1
|
Chaput C, Sirard MA. Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows. Domest Anim Endocrinol 2020; 72:106431. [PMID: 32325411 DOI: 10.1016/j.domaniend.2019.106431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/21/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Cows at the beginning of lactation often do not meet their energy needs by feeding and therefore mobilize body fat, which produces ketone bodies, including β-hydroxybutyrate (BHB). They are nevertheless usually inseminated around 60 d postpartum, when they are still in this characteristic period of energy deficit. The aim of this study was to observe the effects of negative energy balance on embryo quality and to identify ways to improve the fertility of dairy cows. Holstein cows (n = 18) grouped as high or low BHB based on blood measurement at day 45 postpartum were estrus-synchronized and treated with follicle-stimulating hormone to obtain multiple follicle development, induced to ovulate and inseminated with sexed semen around day 60 postpartum. Of the 290 embryos collected over 16 mo, 159 were of quality I to IV. Based on microarray analysis of gene expression, exposure to an energy deficit metabolic environment (high BHB) during early development appeared to modify signaling by the mTOR and sirtuins pathways in the embryo, implying mitochondrial dysfunction and inhibition of transcription, leading to slower cell division, thus programming the embryo to be more energy efficient. Altered methylation markers suggested that such coping mechanisms might persist into adulthood.
Collapse
Affiliation(s)
- C Chaput
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - M A Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
2
|
Gurunathan S, Kim JH. Biocompatible Gold Nanoparticles Ameliorate Retinoic Acid-Induced Cell Death and Induce Differentiation in F9 Teratocarcinoma Stem Cells. NANOMATERIALS 2018; 8:nano8060396. [PMID: 29865197 PMCID: PMC6027053 DOI: 10.3390/nano8060396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
The unique properties of gold nanoparticles (AuNPs) have attracted much interest for a range of applications, including biomedical applications in the cosmetic industry. The current study assessed the anti-oxidative effect of AuNPs against retinoic acid (RA)-induced loss of cell viability; cell proliferation; expression of oxidative and anti-oxidative stress markers, pro- and anti-apoptotic genes, and differentiation markers; and mitochondrial dysfunction in F9 teratocarcinoma stem cells. AuNPs were prepared by reduction of gold salts using luteolin as a reducing and stabilizing agent. The prepared AuNPs were spherical in shape with an average diameter of 18 nm. F9 cells exposed to various concentrations of these AuNPs were not harmed, whereas cells exposed to RA exhibited a dose-dependent change in cell viability and cell proliferation. The RA-mediated toxicity was associated with increased leakage of lactate dehydrogenase, reactive oxygen species, increased levels of malondialdehyde and nitric oxide, loss of mitochondrial membrane potential, and a reduced level of ATP. Finally, RA increased the level of pro-apoptotic gene expression and decreased the expression of anti-apoptotic genes. Interestingly, the toxic effect of RA appeared to be decreased in cells treated with RA in the presence of AuNPs, which was coincident with the increased levels of anti-oxidant markers including thioredoxin, glutathione peroxidases, glutathione, glutathione disulfide, catalase, and superoxide dismutase. Concomitantly, AuNPs ameliorated the apoptotic response by decreasing the mRNA expression of p53, p21, Bax, Bak, caspase-3, caspase-9, and increasing the expressions of Bcl-2 and Bcl-Xl. Interestingly, AuNPs not only ameliorated oxidative stress but also induced differentiation in F9 cells by increasing the expression of differentiation markers including retinoic acid binding protein, laminin 1, collagen type IV, and Gata 6 and decreasing the expressions of markers of stem cell pluripotency including Nanog, Rex1, octamer-binding transcription factor 4, and Sox-2. These consistent cellular and biochemical data suggest that AuNPs could ameliorate RA-induced cell death and facilitate F9 cell differentiation. AuNPs could be suitable therapeutic agents for the treatment of oxidative stress-related diseases such as atherosclerosis, cancer, diabetes, rheumatoid arthritis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
3
|
Synergistic and additive effect of retinoic acid in circumventing resistance to p53 restoration. Proc Natl Acad Sci U S A 2018; 115:2198-2203. [PMID: 29440484 DOI: 10.1073/pnas.1719001115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TP53 mutations occur in ∼50% of all human tumors, with increased frequency in aggressive cancers that are notoriously difficult to treat. Additionally, p53 missense mutations are remarkably predictive of refractoriness to chemo/radiotherapy in various malignancies. These observations have led to the development of mutant p53-targeting agents that restore p53 function. An important unknown is which p53-mutant tumors will respond to p53 reactivation-based therapies. Here, we found a heterogeneous impact on therapeutic response to p53 restoration, suggesting that it will unlikely be effective as a monotherapy. Through gene expression profiling of p53R172H -mutant lymphomas, we identified retinoic acid receptor gamma (RARγ) as an actionable target and demonstrated that pharmacological activation of RARγ with a synthetic retinoid sensitizes resistant p53-mutant lymphomas to p53 restoration, while additively improving outcome and survival in inherently sensitive tumors.
Collapse
|
4
|
Delgado E, Boisen MM, Laskey R, Chen R, Song C, Sallit J, Yochum ZA, Andersen CL, Sikora MJ, Wagner J, Safe S, Elishaev E, Lee A, Edwards RP, Haluska P, Tseng G, Schurdak M, Oesterreich S. High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecol Oncol 2016; 141:348-356. [PMID: 26946093 PMCID: PMC5154956 DOI: 10.1016/j.ygyno.2016.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nuclear receptors (NRs) play a vital role in the development and progression of several cancers including breast and prostate. Using TCGA data, we sought to identify critical nuclear receptors in high grade serous ovarian cancers (HGSOC) and to confirm these findings using in vitro approaches. METHODS In silico analysis of TCGA data was performed to identify relevant NRs in HGSOC. Ovarian cancer cell lines were screened for NR expression and functional studies were performed to determine the significance of these NRs in ovarian cancers. NR expression was analyzed in ovarian cancer tissue samples using immunohistochemistry to identify correlations with histology and stage of disease. RESULTS The NR4A family of NRs was identified as a potential driver of ovarian cancer pathogenesis. Overexpression of NR4A1 in particular correlated with worse progression free survival. Endogenous expression of NR4A1 in normal ovarian samples was relatively high compared to that of other tissue types, suggesting a unique role for this orphan receptor in the ovary. Expression of NR4A1 in HGSOC cell lines as well as in patient samples was variable. NR4A1 primarily localized to the nucleus in normal ovarian tissue while co-localization within the cytoplasm and nucleus was noted in ovarian cancer cell lines and patient tissues. CONCLUSIONS NR4A1 is highly expressed in a subset of HGSOC samples from patients that have a worse progression free survival. Studies to target NR4A1 for therapeutic intervention should include HGSOC.
