1
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
3
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
4
|
Xu YN, Wang Z, Zhang SK, Xu JR, Pan ZX, Wei X, Wen HH, Luo YS, Guo MJ, Zhu Q. Low-grade elevation of palmitate and lipopolysaccharide synergistically induced β-cell damage via inhibition of neutral ceramidase. Mol Cell Endocrinol 2022; 539:111473. [PMID: 34610358 DOI: 10.1016/j.mce.2021.111473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
High concentrations of free fatty acids (FFAs) or lipopolysaccharide (LPS) could lead to β-cell apoptosis and dysfunction, while low-grade elevation of FFAs or LPS, which are more common in people with type 2 diabetes mellitus (T2DM) or obesity, have no obvious toxic effect on β-cells. Palmitate is a component closely related to metabolic disorders in FFAs. Recent studies have found that low-grade elevation of palmitate and LPS synergistically affects the sphingolipid signaling pathway by activating Toll-like receptor 4 (TLR4) and further enhances the expression of inflammatory cytokines in immune cells. Previous studies demonstrated that sphingolipids also played an important role in the occurrence and development of T2DM. This study aimed to investigate the synergistic effects of low-grade elevation of palmitate and LPS on viability, apoptosis and insulin secretion in the rat pancreatic β-cell line INS-1 or islets and the role of sphingolipids in this process. We showed that low-grade elevation of palmitate or LPS alone did not affect the viability, apoptosis, glucose-stimulated insulin secretion (GSIS) or intracellular insulin content of INS-1 cells or islets, while the combination of the two synergistically inhibited cell viability, induced apoptosis and decreased basal insulin secretion in INS-1 cells or islets. Treatment with palmitate and LPS markedly upregulated TLR4 protein expression and downregulated neutral ceramidase (NCDase) activity and protein expression. Additionally, low-grade elevation of palmitate and LPS synergistically induced a significant increase in ceramide and a decrease in sphingosine-1-phosphate. Blocking TLR4 signaling or overexpressing NCDase remarkably attenuated INS-1 cell injury induced by the combination of palmitate and LPS. However, inhibition of ceramide synthase did not ameliorate injury induced by palmitate and LPS. Overall, we show for the first time that low-grade elevation of palmitate and LPS synergistically induced β-cell damage by activating TLR4 signaling, inhibiting NCDase activity, and further modulating sphingolipid metabolism, which was different from a high concentration of palmitate-induced β-cell injury by promoting ceramide synthesis.
Collapse
Affiliation(s)
- Ya-Nan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zheng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China; Department of Nephrology, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, China
| | - Shao-Kun Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jia-Rong Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhi-Xiong Pan
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Hong-Hua Wen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yan-Shi Luo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mao-Jun Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch Pharm Res 2019; 42:232-243. [DOI: 10.1007/s12272-019-01114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
|
6
|
Coant N, Hannun YA. Neutral ceramidase: Advances in mechanisms, cell regulation, and roles in cancer. Adv Biol Regul 2018; 71:141-146. [PMID: 30389354 DOI: 10.1016/j.jbior.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023]
Abstract
Extensive research conducted in the last three decades has identified the roles for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) as key regulators of cellular homeostasis, growth and death. One of the major groups of enzymes in the ceramide pathway, ceramidases, converts ceramide into sphingosine and fatty acids, with sphingosine being further metabolized to S1P. Thus, these enzymes play important roles in the network controlling the functions associated with these bioactive sphingolipids. Among the family of ceramidases, neutral ceramidase (nCDase), which is named according to its optimal pH for catalytic activity, has received increased attention in the last decade. The goal of this review is to provide a brief background on bioactive sphingolipids and the ceramidases. We then describe more recent advances on nCDase, specifically the resolution of its crystal structure and understanding its roles in cell biology and physiology.
Collapse
Affiliation(s)
- Nicolas Coant
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 182, 11794, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Kuzmenko DI, Klimentyeva TK. Role of Ceramide in Apoptosis and Development of Insulin Resistance. BIOCHEMISTRY (MOSCOW) 2017; 81:913-27. [PMID: 27682164 DOI: 10.1134/s0006297916090017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents data on the functional biochemistry of ceramide, one of the key sphingolipids with properties of a secondary messenger. Molecular mechanisms of the involvement of ceramide in apoptosis in pancreatic β-cells and its role in the formation of insulin resistance in pathogenesis of type 2 diabetes are reviewed. One of the main predispositions for the development of insulin resistance and diabetes is obesity, which is associated with ectopic fat deposition and significant increase in intracellular concentrations of cytotoxic ceramides. A possible approach to the restoration of tissue sensitivity to insulin in type 2 diabetes based on selective reduction of the content of cytotoxic ceramides is discussed.
Collapse
Affiliation(s)
- D I Kuzmenko
- Siberian State Medical University, Ministry of Healthcare of the Russian Federation, Tomsk, 634050, Russia.
| | | |
Collapse
|
8
|
Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul 2016; 63:122-131. [PMID: 27771292 DOI: 10.1016/j.jbior.2016.10.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
Over the past three decades, extensive research has been able to determine the biologic functions for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) (Hannun, 1996; Hannun et al., 1986; Okazaki et al., 1989). These studies have managed to define the metabolism, regulation, and function of these bioactive sphingolipids. This emerging body of literature has also implicated bioactive sphingolipids, particularly S1P and ceramide, as key regulators of cellular homeostasis. Ceramidases have the important role of cleaving fatty acid from ceramide and producing sphingosine, thereby controlling the interconversion of these two lipids. Thus far, five human ceramidases encoded by five different genes have been identified: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). These ceramidases are classified according to their optimal pH for catalytic activity. AC, which is localized to the lysosomal compartment, has been associated with Farber's disease and is involved in the regulation of cell viability. Neutral ceramidase, which is localized to the plasma membrane and primarily expressed in the small intestine and colon, is involved in digestion, and has been implicated in colon carcinogenesis. ACER1 which can be found in the endoplasmic reticulum and is highly expressed in the skin, plays an important role in keratinocyte differentiation. ACER2, localized to the Golgi complex and highly expressed in the placenta, is involved in programed cell death in response to DNA damage. ACER3, also localized to the endoplasmic reticulum and the Golgi complex, is ubiquitously expressed, and is involved in motor coordination-associated Purkinje cell degeneration. This review seeks to consolidate the current knowledge regarding these key cellular players.
