557 DOI: 10.1128/jb.01522-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022] Open
Abstract
ADP-ribose (ADPR) is one of the main substrates of Nudix proteins. Among the eight Nudix proteins of Thermus thermophilus HB8, we previously determined the crystal structure of Ndx4, an ADPR pyrophosphatase (ADPRase). In this study we show that Ndx2 of T. thermophilus also preferentially hydrolyzes ADPR and flavin adenine dinucleotide and have determined its crystal structure. We have determined the structures of Ndx2 alone and in complex with Mg2+, with Mg2+ and AMP, and with Mg2+ and a nonhydrolyzable ADPR analogue. Although Ndx2 recognizes the AMP moiety in a manner similar to those for other ADPRases, it recognizes the terminal ribose in a distinct manner. The residues responsible for the recognition of the substrate in Ndx2 are not conserved among ADPRases. This may reflect the diversity in substrate specificity among ADPRases. Based on these results, we propose the classification of ADPRases into two types: ADPRase-I enzymes, which exhibit high specificity for ADPR; and ADPRase-II enzymes, which exhibit low specificity for ADPR. In the active site of the ternary complexes, three Mg2+ ions are coordinated to the side chains of conserved glutamate residues and water molecules. Substitution of Glu90 and Glu94 with glutamine suggests that these residues are essential for catalysis. These results suggest that ADPRase-I and ADPRase-II enzymes have nearly identical catalytic mechanisms but different mechanisms of substrate recognition.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
15
|
Zhang SC, Barclay C, Alexander LA, Geldenhuys L, Porter GA, Casson AG, Murphy PR. Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma. J Mol Med (Berl) 2007; 85:1215-28. [PMID: 17569023 DOI: 10.1007/s00109-007-0219-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/24/2007] [Accepted: 05/24/2007] [Indexed: 05/15/2023]
Abstract
Overexpression of FGF-2 is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer, and these risks are reduced in tumors co-expressing the FGF antisense (FGF-AS) RNA. The aim of this study was to characterize the expression of alternatively spliced FGF-AS transcripts and encoded nudix-motif proteins in normal human tissues and in esophageal adenocarcinoma, and to correlate their expression with clinicopathologic findings and outcome. Three alternatively spliced FGF-AS transcripts encoding GFG/NUDT6 isoforms with distinct N termini were detected in various human tissues including esophageal adenocarcinoma. Expression of each isoform as a fusion protein with enhanced green fluorescent protein revealed differential subcellular trafficking: hGFGa is localized to mitochondria by an N-terminal targeting sequence (MTS), whereas hGFGb and hGFGc were localized in the cytoplasm and nucleus. Mutation/deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization. The predominant FGF-AS mRNA expressed in esophageal tumors was splice variant b. GFG immunoreactivity was detected in the cytoplasm of all esophageal adenocarcinomas and in 88% of tumor cell nuclei. Although we found a trend towards reduced disease-free survival in patients with FGF-2 overexpressing esophageal adenocarcinomas, significantly worse disease-free survival was noted among patients whose tumors did not also overexpress the FGF-AS b isoform (p = 0.03). Tetracycline-inducible FGF-AS b expression in stably transfected human Seg-1 esophageal adenocarcinoma cells resulted in a significant suppression of steady state FGF-2 mRNA content and cell proliferation. Our data implicate the FGF-AS b isoform in modulation of FGF-2 expression and clinical outcome in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD. Genetic diversity among five T4-like bacteriophages. Virol J 2006; 3:30. [PMID: 16716236 PMCID: PMC1524935 DOI: 10.1186/1743-422x-3-30] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/23/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. RESULTS Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR) and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs) that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. CONCLUSION Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4-like phages harbour a wealth of genetic material that has not been identified previously. The mechanisms by which these genes may have arisen may differ from those previously proposed for the evolution of other bacteriophage genomes.