Collapse
MESH Headings
- Animals
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Female
- Genome
- Heterografts
- Humans
- Immunohistochemistry
- Mice
- Mice, SCID
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/biosynthesis
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Evan Delgado
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Michelle M Boisen
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Robin Laskey
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rui Chen
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chi Song
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Zachary A Yochum
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Courtney L Andersen
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Molecular Pharmacology Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew J Sikora
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jacob Wagner
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adrian Lee
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Robert P Edwards
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul Haluska
- Department of Oncology and Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - George Tseng
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Vitamin A family compounds, estradiol, and docetaxel in proliferation, apoptosis and immunocytochemical profile of human ovary endometrioid cancer cell line CRL-11731. Folia Histochem Cytobiol 2016; 47:S127-35. [PMID: 20067883 DOI: 10.2478/v10042-009-0052-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endometrioid carcinoma represents approximately 10% of cases of the malignant ovarian epithelial tumors. According to literature, the vitamin A (carotenoids and retinoids) plays an essential role in cell proliferation, differentiation and apoptosis in both normal and neoplastic ovarian tissues. Apart from that, the retinoids alter a cytotoxic effect of chemiotherapeutics, i.e. docetaxel, on ovarian cancer cell lines. Retinoids act on cancer cells throughout different mechanism than taxanes, so they may be the potential candidates for the new treatment strategies of ovarian cancer. The aim of the study was to determine the effects of vitamin A family compounds (retinol, beta-carotene, lycopene, all-trans -, 9-cis - and 13-cis retinoic acid) on the growth and proliferation of CRL-11731 endometrioid ovary cancer cell line and on docetaxel and estradiol activity in this culture. The assay was based on [3H] thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in CRL-11731 cells were also studied. Among vitamin A family compounds retinol and carotenoids, but not retinoids, inhibited the growth of cancer cells in dose dependent manner. Only the concentration of 100 muM of docetaxel inhibited incorporation [3H] thymidine into CRL-11731 cancer cells. Retinol (33.4%+/-8.5), carotenoids (beta-carotene 20 muM 4.7%+/-2.9, 50 muM 2.2%+/-0.9; lycopene 10 muM 7.6%+/-0.8, 20 muM 5.2%+/-2.5, 50 muM 2.9%+/-1.2), and 13-cis retinoic acid (19.7%+/-2.2) combined with docetaxel (100 muM) significantly decreased the percentage of proliferating cells (p<0.0001). The antiproliferative action of lycopene alone and in combination with docetaxel was also confirmed in immunohistochemical examination (decreased the percentage of PCNA and Ki67 positive cells). Also retinol (10 muM) and lycopene (20 and 50 muM) combined with estradiol (0.01 muM) statistically decreased the percentage of proliferating cells compared to the control (p<0.0001) and estradiol (p<0.01, p<0.0001) group (63.5%+/-14.8, 61.0%+/-20.6, 15.0%+/-5.5 respectively). In our experiments, the compounds tested induced an apoptotic effect. Docetaxel and estradiol increased the percentage of apoptotic cells (71% apoptotic cells after administration of 10 muM all-trans retinoic acid combined with 0.01 muM estradiol, p<0.0001). beta-carotene, lycopene and all-trans retinoic acid alone and in combination with docetaxel were found to influence the expression of bcl-2 and p53 antigen in the cells examined. The results of our study justified an important role of vitamin A in the pathophysiology of the ovarian endometrioid cancer.
Collapse
|
6
|
Zhang X, Zhou H, Su Y. Targeting truncated RXRα for cancer therapy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:49-59. [PMID: 26494413 DOI: 10.1093/abbs/gmv104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a well-established drug target, representing one of the most important targets for pharmacologic interventions and therapeutic applications for cancer. However, how RXRα regulates cancer cell growth and how RXRα modulators suppress tumorigenesis are poorly understood. Altered expression and aberrant function of RXRα are implicated in the development of cancer. Previously, several studies had demonstrated the presence of N-terminally truncated RXRα (tRXRα) proteins resulted from limited proteolysis of RXRα in tumor cells. Recently, we discovered that overexpression of tRXRα can promote tumor growth by interacting with tumor necrosis factor-alpha-induced phosphoinositide 3-kinase and NF-κB signal transduction pathways. We also identified nonsteroidal anti-inflammatory drug Sulindac and analogs as effective inhibitors of tRXRα activities via a unique binding mechanism. This review discusses the emerging roles of tRXRα and modulators in the regulation of cancer cell survival and death as well as inflammation and our recent understanding of tRXRα regulation by targeting the alternate binding sites on its surface.
Collapse
Affiliation(s)
- Xiaokun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Su
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Song IS, Jeong JY, Jeong SH, Kim HK, Ko KS, Rhee BD, Kim N, Han J. Mitochondria as therapeutic targets for cancer stem cells. World J Stem Cells 2015; 7:418-427. [PMID: 25815125 PMCID: PMC4369497 DOI: 10.4252/wjsc.v7.i2.418] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/25/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are maintained by their somatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondria-targeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondria-targeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.
Collapse
|
8
|
Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae. Eur J Pharmacol 2014; 736:77-85. [DOI: 10.1016/j.ejphar.2014.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/29/2023]
|
9
|
Ji X, Li J, Zhu L, Cai J, Zhang J, Qu Y, Zhang H, Liu B, Zhao R, Zhu Z. CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J Surg Res 2013; 185:84-91. [PMID: 23746766 DOI: 10.1016/j.jss.2013.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND To evaluate the expression of chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like gene (CHD1L) in colorectal carcinoma (CRC) and its clinical significance. Its oncogenic ability was also investigated. MATERIALS AND METHODS CHD1L amplification and overexpression were detected by fluorescence in situ hybridization, real-time reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 86 patients with CRC. The correlation between the clinical characteristics and prognosis was also determined. To evaluate the tumorigenic ability of CHD1L, it was cloned into expression vector pcDNA3.1(+) and transfected into CRC cell line SW1116. Next, the changes in the biologic behavior of the CRC cells, including cell proliferation, adhesion, migration, and invasion, were examined. Apoptosis and the cell cycle of the CRC cells were detected using flow cytometry. RESULTS We have demonstrated that CHD1L is frequently amplified and overexpressed in CRC. Overexpression of CHD1L correlated with a large tumor size, deep tumor invasion, and a high histologic grade. It also conferred worse disease-free survival. CHD1L-transfected cells possessed a strong oncogenic ability, increasing the tumorigenicity in nude mice, which could be effectively suppressed by small interfering RNA against CHD1L. Functional studies showed that overexpression of CHD1L could promote G1/S-phase cells and inhibit apoptosis. CONCLUSIONS Our results suggest that CHD1L is the target oncogene within the 1q21 amplicon and plays a pivotal role in CRC pathogenesis.