Collapse
|
9
|
García-Barros M, Coant N, Kawamori T, Wada M, Snider AJ, Truman JP, Wu BX, Furuya H, Clarke CJ, Bialkowska AB, Ghaleb A, Yang VW, Obeid LM, Hannun YA. Role of neutral ceramidase in colon cancer. FASEB J 2016; 30:4159-4171. [PMID: 27609772 DOI: 10.1096/fj.201600611r] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer.
Collapse
Affiliation(s)
- Mónica García-Barros
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Nicolas Coant
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Toshihiko Kawamori
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Research Institute for Cancer Prevention and Pathologic Diagnosis at Tokyo Leon Clinics, Nagoya, Japan
| | - Masayuki Wada
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hideki Furuya
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Christopher J Clarke
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | | | - Amr Ghaleb
- Department of Medicine, Stony Brook University, New York, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, New York, USA; .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacology, Stony Brook University, Stony Brook, New York, USA; and.,Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Methods for Testing Immunological Factors. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016. [PMCID: PMC7122208 DOI: 10.1007/978-3-319-05392-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypersensitivity reactions can be elicited by various factors: either immunologically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or non-immunologically induced, i.e., activation of mediator release from cells through direct contact, without the induction of, or the mediation through immune responses. Mediators responsible for hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce release of histamine from mast cells. The histamine concentration can be determined with the o-phthalaldehyde reaction.
Collapse
|
11
|
Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2014; 58:38-52. [PMID: 25434743 DOI: 10.1016/j.jbior.2014.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate.
Collapse
Affiliation(s)
- Brittany Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jane Catalina Donaldson
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina Obeid
- Northport VA Medical Center, Northport, NY 11768, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
12
|
Liu H, Yu S, Zhang H, Xu J. Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells. PLoS One 2014; 9:e98486. [PMID: 24853093 PMCID: PMC4031199 DOI: 10.1371/journal.pone.0098486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shujie Yu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hua Zhang
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jian Xu
- Section of Endocrinology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
13
|
Sasaki H, Toyomura K, Matsuzaki W, Okamoto A, Yamaguchi N, Nakamura H, Murayama T. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Arch Biochem Biophys 2014; 550-551:12-9. [DOI: 10.1016/j.abb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
|
14
|
Guillas I, Puyaubert J, Baudouin E. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx? FRONTIERS IN PLANT SCIENCE 2013; 4:341. [PMID: 24062754 PMCID: PMC3770979 DOI: 10.3389/fpls.2013.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/13/2013] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL-NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.
Collapse
Affiliation(s)
- Isabelle Guillas
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
| | - Juliette Puyaubert
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
| | - Emmanuel Baudouin
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
- *Correspondence: Emmanuel Baudouin, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6, Bâtiment C/3 Boîte courrier 156, 4 place Jussieu, F-75252 Paris Cédex 05, France; EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche Scientifique, Bâtiment C/3 Boîte courrier 156, 4 place Jussieu, F-75252 Paris Cédex 05, France e-mail:
| |
Collapse
|
15
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
16
|
Tanaka K, Tamiya-Koizumi K, Hagiwara K, Ito H, Takagi A, Kojima T, Suzuki M, Iwaki S, Fujii S, Nakamura M, Banno Y, Kannagi R, Tsurumi T, Kyogashima M, Murate T. Role of down-regulated neutral ceramidase during all-trans retinoic acid-induced neuronal differentiation in SH-SY5Y neuroblastoma cells. ACTA ACUST UNITED AC 2012; 151:611-20. [DOI: 10.1093/jb/mvs033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
O'Neill SM, Yun JK, Fox TE, Kester M. Transcriptional regulation of the human neutral ceramidase gene. Arch Biochem Biophys 2011; 511:21-30. [PMID: 21531200 DOI: 10.1016/j.abb.2011.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 12/28/2022]
Abstract
Ceramidases play a critical role in generating sphingosine-1-phosphate by hydrolyzing ceramide into sphingosine, a substrate for sphingosine kinase. In order to elucidate its transcriptional regulation, we identify here a putative promoter region in the 5'-UTR of the human neutral CDase (nCDase) gene. Using human genomic DNA, we cloned a 3000 bp region upstream of the translational start site of the nCDase gene. Luciferase reporter analyses demonstrated that this 3000 bp region had promoter activity, with the strongest induction occurring within the first 200 bp. Computational analysis revealed the 200 bp essential promoter region contained several well-characterized promoter elements, lacked a conical TATA box, but did contain a reverse oriented CCAAT box, a feature common to housekeeping genes. Electrophoretic mobility shift assays demonstrated that the identified candidate transcriptional response elements (TRE) bind their respective transcription factors, including NF-Y, AP-2, Oct-1, and GATA. Mutagenic analyses of the TRE revealed that these sites regulated promoter activity and mutating an individual site decreased promoter reporter activity by up to 50%. Together, our findings suggest that regulation of nCDase expression involves coordinated TATA-less transcriptional activity.
Collapse
Affiliation(s)
- Sean M O'Neill
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
18
|
O'Neill SM, Houck KL, Yun JK, Fox TE, Kester M. AP-1 binding transcriptionally regulates human neutral ceramidase. Arch Biochem Biophys 2011; 511:31-9. [PMID: 21530485 DOI: 10.1016/j.abb.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/24/2011] [Accepted: 04/14/2011] [Indexed: 01/07/2023]
Abstract
Many forms of cellular stress cause an elevation of endogenous ceramide levels leading to growth arrest or apoptosis. Ceramidases (CDase) play a critical role in regulating apoptosis by hydrolyzing ceramide into sphingosine, a precursor for promitogenic sphingosine-1-phosphate. Growth factor induction of neutral CDase (nCDase) has been shown to have a cytoprotective effect against cytokine-induced increases in ceramide levels. To further define the physiological regulation of nCDase, we identified a 200 bp promoter region and demonstrated that serum activated this proximal promoter, which correlated with a serum-induced increase in human nCDase mRNA expression. Computational analysis revealed a putative cis-element for AP-1, a transcription factor activated by serum. Electrophoretic mobility shift assays demonstrated that the identified transcriptional response element binds to AP-1 transcription factors. RNA interference-mediated knockdown of the AP-1 subunit, c-Jun, inhibited the activity of the human nCDase proximal promoter, whereas, c-Jun overexpression increased promoter activity, which directly correlated with human nCDase mRNA transcription, decreased ceramide mass, and protection against caspase 3/7-dependent apoptosis. Taken together, our findings suggest that c-Jun/AP-1 signaling may, in part, regulate serum-induced human nCDase gene transcription.