Collapse
Affiliation(s)
- James M Nolan
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Vasiliy Petrov
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Claire Bertrand
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Henry M Krisch
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Jim D Karam
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Abstract
Cellular metabolism constantly generates by-products that are wasteful or even harmful. Such compounds are excreted from the cell or are removed through hydrolysis to normal cellular metabolites by various 'house-cleaning' enzymes. Some of the most important contaminants are non-canonical nucleoside triphosphates (NTPs) whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. Enzymes intercepting abnormal NTPs from incorporation by DNA polymerases work in parallel with DNA repair enzymes that remove lesions produced by modified nucleotides. House-cleaning NTP pyrophosphatases targeting non-canonical NTPs belong to at least four structural superfamilies: MutT-related (Nudix) hydrolases, dUTPase, ITPase (Maf/HAM1) and all-alpha NTP pyrophosphatases (MazG). These enzymes have high affinity (Km's in the micromolar range) for their natural substrates (8-oxo-dGTP, dUTP, dITP, 2-oxo-dATP), which allows them to select these substrates from a mixture containing a approximately 1000-fold excess of canonical NTPs. To date, many house-cleaning NTPases have been identified only on the basis of their side activity towards canonical NTPs and NDP derivatives. Integration of growing structural and biochemical data on these superfamilies suggests that their new family members cleanse the nucleotide pool of the products of oxidative damage and inappropriate methylation. House-cleaning enzymes, such as 6-phosphogluconolactonase, are also part of normal intermediary metabolism. Genomic data suggest that house-cleaning systems are more abundant than previously thought and include numerous analogous enzymes with overlapping functions. We discuss the structural diversity of these enzymes, their phylogenetic distribution, substrate specificity and the problem of identifying their true substrates.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
18
|
Okuda K, Hayashi H, Nishiyama Y. Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:4984-91. [PMID: 15995214 PMCID: PMC1169527 DOI: 10.1128/jb.187.14.4984-4991.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By contrast, Slr1690 showed very low activity for ADP-ribose and had four substitutions of amino acids in the Nudix motif, indicating that Slr1690 is not an active ADP-ribose pyrophosphatase. However, the quadruple mutation of Slr1690, T73G/I88E/K92E/A94G, which replaced the mutated amino acids with those conserved in the Nudix motif, resulted in a significant (6.1 x 10(2)-fold) increase in the k(cat) value. These results suggest that Slr1690 might have evolved from an active ADP-ribose pyrophosphatase. Functional and clustering analyses suggested that Sll1054 is a bacterial type, while the other three and Slr0787, which was characterized previously (Raffaelli et al., FEBS Lett. 444:222-226, 1999), are phylogenetically diverse types that originated from an archaeal Nudix protein via molecular evolutionary mechanisms, such as domain fusion and amino acid substitution.
Collapse
Affiliation(s)
- Kenji Okuda
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Japan
| | | | | |
Collapse
|
19
|
Olejnik K, Kraszewska E. Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1752:133-41. [PMID: 16154395 DOI: 10.1016/j.bbapap.2005.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 11/30/2022]
Abstract
In a search for a plant antimutator MutT protein, an Arabidopsis thaliana Nudix hydrolase with homology to the mammalian GFG protein was expressed as a hexahistidine fusion polypeptide in Escherichia coli and purified to homogeneity. Unlike the GFG protein, the A. thaliana homolog could not complement the mutT mutation in a MutT-deficient E. coli strain nor was it able to hydrolyze 8-oxo-dGTP, the main substrate of the MutT protein. Instead the recombinant protein hydrolyzed a variety of nucleoside diphosphate derivatives showing a preference for ADP-ribose, with Km and k(cat) values of 1.2 mM and 2.7 s(-1) respectively. The products of ADP-ribose hydrolysis were AMP and ribose-5-phosphate. The optimal activity was at alkaline pH (8.5) with Mg2+ (5 mM) ions as the cofactor. The protein exists as a dimmer in solution.
Collapse
Affiliation(s)
- Kamil Olejnik
- The Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | |
Collapse
|
20
|
Urick T, I-Chang C, Arena E, Xu W, Bessman MJ, Ruffolo CG. The pnhA gene of Pasteurella multocida encodes a dinucleoside oligophosphate pyrophosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2005; 187:5809-17. [PMID: 16077129 PMCID: PMC1196092 DOI: 10.1128/jb.187.16.5809-5817.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/31/2005] [Indexed: 11/20/2022] Open
Abstract
The pnhA gene of Pasteurella multocida encodes PnhA, which is a member of the Nudix hydrolase subfamily of dinucleoside oligophosphate pyrophosphatases. PnhA hydrolyzes diadenosine tetra-, penta-, and hexaphosphates with a preference for diadenosine pentaphosphate, from which it forms ATP and ADP. PnhA requires a divalent metal cation, Mg(2+) or Mn(2+), and prefers an alkaline pH of 8 for optimal activity. A P. multocida strain that lacked a functional pnhA gene, ACP13, was constructed to further characterize the function of PnhA. The cellular size of ACP13 was found to be 60% less than that of wild-type P. multocida, but the growth rate of ACP13 and its sensitivity to heat shock conditions were similar to those of the wild type, and the wild-type cell size was restored in the presence of a functional pnhA gene. Wild-type and ACP13 strains were tested for virulence by using the chicken embryo lethality model, and ACP13 was found to be up to 1,000-fold less virulent than the wild-type strain. This is the first study to use an animal model in assessing the virulence of a bacterial strain that lacked a dinucleoside oligophosphate pyrophosphatase and suggests that the pyrophosphatase PnhA, catalyzing the hydrolysis of diadenosine pentaphosphates, may also play a role in facilitating P. multocida pathogenicity in the host.