Collapse
Affiliation(s)
- Xiaopin Ji
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
11
|
Whitworth JM, Londoño-Joshi AI, Sellers JC, Oliver PJ, Muccio DD, Atigadda VR, Straughn JM, Buchsbaum DJ. The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol 2011; 125:226-30. [PMID: 22155260 DOI: 10.1016/j.ygyno.2011.12.425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Retinoids are important modulators of cell growth, differentiation, and proliferation. 9cUAB30, 9cUAB124, and 9cUAB130 are three novel retinoid compounds that show cytotoxic effects in other malignancies. We evaluated these novel retinoids in combination with chemotherapy against ovarian cancer stem cells (CSCs) in vitro and in an ex vivo model. METHODS A2780 cells were plated in 96-well plates and treated with retinoid, carboplatin, or combination therapy. Cell viability was evaluated using ATPLite assay. The A2780 cell line was also analyzed for CSCs by evaluating ALDH activity using flow cytometry. A2780 cells treated ex vivo with retinoids and chemotherapy were injected into the flank of athymic nude mice in order to evaluate subsequent tumor initiating capacity. RESULTS A2780 cells were sensitive to treatment with retinoids and carboplatin. The best treatment resulted from the combination of retinoid 9cUAB130 and carboplatin. Untreated A2780 cells demonstrated ALDH activity in 3.3% of the cell population. Carboplatin treatment enriched ALDH activity to 27.3%, while 9cUAB130±carboplatin maintained the ALDH positive levels similar to untreated controls (2.3% and 6.7%, respectively). Similar results were found in tumorsphere-forming conditions. Flank injections of ex vivo treated A2780 cells resulted in 4/4 mice developing tumors at 40 days in the untreated group, while 0/4 tumors developed in the 9cUAB130 and carboplatin treated group. CONCLUSION Combination treatment with carboplatin and retinoids reduced cell-viability, reduced CSC marker expression, and inhibited tumorigenicity, making it a more effective treatment when compared with carboplatin alone.
Collapse
Affiliation(s)
- Jenny M Whitworth
- Department of Obstetrics and Gynecology, University of Alabama, Birmingham, AL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells. BMC Cancer 2011; 11:477. [PMID: 22061047 PMCID: PMC3218121 DOI: 10.1186/1471-2407-11-477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model. Methods CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling. Results No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells. Conclusions In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.
Collapse
|
13
|
Song IS, Kim HK, Jeong SH, Lee SR, Kim N, Rhee BD, Ko KS, Han J. Mitochondrial peroxiredoxin III is a potential target for cancer therapy. Int J Mol Sci 2011; 12:7163-85. [PMID: 22072940 PMCID: PMC3211031 DOI: 10.3390/ijms12107163] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/30/2011] [Accepted: 10/20/2011] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are involved either directly or indirectly in oncogenesis and the alteration of metabolism in cancer cells. Cancer cells contain large numbers of abnormal mitochondria and produce large amounts of reactive oxygen species (ROS). Oxidative stress is caused by an imbalance between the production of ROS and the antioxidant capacity of the cell. Several cancer therapies, such as chemotherapeutic drugs and radiation, disrupt mitochondrial homeostasis and release cytochrome c, leading to apoptosome formation, which activates the intrinsic pathway. This is modulated by the extent of mitochondrial oxidative stress. The peroxiredoxin (Prx) system is a cellular defense system against oxidative stress, and mitochondria in cancer cells are known to contain high levels of Prx III. Here, we review accumulating evidence suggesting that mitochondrial oxidative stress is involved in cancer, and discuss the role of the mitochondrial Prx III antioxidant system as a potential target for cancer therapy. We hope that this review will provide the basis for new strategic approaches in the development of effective cancer treatments.
Collapse
Affiliation(s)
- In-Sung Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-7-5, Korea; E-Mails: (I.-S.S.); (H.-K.K.); (S.-H.J.); (S.-R.L.); (N.K.); (B.D.R.); (K.S.K.)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Approaches for targeting mitochondria in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:689-96. [PMID: 20732297 DOI: 10.1016/j.bbabio.2010.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/11/2010] [Accepted: 08/15/2010] [Indexed: 12/24/2022]
Abstract
The recognition of the role that mitochondria play in human health and disease is evidenced by the emergence in recent decades of a whole new field of "Mitochondrial Medicine". Molecules located on or inside mitochondria are considered prime pharmacological targets and a wide range of efforts are underway to exploit these targets to develop targeted therapies for various diseases including cancer. However the concept of targeting, while seemingly simple in theory, has multiple subtly different practical approaches. The focus of this article is to highlight these differences in the context of a discussion on the current status of various mitochondria-targeted approaches to cancer therapy.
Collapse
|
15
|
Mukherjee S, Manna S, Pal D, Mukherjee P, Panda CK. Sequential loss of cell cycle checkpoint control contributes to malignant transformation of murine embryonic fibroblasts induced by 20-methylcholanthrene. J Cell Physiol 2010; 224:49-58. [PMID: 20232303 DOI: 10.1002/jcp.22089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Definitive information about the number and nature of discrete steps of tumorigenesis is enigmatic. To understand the multistep nature of carcinogenesis, an in vitro model of 20-Methylcholanthrene-treated primary fibroblast cells CNCI-PM-20, from 20-day old Swiss mouse embryo was used. Visible neoplastic changes with distinct morphological variations along with specific chromosomal aberrations like Robertsonian metacentrics, double and single-minute chromosomes and aneuploidy were observed from Passage-20 onwards. The cell cycle profile showed gradual increase in G(2)/M population till P-32, followed by evasion of block from P-36 onwards. Gradual increase in expression of C-myc, CyclinD1 and a decrease in expression of P21 was observed from P-20 onwards. CDC25A expression was significantly increased at P-27 and remained more or less constant in subsequent passages. Additionally, an increased P16 and P53 expression were seen at P-20 followed by their significant down-regulation at P-32. An increased level of phosphorylated retinoblastoma (ppRb) was observed from P-27, probably responsible for a compromised G(1)/S checkpoint. The inactivation of p21 and p16 might be due to their promoter hyper-methylation as suggested through de-methylation experiment by 5-aza-deoxycytidine at P-42. G(2)/M checkpoint abrogation was marked by gradual increase in expression of CyclinB1 and Cdc20, and a significant increase of Mad2 at P-20. Interestingly, increased expression of phospho-ATM, ATR and phospho-Chk1 were also seen at P-20 followed by their down-regulation at subsequent passages, indicating a perturbation of DNA damage response pathway at early passages. Our findings therefore dramatize the multiple genetic events that can cooperate to promote tumorigenesis.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | |
Collapse
|
16
|
Chen L, Hu L, Chan THM, Tsao GSW, Xie D, Huo KK, Fu L, Ma S, Zheng BJ, Guan XY. Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology 2009; 50:122-9. [PMID: 19441106 DOI: 10.1002/hep.22933] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED Amplification of 1q21 has been detected in 58% to 78% of primary hepatocellular carcinoma cases, suggesting that one or more oncogenes within the amplicon play a critical role in the development of this disease. The chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like gene (CHD1L) is a recently identified oncogene localized at 1q21. Our previous studies have demonstrated that CHD1L has strong tumorigenic ability and confers high susceptibility to spontaneous tumors in a CHD1L-transgenic mouse model. In this study, we demonstrate that the antiapoptotic ability of CHD1L is associated with its interaction with Nur77, a critical member of a p53-independent apoptotic pathway. As the first cellular protein identified to bind Nur77, CHD1L is able to inhibit the nucleus-to-mitochondria translocation of Nur77, which is the key step of Nur77-mediated apoptosis, resulting in the hindrance of the release of cytochrome c and the initiation of apoptosis. Knock-down of CHD1L expression by RNA interference could rescue the mitochondrial targeting of Nur77 and the subsequent apoptosis. Further studies found that the C-terminal Macro domain of CHD1L is responsible for the interaction with Nur77, and a CHD1L mutant lacking residues 600-897 failed to interact with Nur77 and prevented Nur77-mediated apoptosis. More importantly, we found that the inhibition of Nur77-mediated apoptosis by endogenous CHD1L is a critical biological cellular process in hepatocarcinogenesis. CONCLUSION We demonstrate in this study that overexpression of CHD1L could sustain tumor cell survival by preventing Nur77-mediated apoptosis.