Collapse
Affiliation(s)
- Sean M O'Neill
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
19
|
Förster A, Emmler T, Schwalm S, Ebadi M, Heringdorf DMZ, Nieuwenhuis B, Kleuser B, Huwiler A, Pfeilschifter J. Glucocorticoids protect renal mesangial cells from apoptosis by increasing cellular sphingosine-1-phosphate. Kidney Int 2010; 77:870-9. [PMID: 20375982 DOI: 10.1038/ki.2010.62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Collapse
Affiliation(s)
- Ankathrin Förster
- Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saad SY, Alkharfy KM, Arafah MM. Cardiotoxic effects of arsenic trioxide/imatinib mesilate combination in rats. J Pharm Pharmacol 2010; 58:567-73. [PMID: 16597375 DOI: 10.1211/jpp.58.4.0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Cardiotoxicity is an important consideration in the evaluation of cancer chemotherapy, because chemotherapy-induced myocardial damage might be irreversible and lethal. This in-vivo study investigated the cardiotoxicity of either arsenic trioxide or imatinib mesilate, or a combination of both drugs, following repeated administration in male Wistar rats. Both arsenic trioxide and imatinib mesilate were administered daily at a dose of 5 mg kg−1 intraperitoneally and 30 mg kg−1 orally for 10 days, respectively. Cardiotoxicity was evaluated by biochemical and histopathological examination 48 h after the last dose. Treatment with either arsenic or imatinib, or both, resulted in significant increases in serum creatine kinase isoenzyme (CK-MB), glutathione peroxidase (GPx), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) activity levels. Cardiac tissue of rats treated with arsenic showed significant increases in levels of reduced glutathione (GSH) content, GPx activity, malondialdehyde (MDA) and total nitrate/nitrite (NOx), whereas imatinib treatment significantly increased cardiac GSH content and MDA production level and decreased GPx activity level and NOx content. A combination of arsenic and imatinib produced significant increases in cardiac GSH content, GPx activity and MDA production levels, in addition to a reduction in NOx content. Combination arsenic/imatinib treatment extensively increased GPx activity and MDA production levels compared with imatinib treatment alone. Moreover, rats treated with arsenic or imatinib, or both, showed a significant increase in serum bilirubin, creatinine and urea levels. Histopathological examination of cardiac tissue of the combination-treated group revealed fibroblastic proliferation, myocardial disorganization and myocardial necrosis. Liver peroxidative alterations revealed that treatment with either arsenic or imatinib, or the two combined, increased levels of reduced-GSH and MDA production levels. However, imatinib treatment depleted liver GPx activity level contrary to treatment with the combination. Rats treated with arsenic alone or arsenic/imatinib combination showed significant elevation in liver NOx. In conclusion, both arsenic trioxide and imatinib mesilate might have significant cardiotoxicity and cardiac function should be monitored during treatment with them alone or in combination, as well as in the presence of pre-existing cardiac dysfunction.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
22
|
Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010; 9:15. [PMID: 20137073 PMCID: PMC2828451 DOI: 10.1186/1476-511x-9-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
23
|
Wu BX, Zeidan YH, Hannun YA. Downregulation of neutral ceramidase by gemcitabine: Implications for cell cycle regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:730-9. [PMID: 19345744 DOI: 10.1016/j.bbalip.2009.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/24/2009] [Accepted: 03/17/2009] [Indexed: 01/01/2023]
Abstract
Gemcitabine (GMZ) is a chemotherapeutic agent with well established effects on cell growth arrest and apoptosis. In this study, we investigated the potential roles of bioactive sphingolipids in mediating the growth suppressing effects of GMZ on a polyoma middle T transformed murine endothelial cell line. After 12-hour GMZ (0.6 microM) treatment, cell growth was arrested at the G(0)/G(1) phase as detected by flow cytometric cell cycle analysis and MTT cell viability analysis, and this was accompanied by dephosphorylation of the retinoblastoma protein (Rb). Furthermore, GMZ treatment resulted in increased levels of specifically the very long chain ceramides as determined by mass spectrometry. Mechanistically, GMZ did not appear to affect the activities of many enzymes of ceramide metabolism; however, GMZ caused a selective reduction in the protein levels of neutral ceramidase (NCDase), as indicated by Western blot analysis, with a concomitant decrease in NCDase activity. The significance of NCDase loss on cell cycle regulation was investigated by specific knockdown of the enzyme using small interfering RNA (siRNA). Interestingly, NCDase siRNA transfection was sufficient to induce a cell cycle arrest at G(0)/G(1) and an increase in total ceramide levels, with significant elevation in very long chain ceramides (C(24:1) and C(24:0)). NCDase siRNA also induced Rb dephosphorylation. These data provide evidence for a novel mechanism of action for GMZ and highlight downregulation of NCDase as a critical step in GMZ-mediated ceramide elevation and cell cycle arrest.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
24
|
Lee CM, Pohl J, Morgan ET. Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metab Dispos 2009; 37:865-72. [PMID: 19171675 PMCID: PMC2680532 DOI: 10.1124/dmd.108.026187] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/23/2009] [Indexed: 11/22/2022] Open
Abstract
Whereas many cytochrome P450 enzymes are transcriptionally suppressed by inflammatory stimuli, down-regulation of CYP2B protein by the inflammatory cytokine interleukin (IL)-1beta is nitric oxide (NO)-dependent and occurs via polyubiquitination and proteasomal degradation. Here, we used iTRAQ proteomic analysis to search for other proteins that are potentially down-regulated by cellular NO in cultured rat hepatocytes, and we identified CYP3A1 as one such protein. Therefore, we examined whether CYP3A proteins, like CYP2B, undergo NO- and proteasome-dependent degradation in response to cytokine treatment of rat hepatocytes. In cultured rat hepatocytes treated with phenobarbital, IL-1beta stimulation failed to down-regulate CYP3A1 mRNA within 24 h of treatment, whereas CYP3A protein was down-regulated to 40% of control within 6 h, showing the post-transcriptional down-regulation of CYP3A1 protein. The down-regulation of CYP3A after 9 h of stimulation by IL-1beta was attenuated by inhibitors of NO synthase (NOS) and of the proteasome, showing NO- and proteasome-dependent down-regulation at earlier time points. However, the down-regulation of CYP3A evoked by IL-1beta measured 24 h after stimulation was not affected by the inhibition of NOS or by proteasomal inhibitors, showing that CYP3A1 down-regulation at later time points is NO- and proteasome-independent. IL-6, which did not evoke NO production nor affect CYP3A1 mRNA within 24 h, produced a delayed proteasome-independent down-regulation as well. Taken together, these observations show a novel dual mode of post-transcriptional CYP3A down-regulation by cytokines: NO- and proteasome-dependent at earlier time points and NO- and proteasome-independent at later times.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Department of Pharmacology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