Collapse
Affiliation(s)
- Tonia Urick
- Department of Biological Sciences, University of Wisconsin-Parkside, P.O. Box 2000, Kenosha, WI 53144, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tran HT, Ulke A, Morrice N, Johannes CJ, Moorhead GBG. Proteomic Characterization of Protein Phosphatase Complexes of the Mammalian Nucleus. Mol Cell Proteomics 2004; 3:257-65. [PMID: 14724321 DOI: 10.1074/mcp.m300115-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our knowledge of the serine/threonine protein phosphatases of the mammalian nucleus is limited compared with their cytosolic counterparts. Microcystin-Sepharose chromatography and mass spectrometry were utilized to affinity purify and identify protein phosphatase-associated proteins from isolated rat liver nuclei. Far Western analysis with labeled protein phosphatase 1 (PP1) showed that many more PP1 binding proteins exist in the nucleus than were previously demonstrated. Mass spectrometry confirmed the presence in the nucleus of the mammalian PP1 isoforms alpha1, alpha2, beta, and gamma1, plus the Aalpha and several of the B and B' subunits that are complexed to PP2A. Other proteins enriched on the microcystin matrix include the spliceosomal proteins known as the U2 snRNPs SAP145 and SAP155 and the U5 snRNPs p116 and p200, myosin heavy chain, and a nuclear PP1 myosin-targeting subunit related to M110. The putative RNA binding protein ZAP was also established as a nuclear PP1 binding protein using the criteria of co-purification with PP1 on microcystin-Sepharose, co-immunoprecipation, binding PP1 in an overlay assay, and presence of a putative PP1 binding site (KKRVRWAD). These results further support a key role for protein phosphatases in several nuclear functions, including the regulation of pre-mRNA splicing.
Collapse
Affiliation(s)
- Hue T Tran
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
22
|
Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczypinski B, Fraser CM. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 2003; 185:5220-33. [PMID: 12923095 PMCID: PMC180978 DOI: 10.1128/jb.185.17.5220-5233.2003] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/30/2003] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lundin A, Nilsson C, Gerhard M, Andersson DI, Krabbe M, Engstrand L. The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem 2003; 278:12574-8. [PMID: 12551907 DOI: 10.1074/jbc.m212542200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.
Collapse
Affiliation(s)
- Annelie Lundin
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Dobrzanska M, Szurmak B, Wyslouch-Cieszynska A, Kraszewska E. Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana. J Biol Chem 2002; 277:50482-6. [PMID: 12399474 DOI: 10.1074/jbc.m205207200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequence motif commonly called a Nudix box, represented by (GX(5)EX(7)REVXEEXGU) is the marker of a widely distributed family of enzymes that catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives. Here we describe the cloning and characterization of an Arabidopsis thaliana cDNA encoding a Nudix hydrolase that degrades NADH. The deduced amino acid sequence of AtNUDT1 contains 147 amino acids. The recombinant AtNUDT1 was expressed in Escherichia coli and purified. In the presence of Mn(2+) and the optimal pH of 7. 0, the recombinant AtNUDT1 catalyzed the hydrolysis of NADH with a K(m) value of 0. 36 mm. A V(max) of 12. 7 units mg (-1) for NADH was determined. The recombinant AtNUDT1 migrated as a dimer on a gel filtration column. Biochemical analysis of recombinant AtNUDT1 indicated that the first characterized member of the Nudix family from A. thaliana is a NADH pyrophosphatase.