Collapse
Affiliation(s)
- Leilei Chen
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pérez-Rodríguez S, Ortiz MA, Pereira R, Rodríguez-Barrios F, de Lera AR, Piedrafita FJ. Highly twisted adamantyl arotinoids: synthesis, antiproliferative effects and RXR transactivation profiles. Eur J Med Chem 2009; 44:2434-46. [PMID: 19216008 DOI: 10.1016/j.ejmech.2009.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/20/2008] [Accepted: 01/09/2009] [Indexed: 12/23/2022]
Abstract
Retinoid-related molecules with an adamantyl group (adamantyl arotinoids) have been described with selective activities towards the retinoid receptors as agonists for NR1B2 and NR1B3 (RARbeta,gamma) (CD437, MX3350-1) or RAR antagonists (MX781) that induce growth arrest and apoptosis in cancer cells. Since these molecules induce apoptosis independently of RAR transactivation, we set up to synthesize novel analogs with impaired RAR binding. Here we describe adamantyl arotinoids with 2,2'-disubstituted biaryl rings prepared using the Suzuki coupling of the corresponding fragments. Those with cinnamic and naphthoic acid end groups showed significant antiproliferative activity in several cancer cell lines, and this effect correlated with the induction of apoptosis as measured by caspase activity. Strikingly, some of these compounds, whereas devoid of RAR binding capacity, were able to activate RXR.
Collapse
|
18
|
Williams SJ, Cvetkovic D, Hamilton TC. Vitamin A metabolism is impaired in human ovarian cancer. Gynecol Oncol 2008; 112:637-45. [PMID: 19110304 DOI: 10.1016/j.ygyno.2008.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 01/19/2023]
Abstract
OBJECTIVES We have previously reported that loss in expression of a protein considered critical for vitamin A homeostasis, cellular retinol-binding protein 1 (CRBP1), is an early event in ovarian carcinogenesis. The aim of the present study was to determine if loss of vitamin A metabolism also occurs early in ovarian oncogenesis. METHODS We assessed CRBP1 expression by immunohistochemistry in ovaries prophylactically removed from women with a genetic risk for ovarian cancer. Furthermore, we investigated the ability of normal, immortalized but nontumorigenic, and tumorigenic human ovarian epithelial cells to synthesize retinoic acid and retinaldehyde when challenged with a physiological dose of retinol, and determined expression levels of the retinoid-related genes, RARalpha, RXRalpha, CRABP1, CRABP2, RALDH1 and RALDH2 in these cells. RESULTS Immunohistochemistry revealed loss of CRBP1 expression in potentially preneoplastic lesions in prophylactic oophorectomies. HPLC analysis of vitamin A metabolism showed production of retinoic acid in four independent, normal human ovarian surface epithelial (HOSE) cell cultures upon exposure to retinol. However, only one of two SV40-immortalized HOSE cell lines made RA, while none of the ovarian carcinoma cell lines produced detectable RA due to complete loss of RALDH2. CONCLUSIONS The impaired conversion of retinol to RA in ovarian cancer cells and decreased CRBP1 protein expression in prophylactic oophorectomies support our hypothesis that concomitant losses of vitamin A metabolism and CRBP1 expression contribute to ovarian oncogenesis.
Collapse
Affiliation(s)
- Stephen J Williams
- Ovarian Cancer Program, Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue W310, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
19
|
Lorenzo P, Alvarez R, Ortiz MA, Alvarez S, Piedrafita FJ, de Lera ÁR. Inhibition of IκB Kinase-β and Anticancer Activities of Novel Chalcone Adamantyl Arotinoids. J Med Chem 2008; 51:5431-40. [DOI: 10.1021/jm800285f] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Lorenzo
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| | - Rosana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| | - Maria A. Ortiz
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| | - Susana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| | - F. Javier Piedrafita
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| | - Ángel R. de Lera
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain, and Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, California 92121
| |
Collapse
|
20
|
Hail N, Cortes M, Drake EN, Spallholz JE. Cancer chemoprevention: a radical perspective. Free Radic Biol Med 2008; 45:97-110. [PMID: 18454943 DOI: 10.1016/j.freeradbiomed.2008.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, The University of Colorado Denver School of Pharmacy, Denver, CO 80220, USA.
| | | | | | | |
Collapse
|
21
|
Fields AL, Soprano DR, Soprano KJ. Retinoids in biological control and cancer. J Cell Biochem 2008; 102:886-98. [PMID: 17902161 DOI: 10.1002/jcb.21530] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
More than 80 years ago, Wolbach and Howe provided the first evidence suggesting a link between alterations within human cells that lead to malignancies and vitamin A deficiencies (Wolbach and Howe 1925 Nutr. Rev. 36: 16-19). Since that time, epidemiological, preclinical and clinical studies have established a causative relationship between vitamin A deficiency and cancer. Laboratory research has provided insight into the intracellular targets, various signaling cascades and physiological effects of the biologically-active natural and synthetic derivatives of vitamin A, known as retinoids. Collectively, this body of research supports the concept of retinoids as chemopreventive and chemotherapeutic agents that can prevent epithelial cell tumorigenesis by directing the cells to either differentiate, growth arrest, or undergo apoptosis, thus preventing or reversing neoplasia. Continued refinement of the retinoid signaling pathway is essential to establishing their use as effective therapeutics for tumor subtypes whose oncogenic intracellular signaling pathways can be blocked or reversed by treatment with retinoids.
Collapse
Affiliation(s)
- Anthonise Louis Fields
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
22
|
Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H, Nakaya K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol 2008; 134:803-12. [PMID: 18202854 DOI: 10.1007/s00432-007-0349-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/03/2007] [Indexed: 12/11/2022]
Abstract
PURPOSE We examined the growth-inhibitory and apoptosis-inducing effects of vitamin K(2) (VK(2); menaquinone-4) on various lines of human ovarian cancer cells to study the mechanism of induction of apoptosis by VK(2). METHODS Cell proliferation was determined by XTT method, and apoptotic cells were detected by Hoechst staining. TR3, also known as Nur77 and NGFI-B, was detected by immunoblotting and immunofluorescence analysis. Role of TR3 on induction of apoptosis was examined by a siRNA experiment. RESULTS AND CONCLUSIONS We found that PA-1 cells were the most sensitive to VK(2) (IC(50) = 5.0 +/- 0.7 microM), while SK-OV-3 cells were resistant to VK(2). Immunoblotting and immunofluorescence analyses indicated that levels of TR3 were elevated in cell lysates 48 h after the start of treatment with 30 microM VK(2). In the VK(2)-treated cells, TR3 accumulated at significant levels in mitochondria, as well as in the nuclei of PA-1 cells. No similar changes were observed in SK-OV-3 cells under the same conditions. Treatment of PA-1 cells with small interfering RNA (siRNA) directed against TR3, and with cycloheximide or SP600125 (an inhibitor of c-jun N-terminal kinase; JNK), separately, inhibited the VK(2)-induced synthesis of TR3 and apoptosis. From these results, we can conclude that an increase in the synthesis of TR3 and the accumulation of TR3 in mitochondria and in nuclei might be involved in the induction of apoptosis by VK(2) and that the synthesis of TR3 might be regulated through a JNK signaling pathway.