Radin MJ, Holycross BJ, Dumitrescu C, Kelley R, Altschuld RA. Leptin modulates the negative inotropic effect of interleukin-1beta in cardiac myocytes. Mol Cell Biochem 2008; 315:179-84. [PMID: 18535786 DOI: 10.1007/s11010-008-9805-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/23/2008] [Indexed: 02/07/2023]
Abstract
Interleukin-1beta (IL-1beta) is a potent negative inotrope implicated in the functional abnormalities of heart failure. Because the adipokine, leptin, protects against some of the cardiovascular effects of endotoxin, we hypothesized that leptin may modulate the cardiosuppressive effects of IL-1beta in isolated cardiomyocytes. Ventricular cardiac myocytes isolated from adult male Sprague Dawley rats were analyzed simultaneously for electrically stimulated contractility and calcium transients following 30 min exposure to IL-1beta (10 ng/ml) with or without 60 min pretreatment with leptin (25 ng/ml). IL-1beta decreased cell shortening, depressed maximal velocities of shortening and relengthening, and prolonged the time to 90% relaxation. The change in fura2-AM fluorescence ratio amplitude (Delta[Ca(2+)]) was significantly depressed and the time to return to baseline [Ca(2+)] was prolonged. The negative inotropic effects of IL-1beta were blocked by the neutral sphingomyelinase inhibitor Manumycin A (5 microM) or the ceramidase inhibitor N-oleoyl ethanolamine (1 microM). Prior exposure of myocytes to leptin blocked IL-1beta-induced cardiosuppression in conjunction with a blunting of IL-1beta stimulated ceramide accumulation. These data suggest that leptin may modulate IL-1beta signaling through the sphingolipid signaling pathway in cardiomyocytes.
Collapse
Affiliation(s)
- M Judith Radin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
26
|
Zhu Q, Jin JF, Shan XH, Liu CP, Mao XD, Xu KF, Liu C. Chronic activation of neutral ceramidase protects beta-cells against cytokine-induced apoptosis. Acta Pharmacol Sin 2008; 29:593-9. [PMID: 18430368 DOI: 10.1111/j.1745-7254.2008.00781.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the activity and expression of neutral ceramidase (N-CDase) in the insulin-secreting cell line INS-1 and its role in the cellular response to cytokines. METHODS HPLC, Western blotting, and quantitative real-time PCR were performed to detect the activity and expression of N-CDase in INS-1 cells treated with a cytokine mixture (5 ng/mL interleukin-1beta, 10 ng/mL TNF-alpha, and 50 ng/mL interferon-gamma). The expression and activity of N-CDase in the INS-1 cells were specifically inhibited using N-CDase-siRNA transfection. Annexin V-fluorescein- isothiocyanate/propidium iodide flow cytometry was used to assess apoptosis in the INS-1 cells. RESULTS The INS-1 cells exhibited some basal N-CDase activity, and cytokines induced a time-dependent delay in the activation of NCDase. As a result, the activation of N-CDase was first detectable at 8 h after stimulation. It peaked at 16 h and remained elevated at 24 h. Cytokines also upregulated the mRNA and protein expression of N-CDase in the INS-1 cells. Furthermore, when N-CDase activity was inhibited by RNA interference, cytokine-induced apoptosis in the INS-1 cells was markedly increased. CONCLUSION The N-CDase pathway is active in INS-1 cells, and the chronic activation of N-CDase is involved in the pathological response of beta-cells to cytokines, potentially providing protection against cytokine toxicity.
Collapse
Affiliation(s)
- Qun Zhu
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Lei XY, Zhang S, Bohrer A, Bao S, Song H, Ramanadham S. The group VIA calcium-independent phospholipase A2 participates in ER stress-induced INS-1 insulinoma cell apoptosis by promoting ceramide generation via hydrolysis of sphingomyelins by neutral sphingomyelinase. Biochemistry 2007; 46:10170-85. [PMID: 17685585 PMCID: PMC2530898 DOI: 10.1021/bi700017z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beta-cell mass is regulated by a balance between beta-cell growth and beta-cell death, due to apoptosis. We previously reported that apoptosis of INS-1 insulinoma cells due to thapsigargin-induced ER stress was suppressed by inhibition of the group VIA Ca2+-independent phospholipase A2 (iPLA2beta), associated with an increased level of ceramide generation, and that the effects of ER stress were amplified in INS-1 cells in which iPLA2beta was overexpressed (OE INS-1 cells). These findings suggested that iPLA2beta and ceramides participate in ER stress-induced INS-1 cell apoptosis. Here, we address this possibility and also the source of the ceramides by examining the effects of ER stress in empty vector (V)-transfected and iPLA2beta-OE INS-1 cells using apoptosis assays and immunoblotting, quantitative PCR, and mass spectrometry analyses. ER stress induced expression of ER stress factors GRP78 and CHOP, cleavage of apoptotic factor PARP, and apoptosis in V and OE INS-1 cells. Accumulation of ceramide during ER stress was not associated with changes in mRNA levels of serine palmitoyltransferase (SPT), the rate-limiting enzyme in de novo synthesis of ceramides, but both message and protein levels of neutral sphingomyelinase (NSMase), which hydrolyzes sphingomyelins to generate ceramides, were temporally increased in the INS-1 cells. The increases in the level of NSMase expression in the ER-stressed INS-1 cells were associated with corresponding temporal elevations in ER-associated iPLA2beta protein and catalytic activity. Pretreatment with BEL inactivated iPLA2beta and prevented induction of NSMase message and protein in ER-stressed INS-1 cells. Relative to that in V INS-1 cells, the effects of ER stress were accelerated and/or amplified in the OE INS-1 cells. However, inhibition of iPLA2beta or NSMase (chemically or with siRNA) suppressed induction of NSMase message, ceramide generation, sphingomyelin hydrolysis, and apoptosis in both V and OE INS-1 cells during ER stress. In contrast, inhibition of SPT did not suppress ceramide generation or apoptosis in either V or OE INS-1 cells. These findings indicate that iPLA2beta activation participates in ER stress-induced INS-1 cell apoptosis by promoting ceramide generation via NSMase-catalyzed hydrolysis of sphingomyelins, raising the possibility that this pathway contributes to beta-cell apoptosis due to ER stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Sasanka Ramanadham
- *Address correspondence to: Sasanka Ramanadham, Dept. Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave., St. Louis, MO 63110; telephone 314-362-8194; FAX 314-362-7641; E-mail:
| |
Collapse
|
28
|
Nitric oxide-enhanced caspase-3 and acidic sphingomyelinase interaction: a novel mechanism by which airway epithelial cells escape ceramide-induced apoptosis. Exp Cell Res 2006; 313:816-23. [PMID: 17239851 DOI: 10.1016/j.yexcr.2006.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/01/2006] [Accepted: 12/04/2006] [Indexed: 12/17/2022]
Abstract