Collapse
Affiliation(s)
- Marta Dobrzanska
- Departament of Plant Biochemistry, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
26
|
Rafty LA, Schmidt MT, Perraud AL, Scharenberg AM, Denu JM. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases. J Biol Chem 2002; 277:47114-22. [PMID: 12370179 DOI: 10.1074/jbc.m208997200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sir2 family of NAD(+)-dependent histone/protein deacetylases has been implicated in a wide range of biological activities, including gene silencing, life span extension, and chromosomal stability. Recent evidence has indicated that these proteins produce a novel metabolite O-acetyl-ADP-ribose (OAADPr) during deacetylation. Cellular studies have demonstrated that this metabolite exhibits biological effects when microinjected in living cells. However, the molecular targets of OAADPr remain to be identified. Here we have analyzed the ADP-ribose-specific Nudix family of hydrolases as potential in vivo metabolizing enzymes of OAADPr. In vitro, we found that the ADP-ribose hydrolases (yeast YSA1, mouse NudT5, and human NUDT9) cleaved OAADPr to the products AMP and acetylated ribose 5'-phosphate. Steady-state kinetic analyses revealed that YSA1 and NudT5 hydrolyzed OAADPr with similar kinetic constants to those obtained with ADP-ribose as substrate. In dramatic contrast, human NUDT9 was 500-fold less efficient (k(cat)/K(m) values) at hydrolyzing OAADPr compared with ADP-ribose. The inability of OAADPr to inhibit the reaction of NUDT9 with ADP-ribose suggests that NUDT9 binds OAADPr with low affinity, likely due to steric considerations of the additional acetylated-ribose moiety. We next explored whether Nudix hydrolytic activities against OAADPr could be observed in cell extracts from yeast and human. Using a detailed analysis of the products generated during the consumption of OAADPr in extracts, we identified two robust enzymatic activities that were not consistent with the known Nudix hydrolases. Instead, we identified cytoplasmic esterase activities that hydrolyze OAADPr to acetate and ADP-ribose, whereas a distinct activity residing in the nucleus is consistent with an OAADPr-specific acetyltransferase. These findings establish for the first time that select members of the ADP-ribose hydrolases are potential targets of OAADPr metabolism. However, the predominate endogenous activities observed from diverse cell extracts represent novel enzymes.
Collapse
Affiliation(s)
- Louise A Rafty
- Oregon Health & Science University, Department of Biochemistry and Molecular Biology, Portland, Oregon 97201-3098, USA
| | | | | | | | | |
Collapse
|
27
|
Hidaka K, Caffrey JJ, Hua L, Zhang T, Falck JR, Nickel GC, Carrel L, Barnes LD, Shears SB. An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 2002; 277:32730-8. [PMID: 12105228 DOI: 10.1074/jbc.m205476200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Combinatorial expression of the various isoforms of diphosphoinositol synthases and phosphohydrolases determines the rates of phosphorylation/dephosphorylation cycles that have been functionally linked to vesicle trafficking, stress responses, DNA repair, and apoptosis. We now describe two new 19-kDa diphosphoinositol polyphosphate phosphohydrolases (DIPPs), named types 3alpha and 3beta, which possess the canonical Nudix-type catalytic motif flanked on either side by short Gly-rich sequences. The two enzymes differ only in that Pro-89 in the alpha form is replaced by Arg-89 in the beta form, making the latter approximately 2-fold more active in vitro. Another Nudix substrate, diadenosine hexaphosphate, was hydrolyzed less efficiently (k(cat)/K(m) = 0.2 x 10(5) m(-1) s(-1)) compared with diphosphoinositol polyphosphates (k(cat)/K(m) = 2-40 x 10(5) m(-1) s(-1)). Catalytic activity in vivo was established by individual overexpression of the human (h) DIPP3 isoforms in HEK293 cells, which reduced cellular levels of diphosphoinositol polyphosphates by 40-50%. The hDIPP3 mRNA is preferentially expressed in testis, accompanied by relatively weak expression in the brain, contrasting with hDIPP1 and hDIPP2 which are widely expressed. The hDIPP3 genes (NUDT10 encodes hDIPP3alpha; NUDT11 encodes hDIPP3beta) are only 152 kbp apart at p11.22 on chromosome X and probably arose by duplication. Transcription of both genes is inactivated on one of the X chromosomes of human females to maintain appropriate gene dosage. The hDIPP3 pair add tissue-specific diversity to the molecular mechanisms regulating diphosphoinositol polyphosphate turnover.
Collapse
Affiliation(s)
- Kiyoshi Hidaka
- Inositide Signaling Section, Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|