Collapse
Affiliation(s)
- Toshiko Sibayama-Imazu
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Jiang T, Soprano DR, Soprano KJ. GADD45A is a mediator of CD437 induced apoptosis in ovarian carcinoma cells. J Cell Physiol 2007; 212:771-9. [PMID: 17474084 DOI: 10.1002/jcp.21073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer death in women. A number of studies have suggested that synthetic retinoids may play an important role as an ovarian cancer chemotherapeutic agent. The synthetic retinoid CD 437 induces apoptosis in ovarian tumor cells by a mechanism that is not completely understood. In this study we demonstrate that CD437 treatment leads to an increase in GADD45A and GADD45B mRNA expression in CA-OV3 cells but not in CA-CD437R cells, a cell line which is resistant to CD437. This induction is specific to CD437 since no change in expression of either GADD45A or GADD45B was observed with either all-trans-RA or 4-HPR treatment. Western blot analysis demonstrated that the induction of GADD45A mRNA in the CA-OV3 cell line by CD437 was accompanied by an increase in GADD45A protein. Upregulation of GADD45A by CD437 is regulated at least in part at the post-transcriptional level. In contrast, CD437 regulates GADD45B expression by different mechanisms. The importance of GADD45A induction in mediating apoptosis was demonstrated in CA-OV3 cells overexpressing GADD45A antisense RNA (GADD45A-AS cells). Our results suggest that induction of GADD45A expression might play a role in mediating the apoptotic response of ovarian cancer cells to the synthetic retinoid CD437.
Collapse
Affiliation(s)
- Tianying Jiang
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19 140, USA
| | | | | |
Collapse
|
24
|
Hormi-Carver K, Feagins LA, Spechler SJ, Souza RF. All trans-retinoic acid induces apoptosis via p38 and caspase pathways in metaplastic Barrett's cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G18-27. [PMID: 16935849 DOI: 10.1152/ajpgi.00237.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retinoids such as all trans-retinoic acid (ATRA) have been used as chemopreventive agents for a number of premalignant conditions. To explore a potential role for retinoids as chemopreventive agents for Barrett's esophagus, we studied ATRA's effects on apoptosis in a nonneoplastic, telomerase-immortalized, metaplastic Barrett's cell line. We treated the Barrett's cells with ATRA in the presence and absence of inhibitors to p53 (pSRZ-siRNA-p53), p38 (SB-203580 and p38 siRNA), and the caspase cascade (z-Val-Ala-Asp-fluoromethyl ketone). We determined the effects of ATRA and the various inhibitors on apoptosis using cell morphology, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining, cleaved caspase-3 immunofluorescence, and Annexin V staining. We also determined how ATRA in the presence and absence of the inhibitors affected apoptosis following low-dose UV-B irradiation. ATRA induced apoptosis and increased the expression of p53 protein in a dose-dependent fashion. The apoptotic effect of ATRA was abolished by treatment with inhibitors of both p38 and caspase, but not by p53 interfering RNA (RNAi). Inhibition of p38 also prevented expression of cleaved caspase-3, suggesting that ATRA activates p38 upstream of the caspase cascade. We found that ATRA sensitized immortalized Barrett's cells to apoptosis induced by low-dose UV-B irradiation via a similar mechanism. ATRA induces apoptosis in Barrett's epithelial cells and sensitizes them to apoptosis induced by UV-B irradiation via activation of p38 and the caspase cascade, but not through p53. This study elucidates molecular pathways whereby retinoid treatment might prevent carcinogenesis in Barrett's metaplasia and suggests a potential role for the use of safer retinoids for chemoprevention in Barrett's esophagus.
Collapse
Affiliation(s)
- Kathy Hormi-Carver
- 1Departments of Medicine, Dallas Veterans Affairs Medical Center, University of Texas-Southwestern Medical School, Dallas, Texas 75216, USA
| | | | | | | |
Collapse
|
25
|
Soprano KJ, Purev E, Vuocolo S, Soprano DR. Rb2/p130 and protein phosphatase 2A: key mediators of ovarian carcinoma cell growth suppression by all-trans retinoic acid. Oncogene 2006; 25:5315-25. [PMID: 16936753 DOI: 10.1038/sj.onc.1209679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a number of attempts to improve treatment of ovarian cancer, it remains the most common cause of death from gynecological cancers. Thus, it is very important to identify more effective drugs for treatment and prevention of ovarian cancer. All-trans-retinoic acid (ATRA) has been shown to arrest the growth of ovarian carcinoma cells in G0/G1 and to significantly elevate levels of Rb2/p130 protein, a member of the retinoblastoma family of tumor suppressors. As ATRA treatment leads to a significant increase in the amount of Rb2/p130 protein but not mRNA, the elevated levels of Rb2/p130 protein is likely the result of increased stability. In studies to elucidate the mechanism by which ATRA alters Rb2/p130 stability in ovarian cancer cells, it was determined that PP2A, a serine/threonine phosphatase, binds and dephosphorylates Rb2/p130. Dephosphorylated Rb2/p130 exhibits decreased ubiquitination and thus is not degraded by the proteasome. The sites at which PP2A catalytic subunit (PP2Ac) interacts with Rb2/p130 have been localized to the NLS in the C-terminus of Rb2/p130. These sites are also involved in the interaction of Rb/p130 with importin beta and importin alpha, members of the nuclear transport machinery. It is known that importin alpha recognizes a NLS on a target protein and importin beta binds the nuclear pore complex. Moreover, it has been shown that the binding of importin alpha to NLS significantly decreases with phosphorylation of NLS. In ATRA-treated ovarian carcinoma cells, PP2A binds to Rb2/p130 and dephosphorylates the NLS of Rb2/p130 leading to the interaction of importin alpha with Rb2/p130. Importin beta then binds to the importin alpha-Rb2/p130 complex, leading to the translocation of the Rb2/p130 to the nucleus where it acts to arrest ovarian cancer cells in G1 and suppress proliferation.