Reactive nitrogen species (RNS) are implicated in the pathophysiology of inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease. The molecular mechanisms and signaling events involved in lung cell injury by RNS are still poorly understood. In the current study, we observe a novel anti-apoptotic response to nitric oxide (NO) exposure (via the NO donors 3-morpholine-syndnonimine (SIN1) or papa-NONOate) of human airway epithelial (HAE) cells. NO exposure via the NO donors increased cellular ceramide levels via ceramide synthase but did not trigger an apoptotic response. Rather, exposure to the NO donors promoted an increase in the protein-protein interaction between acidic sphingomyelinase (aSMase) and caspase-3, with aSMase sequestering caspase-3 and preventing its cleavage. In contrast, when aSMase was silenced in HAE cells or was knocked out in mice, an increase in cleaved caspase-3 was observed. This elevated caspase-3 cleavage was further augmented upon NO exposure (via SIN1 or papa-NONOate) of HAE cells and could be prevented by an inhibitor to ceramide synthase. These results demonstrate a novel mechanism of NO modulation of apoptosis, in which HAE cells exposed to NO via an NO donor induces ceramide generation via ceramide synthase. However, this ceramide induction does not lead to apoptosis unless aSMase is knocked down, allowing the release of caspase-3, its activation and execution of apoptosis.
Collapse
|
29
|
Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med 2006; 40:1875-88. [PMID: 16716889 DOI: 10.1016/j.freeradbiomed.2006.01.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/25/2006] [Accepted: 01/28/2006] [Indexed: 01/09/2023]
Abstract
Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.
Collapse
Affiliation(s)
- Je-Seong Won
- Division of Developmental Neurological Disorder in Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Room 505, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
30
|
Relling DP, Esberg LB, Fang CX, Johnson WT, Murphy EJ, Carlson EC, Saari JT, Ren J. High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of Foxo3a transcription factor independent of lipotoxicity and apoptosis. J Hypertens 2006; 24:549-61. [PMID: 16467659 DOI: 10.1097/01.hjh.0000203846.34314.94] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Obesity is associated with dyslipidemia, which leads to elevated triglyceride and ceramide levels, apoptosis and compromised cardiac function. METHODS To determine the role of high-fat diet-induced obesity on cardiomyocyte function, weanling male Sprague-Dawley rats were fed diets incorporating 10% of kcal or 45% of kcal from fat. Mechanical function of ventricular myocytes was evaluated including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening and relengthening (+/- dl/dt). Intracellular Ca properties were assessed using fluorescent microscopy. RESULTS High-fat diet induced hyperinsulinemic insulin-resistant obesity with depressed PS, +/- dl/dt, prolonged TPS/TR90 reduced intracellular Ca release and Ca clearing rate in the absence of hypertension, diabetes, lipotoxicity and apoptosis. Myocyte responsiveness to increased stimulus frequency and extracellular Ca was compromised. SERCA2a and phospholamban levels were increased, whereas phosphorylated phospholamban and potassium channel (Kv1,2) were reduced in high-fat diet group. High-fat diet upregulated the forkhead transcription factor Foxo3a, and suppressed mitochondrial aconitase activity without affecting expression of the caloric sensitive gene silent information regulator 2 (Sir2), protein nitrotyrosine formation, lipid peroxidation and apoptosis. Levels of endothelial nitric oxide synthase (NOS), inducible NOS, triglycerides and ceramide were similar between the two groups. CONCLUSIONS Collectively, our data show that high-fat diet-induced obesity resulted in impaired cardiomyocyte function, upregulated Foxo3a transcription factor and mitochondrial damage without overt lipotoxicity or apoptosis.
Collapse
Affiliation(s)
- David P Relling
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Galadari S, Wu B, Mao C, Roddy P, El Bawab S, Hannun Y. Identification of a novel amidase motif in neutral ceramidase. Biochem J 2006; 393:687-95. [PMID: 16229686 PMCID: PMC1360721 DOI: 10.1042/bj20050682] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neutral CDases (ceramidases) are newly identified enzymes with important roles in cell regulation, but little is known about their catalytic mechanisms. In the present study the full-length human neutral CDase was cloned and expressed in the yeast double-knockout strain Dypc1Dydc1, which lacks the yeast CDases YPC1p and YDC1p. Biochemical characterization of the human neutral CDase showed that the enzyme exhibited classical Michaelis-Menten kinetics, with an optimum activity at pH 7.5. Activity was enhanced by Na+ and Ca2+. Mg2+ and Mn2+ were somewhat stimulatory, but Zn2+, Cu2+ and Fe2+ inhibited the enzyme. Dithiothreitol and 2-mercaptoethanol dose-dependently inhibited neutral CDase. In order to identify which amino acids were involved in the catalytic action of neutral CDase, the purified enzyme was subjected to chemical modifications. It was observed that the serine residue modifier di-isopropyl fluorophosphate dose-dependently inhibited activity, implicating a serine residue in the catalytic action. From an alignment of the sequences of the neutral CDases from different species, all conserved serine residues were selected for site-directed mutagenesis. Of the six aligned serine residues that were mutated to alanine, only the S354A mutant lost its activity totally. Ser354 falls within a very highly conserved hexapeptide sequence GDVSPN, which itself was in the middle of a larger conserved sequence, namely NXGDVSPNXXGP/XXC. Moreover, mutations of Asp352 and Cys362 in the consensus sequence to alanine resulted in loss of activity of neutral CDase. Hence the present study identified a novel amidase sequence containing a critical serine residue that may function as a nucleophile in the hydrolytic attack on the amide bond present in ceramide.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Bill X. Wu
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Cungui Mao
- †Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, U.S.A
| | - Patrick Roddy
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Samer El Bawab
- ‡Merck-Santé, CardioMetabolic Research, Chilly-Mazarin Research Center, 4 ave. F. Mitterrand, 91380 Chilly-Mazarin, France
| | - Yusuf A. Hannun
- *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Turk J, Ramanadham S. The expression and function of a group VIA calcium-independent phospholipase A2 (iPLA2beta) in beta-cells. Can J Physiol Pharmacol 2005; 82:824-32. [PMID: 15573142 DOI: 10.1139/y04-064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many cells express a Group VIA phospholipase A2, designated iPLA2beta, that does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate (BEL). Studies in various cell systems have led to the suggestion that iPLA2beta has a role in phospholipid remodeling, signal transduction, cell proliferation, and apoptosis. We have found that pancreatic islets, beta-cells, and glucose-responsive insulinoma cells express an iPLA2beta that participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. Additionally, recent studies reveal that iPLA2beta is involved in pathways that contribute to beta-cell proliferation and apoptosis, and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the enzyme suggests that the beta-cells express multiple isoforms of iPLA2beta, and we hypothesize that these participate in different cellular functions.
Collapse
Affiliation(s)
- John Turk
- Mass Spectometry Resource, Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Beck KF, Güder G, Schaefer L, Pleskova M, Babelova A, Behrens MH, Mihalik D, Beck M, Schaefer RM, Pfeilschifter J. Nitric oxide upregulates induction of PDGF receptor-alpha expression in rat renal mesangial cells and in anti-Thy-1 glomerulonephritis. J Am Soc Nephrol 2005; 16:1948-57. [PMID: 15872077 DOI: 10.1681/asn.2004080638] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
PDGF and nitric oxide (NO) have been shown to participate in the progression of several forms of glomerulonephritis. A potential influence of NO on PDGF-mediated signaling cascades was therefore examined. Treatment of rat mesangial cells (MC) with the NO donors diethylenetriamine NO (DETA-NO) or spermine-NONOate resulted in a time- and dose-dependent upregulation of PDGF receptor alpha (PDGFRalpha) but not PDGFRbeta mRNA levels. Administration of DETA-NO also induced PDGFRalpha protein expression that was paralleled also by an enhanced receptor phosphorylation. Further experiments using 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1), an activator of the soluble guanylyl cyclase (sGC), the membrane-soluble cyclic GMP (cGMP) analog 8-Bromo-PET-cGMP, and the inhibitors of sGC ODQ and NS2028 suggest that elevated cGMP levels are responsible for the effects of NO. Importantly, NO-dependent autophosphorylation of PDGFRalpha drastically augmented PDGF-AA-evoked phosphorylation of PKB/Akt, a classical downstream target of PDGFRalpha signaling. Furthermore, in a rat model of anti-Thy-1 glomerulonephritis, expression and phosphorylation of PDGFRalpha but not PDGFRbeta expression was markedly reduced in nephritic animals that were treated with the inducible NO synthase inhibitor L-N6(1-iminoethyl)lysine(dihydrochloride) (L-NIL) compared with non-L-NIL-treated nephritic rats as demonstrated by Western blotting and immunohistochemistry. Taken together, the data suggest that NO modulates PDGFRalpha-triggered signaling in a cGMP-dependent manner by induction of PDGFRalpha expression in MC and in a rat model of mesangioproliferative glomerulonephritis. The mechanistic details of this regulation have to be elucidated in further experiments.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe Universität Frankfurt am Main, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 2005; 54:591-602. [PMID: 15734832 DOI: 10.2337/diabetes.54.3.591] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome X and type 2 diabetes share many metabolic and morphological similarities with Cushing's syndrome, a rare disorder caused by systemic glucocorticoid excess. Pathologies frequently associated with these diseases include insulin resistance, atherosclerosis, susceptibility to infection, poor wound healing, and hypertension. The similarity of the clinical profiles associated with these disorders suggests the influence of a common molecular mechanism for disease onset. Interestingly, numerous studies identify ceramides and other sphingolipids as potential contributors to these sequelae. Herein we review studies demonstrating that aberrant ceramide accumulation contributes to the development of the deleterious clinical manifestations associated with these diseases.
Collapse
Affiliation(s)
- Scott A Summers
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
35
|
Geoffroy K, Wiernsperger N, Lagarde M, El Bawab S. Bimodal Effect of Advanced Glycation End Products on Mesangial Cell Proliferation Is Mediated by Neutral Ceramidase Regulation and Endogenous Sphingolipids. J Biol Chem 2004; 279:34343-52. [PMID: 15184394 DOI: 10.1074/jbc.m403273200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advanced glycation end-products (AGE) are generated by chronic hyperglycaemia and may cause diabetic microvascular complications such as diabetic nephropathy. Many factors influence the development of diabetic nephropathy; however, dysregulation of mesangial cell (MC) proliferation appears to play an early and crucial role. In this study, we investigated the effects of AGE on rat MC proliferation and the involvement of sphingolipids in the AGE response. Results show a bimodal effect of AGE on MC proliferation. Thus, low AGE concentrations (<1 microm) induced a significant increase (+26%) of MC proliferation, whereas higher concentrations (10 microm) markedly reduced it (-24%). In parallel, AGE exerted biphasic effects on neutral ceramidase expression and activity. Low AGE concentrations increased neutral ceramidase activity and expression, whereas high AGE concentrations showed opposite effects. Surprisingly, neutral ceramidase modulation did not result in changes of ceramide levels. However, the AGE (10 microm)-inhibitory effect on MC proliferation was associated with accumulation of sphingosine and was specifically prevented by blocking glucosylceramide synthesis, suggesting that the high AGE concentration effects are mediated by sphingosine and/or glycolipids. On the other hand, treatment of cells with low AGE concentrations led to an increase of sphingosine kinase activity and sphingosine-1-phosphate production that drove the increase of MC proliferation. Interestingly, in glomeruli isolated from streptozotocin-diabetic rats, a time-dependent modulation of ceramidase activity was observed as compared with controls. These results suggest that AGE regulate MC growth by modulating neutral ceramidase and endogenous sphingolipids.