Collapse
Affiliation(s)
- K J Soprano
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
26
|
Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J, Reed JC, Dawson MI, Zhang XK. Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene 2006; 25:2974-86. [PMID: 16434970 DOI: 10.1038/sj.onc.1209358] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proapoptotic nuclear receptor family member Nur77 translocates from the nucleus to the mitochondria, where it interacts with Bcl-2 to trigger apoptosis. Nur77 translocation is induced by certain apoptotic stimuli, including the synthetic retinoid-related 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN)/CD437 class. In this study, we investigated the molecular mechanism by which AHPN/CD437 analog (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces Nur77 nuclear export. Our results demonstrate that 3-Cl-AHPC effectively activated Jun N-terminal kinase (JNK), which phosphorylates Nur77. Inhibition of JNK activation by a JNK inhibitor suppressed 3-Cl-AHPC-induced Nur77 nuclear export and apoptosis. In addition, several JNK upstream activators, including the phorbol ester TPA, anisomycin and MAPK kinase kinase-1 (MEKK1), phosphorylated Nur77 and induced its nuclear export. However, Nur77 phosphorylation by JNK, although essential, was not sufficient for inducing Nur77 nuclear export. Induction of Nur77 nuclear export by MEKK1 required a prolonged MEKK1 activation and was attenuated by Akt activation. Expression of constitutively active Akt prevented MEKK1-induced Nur77 nuclear export. Conversely, transfection of dominant-negative Akt or treatment with a phosphatidylinositol 3-kinase (PI3-K) inhibitor accelerated MEKK1-induced Nur77 nuclear export. Furthermore, mutation of an Akt phosphorylation residue Ser351 in Nur77 abolished the effect of Akt or the PI3-K inhibitor. Together, our results demonstrate that both activation of JNK and inhibition of Akt play a role in translocation of Nur77 from the nucleus to the cytoplasm.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Anisomycin/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/ultrastructure
- Cell Nucleus/metabolism
- Cinnamates/pharmacology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Flavonoids/pharmacology
- Humans
- Imidazoles/pharmacology
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/physiology
- MAP Kinase Kinase 7/genetics
- MAP Kinase Kinase 7/pharmacology
- MAP Kinase Kinase Kinase 1/physiology
- Mutagenesis, Site-Directed
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/physiology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyridines/pharmacology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Recombinant Fusion Proteins/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Y-H Han
- Burnham Institute for Medical Research, Cancer Center, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Purev E, Giordano A, Soprano DR, Soprano KJ. Interaction of PP2A catalytic subunit with Rb2/p130 is required for all-trans retinoic acid suppression of ovarian carcinoma cell growth. J Cell Physiol 2006; 206:495-502. [PMID: 16206244 DOI: 10.1002/jcp.20490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All-trans retinoic acid (ATRA) treatment causes CAOV3 ovarian carcinoma cells to growth arrest in the G0/G1 phase and to elevate the level of Rb2/p130 protein. PP2A, a serine/threonine phosphatase, binds and dephosphorylates Rb2/p130, thereby increasing the half-life of Rb2/p130 in the cell. In order to further characterize the interaction between Rb2/p130 and PP2A upon ATRA treatment, we examined the posttranslational modification of PP2A. ATRA treatment leads to hypophosphorylation of PP2A catalytic subunit (PP2Ac) that correlates with increased PP2A activity. In addition, the N-terminus of PP2Ac binds directly to NLS sequences located in the C-terminus of Rb2/p130. Furthermore, CAOV3 cells transfected with a truncated Rb2/p130 construct consisting of only the wt C-terminus grew more aggressively and were less sensitive to ATRA treatment when compared to parental CAOV3 cells. In contrast, CAOV3 cells transfected with a truncated Rb2/p130 construct consisting of only the C-terminus in which the NLS sites were mutated and which could not interact with PP2A, were as sensitive to ATRA treatment as parental CAOV3 cells. These studies suggest that ATRA treatment suppresses the growth of CAOV3 cells via a novel posttranscriptional mechanism involving PP2A.
Collapse
Affiliation(s)
- Enkhtsetseg Purev
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
29
|
Kaiser PC, Körner M, Kappeler A, Aebi S. Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol 2005; 16:1477-87. [PMID: 16012182 DOI: 10.1093/annonc/mdi265] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ovarian cancer is frequently lethal despite aggressive multimodal therapy, and new therapies are therefore needed. Retinoids are potential candidate drugs: they prevent the development of ovarian carcinoma and enhance the efficacy of cytotoxic drugs in ovarian cancer cells. At present, little is known about the retinoid receptor expression in ovarian cancer. PATIENTS AND METHODS The retinoid receptors comprise two classes, retinoic acid receptors (RARs) and retinoid X receptors (RXRs), each with three subclasses, alpha, beta and gamma. We investigated the expression of the subtypes RARalpha, RARgamma, RXRalpha and RXRbeta by immunohistochemistry in ovarian cancers of 80 patients, and assessed their prognostic significance. In addition, we quantified the expression of retinoid receptor mRNA using real-time PCR and correlated the results with clinical characteristics. RESULTS RARalpha and RXRbeta were highly expressed in a majority of ovarian cancers, particularly in advanced stages. High expression of RARalpha was an independent negative prognostic factor of survival in addition to FIGO stage, age and p53 accumulation. The mRNA expression of retinoid receptors did not correlate with clinical properties of the tumors. CONCLUSIONS Retinoic acid receptors are frequently and strongly expressed in epithelial ovarian cancer and may be indicators of an adverse prognosis. This study provides the molecular basis for the therapeutic use of retinoids in ovarian cancer.
Collapse
Affiliation(s)
- P C Kaiser
- University Hospital Berne, Department of Medical Oncology, Bern, Switzerland
| | | | | | | |
Collapse
|
30
|
Boisvieux-Ulrich E, Sourdeval M, Marano F. CD437, a synthetic retinoid, induces apoptosis in human respiratory epithelial cells via caspase-independent mitochondrial and caspase-8-dependent pathways both up-regulated by JNK signaling pathway. Exp Cell Res 2005; 307:76-90. [PMID: 15922728 DOI: 10.1016/j.yexcr.2005.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 01/30/2005] [Accepted: 02/01/2005] [Indexed: 01/01/2023]
Abstract
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.
Collapse
Affiliation(s)
- Emmanuelle Boisvieux-Ulrich
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris7, Denis Diderot, case 70-73,2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
31
|
Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B, Han YH, Dawson MI, Zhang XK. Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol 2004; 24:9705-25. [PMID: 15509776 PMCID: PMC525465 DOI: 10.1128/mcb.24.22.9705-9725.2004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways by acting as a ubiquitous heterodimerization partner of many nuclear receptors, including the orphan receptor Nur77 (also known as TR3 [corrected] or NGFI-B), which translocates from the nucleus to mitochondria, where it interacts with Bcl-2 to induce apoptosis. Here, we report that RXRalpha is required for nuclear export and mitochondrial targeting of Nur77 through their unique heterodimerization that is mediated by dimerization interfaces located in their DNA-binding domain. The effects of RXRalpha are attributed to a putative nuclear export sequence (NES) present in its carboxyl-terminal region. RXRalpha ligands suppress NES activity by inducing RXRalpha homodimerization or altering RXRalpha/Nur77 heterodimerization. The RXRalpha NES is also silenced by RXRalpha heterodimerization with retinoic acid receptor or vitamin D receptor. Consistently, we were able to show that the mitochondrial targeting of the RXRalpha/Nur77 heterodimer and its induction of apoptosis are potently inhibited by RXR ligands. Together, our results reveal a novel nongenotropic function of RXRalpha and its involvement in the regulation of the Nur77-dependent apoptotic pathway [corrected]
Collapse
Affiliation(s)
- Xihua Cao
- The Burnham Institute, Cancer Center, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116:527-40. [PMID: 14980220 DOI: 10.1016/s0092-8674(04)00162-x] [Citation(s) in RCA: 528] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 12/22/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The interaction is mediated by the N-terminal loop region of Bcl-2 and is required for Nur77 mitochondrial localization and apoptosis. Nur77 binding induces a Bcl-2 conformational change that exposes its BH3 domain, resulting in conversion of Bcl-2 from a protector to a killer. These findings establish the coupling of Nur77 nuclear receptor with the Bcl-2 apoptotic machinery and demonstrate that Bcl-2 can manifest opposing phenotypes, induced by interactions with proteins such as Nur77, suggesting novel strategies for regulating apoptosis in cancer and other diseases.
Collapse
Affiliation(s)
- Bingzhen Lin
- The Burnham Institute, Cancer Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Holmes WF, Soprano DR, Soprano KJ. Synthetic retinoids as inducers of apoptosis in ovarian carcinoma cell lines. J Cell Physiol 2004; 199:317-29. [PMID: 15095280 DOI: 10.1002/jcp.10338] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis is also known as programmed cell death. Apoptosis plays an essential role in maintaining normal tissue and cell physiology in multicellular organisms. Clearance of aberrant or pre-cancerous cells occurs through the induction of apoptosis. It has been reported that many tumors and tumor cell lines have dysfunctional apoptosis signaling, causing these tumors to escape immune monitoring and internal cellular control mechanisms. One potential cause of this dysfunctional apoptosis is the tumor suppressor p53, an important regulator of growth arrest and apoptosis that is mutated in over 50% of all cancers. Retinoids have great potential in the areas of cancer therapy and chemoprevention. While some tumor cells are sensitive to the growth inhibitory effects of natural retinoids such as all-trans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-[3-(1-Admantyl)]-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and fenretinide N-[4-hydroxyphenyl] retinamide (4-HPR) are conformationally restricted synthetic retinoids that induce growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. Recently, we have identified the molecular pathways of apoptosis induced by treatment of ovarian carcinoma cells with mutated p53 by CD437 and 4-HPR.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
34
|
Garattini E, Parrella E, Diomede L, Gianni' M, Kalac Y, Merlini L, Simoni D, Zanier R, Ferrara FF, Chiarucci I, Carminati P, Terao M, Pisano C. ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood 2004; 103:194-207. [PMID: 12958071 DOI: 10.1182/blood-2003-05-1577] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoid-related molecules (RRMs) are derivatives of retinoic acid and promising antileukemic agents with a mechanism of action different from that of other common chemotherapeutics. Here, we describe a novel chemical series designed against the RRM prototype, CD437. This includes molecules with apoptotic effects in acute promyelocytic leukemia and other myelogenous leukemia cell lines, as well as ST2065, an RRM with antagonistic properties. The most interesting apoptotic agent is ST1926, a compound more powerful than CD437 in vitro and orally active in vivo on severe combined immunodeficiency (SCID) mice that received transplants of NB4 cells. ST1926 has the same mechanism of action of CD437, as indicated by the ability to trans-activate retinoic acid receptor gamma, to induce the phosphorylation of p38 and JNK, and to down-regulate the expression of many genes negatively modulated by CD437. ST1926 causes an immediate increase in the cytosolic levels of calcium that are directly related to the apoptotic potential of the RRMs considered. The intracellular calcium elevation is predominantly the result of an inhibition of the mitochondrial calcium uptake. The phenomenon is blocked by the ST2065 antagonist, the intracellular calcium chelator BAPTA (1,2 bis (2-aminophenoxy) ethane-N, N, N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), and by high concentrations of calcium blockers of the dihydropyridine type, compounds that suppress ST1926-induced apoptosis.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Um SJ, Han HS, Kwon YJ, Park SH, Rho YS, Sin HS, Park JS. Novel retinoic acid derivative ABPN has potent inhibitory activity on cell growth and apoptosis in cancer cells. Int J Cancer 2003; 107:1038-46. [PMID: 14601067 DOI: 10.1002/ijc.11489] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Retinoids are natural and synthetic derivatives of vitamin A that have great promise for cancer therapy and chemoprevention. Of the retinoids developed so far, 4-(N-hydroxyphenyl)retinamide (4-HPR or fenretinide) appears to have the best therapeutic potential in vitro and in vivo and is currently being tested in clinical trials for cancer prevention and therapy. To develop other potentially potent antitumor agents, we synthesized 85 retinoid derivatives. In an initial screening of these synthetic retinoids using the HCT116 colon cancer cell line, we found that 4-amino-2-(butyrylamino)phenyl(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonatetraenoate (ABPN or CBG41) induced the greatest growth inhibition, with an IC(50) value of 0.6 microM. Subsequent studies in other cancer cell lines indicated that ABPN was much more growth-inhibitory than all-trans retinoic acid or 4-HPR. Compared to 4-HPR, ABPN induced 5.5- to 70.0-fold more growth inhibition in most cancer cells, with the exception of gynecologic cancer cells. In these cells, the antiproliferative effect was only 1.5- to 2.8-fold more than 4-HPR. We examined the molecular mechanism underlying the difference in growth inhibition between 4-HPR and ABPN. DAPI staining, DNA fragmentation, FACS and Western blotting analyses suggest that ABPN induced apoptosis by activating caspase-3 and -8, which may result in increased PARP cleavage. Unlike 4-HPR, ABPN activated all 3 RAR isotypes to an extent similar to AtRA. In addition, ABPN significantly inhibited AP-1 transcriptional activity and thus greatly suppressed the expression of the matrix metalloproteinase -1, -2 and -3 genes, which are involved in tumor invasion. These results suggest that ABPN may be a promising retinoid derivative offering not only enhanced cytotoxicity, but also increased inhibition of tumor invasiveness.
Collapse
Affiliation(s)
- Soo-Jong Um
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, South Korea.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kolluri SK, Bruey-Sedano N, Cao X, Lin B, Lin F, Han YH, Dawson MI, Zhang XK. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 2003; 23:8651-67. [PMID: 14612408 PMCID: PMC262666 DOI: 10.1128/mcb.23.23.8651-8667.2003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TR3, also known as NGFI-B or nur77, is an immediate-early response gene and an orphan member of the steroid/thyroid/retinoid receptor superfamily. We previously reported that TR3 expression was induced by apoptotic stimuli and was required for their apoptotic effect in lung cancer cells. Here, we present evidence that TR3 was also induced by epidermal growth factor (EGF) and serum and was required for their mitogenic effect in lung cancer cells. Ectopic expression of TR3 in both H460 and Calu-6 lung cancer cell lines promoted their cell cycle progression and BrdU incorporation, while inhibition of TR3 expression by the small interfering RNA approach suppressed the mitogenic effect of EGF and serum. Analysis of TR3 mutants showed that both TR3 DNA binding and transactivation were required for its mitogenic effect. In contrast, they were dispensable for its apoptotic activity. Furthermore, confocal microscopy analysis demonstrated that TR3 functioned in the nucleus to induce cell proliferation, whereas it acted on mitochondria to induce apoptosis. In examining the signaling that regulates the mitogenic function of TR3, we observed that coexpression of constitutive-active MEKK1 inhibited TR3 transcriptional activity and TR3-induced proliferation. The inhibitory effect of MEKK1 was mediated through activation of Jun N-terminal kinase, which efficiently phosphorylated TR3, resulting in loss of its DNA binding. Together, our results demonstrate that TR3 is capable of inducing both proliferation and apoptosis in the same cells depending on the stimuli and its cellular localization.