Collapse
Affiliation(s)
- Karen Geoffroy
- Diabetic Microangiopathy Research Unit, MERCK Santé/INSERM UMR 585/INSA-Lyon, Bldg. L. Pasteur, 20 Ave. A. Einstein, 69621 Villeurbanne, France
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
37
|
Yoshimura Y, Tani M, Okino N, Iida H, Ito M. Molecular cloning and functional analysis of zebrafish neutral ceramidase. J Biol Chem 2004; 279:44012-22. [PMID: 15271994 DOI: 10.1074/jbc.m405598200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost all observations on the functions of neutral ceramidase have been carried out at cellular levels but not at an individual level. Here, we report the molecular cloning of zebrafish neutral ceramidase (znCD) and its functional analysis during embryogenesis. We isolated a cDNA clone encoding znCD by 5' and 3' rapid amplification of cDNA ends-PCR. It possessed an open reading frame of 2,229 base pairs encoding 743 amino acids. A possible signal/anchor sequence near the N terminus and four potential O-glycosylation and eight potential N-glycosylation sites were found in the putative sequence. The enzyme activity at neutral pH increased markedly after transformation of Chinese hamster CHOP and zebrafish BRF41 cells with the cDNA. The overexpressed enzyme was found to be distributed in endoplasmic reticulum/Golgi compartments as well as the plasma membranes. The antisense morpholino oligonucleotide (AMO), which was designed based on the sequence of znCD mRNA, successfully blocked the translation of znCD in a wheat germ in vitro translation system. The knockdown of znCD with AMO led to an increase in the number of zebrafish embryos with severe morphological and cellular abnormalities such as abnormal morphogenesis in the head and tail, pericardiac edema, defect of blood cell circulation, and an increase of apoptotic cells, especially in the head and neural tube regions, at 36 h post-fertilization. The ceramide level in AMO-injected embryos increased significantly compared with that in control embryos. Simultaneous injection of both AMO and synthetic znCD mRNA into one-cell-stage embryos rescued znCD activity and blood cell circulation. These results indicate that znCD is essential for the metabolism of ceramide and the early development of zebrafish.
Collapse
Affiliation(s)
- Yukihiro Yoshimura
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
38
|
Hucke C, MacKenzie CR, Adjogble KDZ, Takikawa O, Däubener W. Nitric oxide-mediated regulation of gamma interferon-induced bacteriostasis: inhibition and degradation of human indoleamine 2,3-dioxygenase. Infect Immun 2004; 72:2723-30. [PMID: 15102781 PMCID: PMC387869 DOI: 10.1128/iai.72.5.2723-2730.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tryptophan depletion resulting from indoleamine 2,3-dioxygenase (IDO) activity within the kynurenine pathway is one of the most prominent gamma interferon (IFN-gamma)-inducible antimicrobial effector mechanisms in human cells. On the other hand, nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) serves a more immunoregulatory role in human cells and thereby interacts with tryptophan depletion in a number of ways. We investigated the effects of NO on IDO gene transcription, protein synthesis, and enzyme activity as well as on IDO-mediated bacteriostasis in the human epithelial cell line RT4. IFN-gamma-stimulated RT4 cells were able to inhibit the growth of Staphylococcus aureus in an IDO-mediated fashion, and this bacteriostatic effect was abolished by endogenously produced NO. These findings were supported by experiments which showed that IDO activity in extracts of IFN-gamma-stimulated cells is inhibited by the chemical NO donors diethylenetriamine diazeniumdiolate, S-nitroso-L-cysteine, and S-nitroso-N-acetyl-D,L-penicillamine. Furthermore, we found that both endogenous and exogenous NO strongly reduced the level of IDO protein content in RT4 cells. This effect was not due to a decrease in IDO gene transcription or mRNA stability. By using inhibitors of proteasomal proteolytic activity, we showed that NO production led to an accelerated degradation of IDO protein in the proteasome. This is the first report, to our knowledge, that demonstrates that the IDO is degraded by the proteasome and that NO has an effect on IDO protein stability.
Collapse
Affiliation(s)
- Christian Hucke
- Institute for Medical Microbiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
39
|
Ramanadham S, Hsu FF, Zhang S, Jin C, Bohrer A, Song H, Bao S, Ma Z, Turk J. Apoptosis of insulin-secreting cells induced by endoplasmic reticulum stress is amplified by overexpression of group VIA calcium-independent phospholipase A2 (iPLA2 beta) and suppressed by inhibition of iPLA2 beta. Biochemistry 2004; 43:918-30. [PMID: 14744135 PMCID: PMC3732319 DOI: 10.1021/bi035536m] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The death of insulin-secreting beta-cells that causes type I diabetes mellitus (DM) occurs in part by apoptosis, and apoptosis also contributes to progressive beta-cell dysfunction in type II DM. Recent reports indicate that ER stress-induced apoptosis contributes to beta-cell loss in diabetes. Agents that deplete ER calcium levels induce beta-cell apoptosis by a process that is independent of increases in [Ca(2+)](i). Here we report that the SERCA inhibitor thapsigargin induces apoptosis in INS-1 insulinoma cells and that this is inhibited by a bromoenol lactone (BEL) inhibitor of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta). Overexpression of iPLA(2)beta amplifies thapsigargin-induced apoptosis of INS-1 cells, and this is also suppressed by BEL. The magnitude of thapsigargin-induced INS-1 cell apoptosis correlates with the level of iPLA(2)beta expression in various cell lines, and apoptosis is associated with stimulation of iPLA(2)beta activity, perinuclear accumulation of iPLA(2)beta protein and activity, and caspase-3-catalyzed cleavage of full-length 84 kDa iPLA(2)beta to a 62 kDa product that associates with nuclei. Thapsigargin also induces ceramide accumulation in INS-1 cells, and this response is amplified in cells that overexpress iPLA(2)beta. These findings indicate that iPLA(2)beta participates in ER stress-induced apoptosis, a pathway that promotes beta-cell death in diabetes.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, Box 8127, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tani M, Okino N, Sueyoshi N, Ito M. Conserved amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization and enzyme activity of neutral ceramidase. J Biol Chem 2004; 279:29351-8. [PMID: 15123644 DOI: 10.1074/jbc.m404012200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several lines of evidence suggest that neutral ceramidase is involved in the regulation of ceramide-mediated signaling. Recently, the enzymes from mouse and rat were found to be localized at plasma membranes as a type II integral membrane protein, occasionally being detached from the cells after proteolytic processing of the NH(2)-terminal anchoring region (Tani, M., Iida, H., and Ito, M. (2003) J. Biol. Chem. 278, 10523-10530). We report here that conserved hydrophobic amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization, and enzyme activity of neutral ceramidase. Truncation of four, but not three, amino acid residues from the COOH terminus of rat neutral ceramidase resulted in a complete loss of enzyme activity as well as cell surface expression in HEK293 cells. Point mutation analysis revealed that Ile(758), the 4(th) amino acid residue from the COOH terminus, and Phe(756) are essential for the enzyme to function. The truncated and mutated enzymes were found to be retained in the endoplasmic reticulum (ER) and rapidly degraded without transportation to the Golgi apparatus. Treatment of the cells expressing the aberrant COOH-terminal enzyme with MG-132, a specific inhibitor for the proteasome, increased the accumulation of the enzyme in the ER, indicating that the misfolded enzyme was degraded by the proteasome. It was also found that the COOH-terminal tail was indispensable for the enzyme activity and correct folding of the prokaryote ceramidase from Pseudomonas aeruginosa, indicating that the importance of the COOH-terminal tail of the enzyme has been preserved through evolution.
Collapse
Affiliation(s)
- Motohiro Tani
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
41
|
Ramanadham S, Song H, Bao S, Hsu FF, Zhang S, Ma Z, Jin C, Turk J. Islet complex lipids: involvement in the actions of group VIA calcium-independent phospholipase A(2) in beta-cells. Diabetes 2004; 53 Suppl 1:S179-85. [PMID: 14749285 PMCID: PMC3713612 DOI: 10.2337/diabetes.53.2007.s179] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beta-isoform of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta) does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate. Several potential functions have been proposed for iPLA(2)beta. Our studies indicate that iPLA(2)beta is expressed in beta-cells and participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. If iPLA(2)beta plays a signaling role in glucose-stimulated insulin secretion, then conditions that impair iPLA(2)beta functions might contribute to the diminished capacity of beta-cells to secrete insulin in response to glucose, which is a prominent characteristic of type 2 diabetes. Our recent studies suggest that iPLA(2)beta might also participate in beta-cell proliferation and apoptosis and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the iPLA(2)beta protein level reveals that beta-cells express multiple isoforms of the enzyme, and our studies involve the hypothesis that different isoforms have different functions.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Clementi E, Borgese N, Meldolesi J. Interactions between nitric oxide and sphingolipids and the potential consequences in physiology and pathology. Trends Pharmacol Sci 2003; 24:518-23. [PMID: 14559403 DOI: 10.1016/j.tips.2003.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Emilio Clementi
- Department of Pharmaco-Biology, University of Calabria, 87036 Rende, Italy.
| | | | | |
Collapse
|
43
|
Abstract
Regulation of signal transduction and gene expression is a multifaceted process involving ligands, receptors, and second messengers that trigger cascades of protein kinases and phosphatases and propagate the signal to the nucleus to alter gene expression. Reduction-oxidation (redox)-based regulatory pathways provide additional means of gating signal transduction, and redox-based regulation of gene expression emerges as a fundamental regulatory mechanism in living cells. The cellular redox state is reflected by the degree of oxidation (or reduction) of various redox-active molecules at a specific cellular location at any given time point. The ratio of oxidized/reduced redox species determines the redox potential, which may vary dramatically in time and in different compartments of a cell and consequently alter in a temporally and spatially dynamic process the activity of signaling enzymes that carry redox-active functional groups. Generation and action of free radicals such as nitric oxide, superoxide, and H(2)O(2) that paradigmatically highlight the impact of redox regulation on cellular signal transduction and gene expression are discussed with a special focus on the renal glomerular response to injury.
Collapse
Affiliation(s)
- Josef Pfeilschifter
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
44
|
Huwiler A, Pfeilschifter J. Nitric Oxide Signalling with a Special Focus on Lipid-Derived Mediators. Biol Chem 2003; 384:1379-89. [PMID: 14669981 DOI: 10.1515/bc.2003.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ways in which cells communicate among each other concerns all aspects of biology, from developmental processes to diseases. Nitric oxide (NO) is one of the most remarkable and unusual regulatory molecules. It is a labile free radical gas that is not stored but generated on demand, and has been implicated in an extraordinarily diverse range of physiological and pathophysiological functions. The modulation of cell signalling by free radicals is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing microenvironment. In a multicellular organism this serves to coordinate complex physiological responses, such as inflammation. Cell signalling is also accompanied by rapid remodelling of membrane lipids by activated lipases. The discovery that NO, which does not reversibly interact with membrane receptors like conventional hormones and growth factors, targets enzymes such as phospholipase A2, sphingomyelinases or ceramidases, has stimulated growing interest in the crosstalk between redox and lipid signalling.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
45
|
Franzen R, Pfeilschifter J, Huwiler A. Nitric oxide induces neutral ceramidase degradation by the ubiquitin/proteasome complex in renal mesangial cell cultures. FEBS Lett 2002; 532:441-4. [PMID: 12482609 DOI: 10.1016/s0014-5793(02)03727-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neutral ceramidase is a key enzyme in the regulation of cellular ceramide levels. Previously we have reported that stimulation of rat renal mesangial cells with nitric oxide (NO) donors leads to an inhibition of neutral ceramidase activity which is due to increased degradation of the enzyme. This and the concomitant activation of the sphingomyelinase results in an amplification of ceramide levels. Here, we show that the NO-triggered degradation of neutral ceramidase involves activation of the ubiquitin/proteasome complex. The specific proteasome inhibitor lactacystin completely reverses the NO-induced degradation of ceramidase protein and neutral ceramidase activity. As a consequence, the cellular amount of ceramide, which drastically increases by NO stimulation, is reduced in the presence of lactacystin. Furthermore, ubiquitinated neutral ceramidase accumulates after NO stimulation. In summary, our data clearly show that the ubiquitin/proteasome complex is an important determinant of neutral ceramidase activity and thereby regulates the availability of ceramide.
Collapse
Affiliation(s)
- Rochus Franzen
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | | | | |
Collapse
|