Collapse
|
37
|
Zuco V, Zanchi C, Cassinelli G, Lanzi C, Supino R, Pisano C, Zanier R, Giordano V, Garattini E, Zunino F. Induction of apoptosis and stress response in ovarian carcinoma cell lines treated with ST1926, an atypical retinoid. Cell Death Differ 2003; 11:280-9. [PMID: 14657960 DOI: 10.1038/sj.cdd.4401304] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand the molecular mechanisms mediating apoptosis induction by a novel atypical retinoid, ST1926, the cellular response to drug treatment was investigated in IGROV-1 ovarian carcinoma cells carrying wild-type p53 and a cisplatin-resistant p53 mutant subline (IGROV-1/Pt1). Despite a similar extent of drug-induced DNA strand breaks, the level of apoptosis was substantially higher in p53 wild-type cells. p53 activation and early upregulation of p53-target genes were consistent with p53-dependent apoptosis in IGROV-1 cells. Stress-activated protein kinases were activated in both cell lines in response to ST1926. This event and activation of AP-1 were more pronounced in IGROV-1/Pt1 cells, in which the modulation of DNA repair-associated genes suggests an increased ability to repair DNA damage. Inhibition of JNK or p38 stimulated ST1926-induced apoptosis only in IGROV-1 cells, whereas inhibition of ERKs enhanced apoptosis in both the cell lines. Such a pattern of cellular response and modulation of genes implicated in DNA damage response supports that the genotoxic stress is a critical event mediating drug-induced apoptosis. The results are consistent with apoptosis induction through p53-dependent and -independent pathways, regulated by MAP kinases, which likely play a protective role.
Collapse
Affiliation(s)
- V Zuco
- Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Gourdier I, Perfettini JL, Larochette N, Deniaud A, Baran-Marszak F, Fagard R, Feuillard J, Asumendi A, Raphael M, Pau B, Brenner C, Kroemer G. The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 2003; 22:6220-30. [PMID: 13679861 DOI: 10.1038/sj.onc.1206827] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a potent chemopreventive agent whose effect has been suggested to involve apoptosis induction. 4-HPR induces a loss of the mitochondrial transmembrane potential and the mitochondrial release of cytochrome c before caspase activation. Inhibition of mitochondrial membrane permeabilization (MMP) by transfection with Bcl-2 or the Cytomegalovirus UL37 gene product vMIA prevented caspase activation and cell death. In contrast to other retinoid derivatives, 4-HPR has no direct MMP-inducing effects when added to isolated mitochondria or when added to proteoliposomes containing the MMP-regulatory permeability transition pore complex (PTPC). Moreover, although reactive oxygen species (ROS) overproduction appears to be instrumental for 4-HPR-induced MMP and apoptosis, inhibition of the NF-kappaB or p53-mediated signal transduction pathways failed to modulate 4-HPR-induced apoptosis. 4-HPR was found to cause an antioxidant-inhibitable conformational change of both Bax and Bak, leading to the exposure of their N-termini and to the mitochondrial relocalization of Bax. Cells with a Bax(-/-) Bak(-/-) genotype were resistant against the 4-HPR-induced MMP, overproduction of ROS and cell death. Altogether, these data indicate that 4-HPR induces MMP through an ROS-mediated pathway that involves the obligatory contribution of the proapopotic Bcl-2 family members Bax and/or Bak.
Collapse
Affiliation(s)
- Patricia Boya
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Holmes WF, Soprano DR, Soprano KJ. Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway. Oncogene 2003; 22:6377-86. [PMID: 14508518 DOI: 10.1038/sj.onc.1206694] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoids have great potential in the areas of cancer therapy and chemoprevention. 6-[3-(1-admantyl)]-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) is a conformationally restricted synthetic retinoid that has been reported to induce growth arrest and apoptosis in ovarian tumor cell lines but the entire mechanism for apoptotic induction has not been fully defined. We set out to identify the early events of CD437-induced apoptosis of the CA-OV-3 cell line and determine if these occur in a CA-OV-3 cell line resistant to CD437 (CA-CD437R). Using inhibitors for the MAP kinase cascade, we determined that MEK and p38 inhibitors could block CD437-induced apoptosis of the CA-OV-3 cell line. Moreover, treatment of CA-OV-3 and CA-CD437R cells with CD437 resulted in increased phosphorylation and activity of p38 independent of caspase-3 activation. Furthermore, p38 induced the phosphorylation of MEF2 in both CA-OV-3 and CA-CD437R cells after CD437 treatment. Finally, GFP-TR3 protein translocated to the cytosol and associated with mitochondria in both cell lines in response to CD437 treatment. This leads to depolarization of mitochondria and subsequent induction of apoptosis only in CA-OV-3 cells. These results identify a number of initial molecular events in the induction of apoptosis by CD437 in CA-OV-3 cells and demonstrate that the alteration in CA-CD437R cells, which results in resistance to CD437 maps downstream of these early events after TR3 translocation but prior to mitochondrial depolarization.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
40
|
Holmes WF, Soprano DR, Soprano KJ. Comparison of the mechanism of induction of apoptosis in ovarian carcinoma cells by the conformationally restricted synthetic retinoids CD437 and 4-HPR. J Cell Biochem 2003; 89:262-78. [PMID: 12704790 DOI: 10.1002/jcb.10505] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All-trans-retinoic acid (ATRA) has been shown to inhibit the growth of a number of ovarian tumor cell lines while others have been found to be resistant to retinoid suppression of growth. Interestingly, two synthetic retinoids, CD437 and 4-HPR, inhibit the growth of both ATRA-sensitive (CA-OV-3) and ATRA-resistant (SK-OV-3) ovarian tumor cells. However, in contrast to ATRA, both induce apoptosis. Our goal was to elucidate the mechanism by which these two synthetic retinoids induce apoptosis in ovarian tumor cells. Since it has been documented that apoptosis induction is often mediated by the activation of a cascade of proteases known as caspases, we initially studied the role of caspases in induction of apoptosis by CD437 and 4-HPR. We found that both retinoids induced caspase-3 and caspase-9 enzyme activity. Furthermore, using caspase specific inhibitors we determined that caspase-3 and caspase-9 activity was essential for the induction of apoptosis by these synthetic retinoids since these inhibitors completely blocked CD437 and 4-HPR induced apoptosis. Interestingly, we found that treatment with bongkriekic acid (BA), a mitochondrial membrane depolarization inhibitor, blocked apoptosis, caspase-9 activation and caspase-3 activation induced by both retinoids. Finally, we were able to determine that CD437 treatment induced the translocation of TR3, a nuclear orphan receptor, whereas, 4-HPR did not. Our results suggest that CD437 and 4-HPR initially activate separate pathways to induce mitochondrial depolarization but both utilize mitochondrial depolarization, caspase-9 activation, and caspase-3 activation in the later stages of apoptosis induction.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|