1
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
2
|
Soliman TN, Keifenheim D, Parker PJ, Clarke DJ. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol 2023; 222:e202209125. [PMID: 37955972 PMCID: PMC10641588 DOI: 10.1083/jcb.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.
Collapse
Affiliation(s)
- Tanya N. Soliman
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Arroyo M, Cañuelo A, Calahorra J, Hastert F, Sánchez A, Clarke DJ, Marchal J. Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1. FEBS J 2020; 287:4933-4951. [PMID: 32144855 PMCID: PMC7483426 DOI: 10.1111/febs.15280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Catalytic inhibition of topoisomerase II during G2 phase delays onset of mitosis due to the activation of the so-called decatenation checkpoint. This checkpoint is less known compared with the extensively studied G2 DNA damage checkpoint and is partially compromised in many tumor cells. We recently identified MCPH1 as a key regulator that confers cells with the capacity to adapt to the decatenation checkpoint. In the present work, we have explored the contributions of checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1), in order to better understand the molecular basis of decatenation checkpoint. Our results demonstrate that Chk1 function is required to sustain the G2 arrest induced by catalytic inhibition of Topo II. Interestingly, Chk1 loss of function restores adaptation in cells lacking MCPH1. Furthermore, we demonstrate that Plk1 function is required to bypass the decatenation checkpoint arrest in cells following Chk1 inhibition. Taken together, our data suggest that MCPH1 is critical to allow checkpoint adaptation by counteracting Chk1-mediated inactivation of Plk1. Importantly, we also provide evidence that MCPH1 function is not required to allow recovery from this checkpoint, which lends support to the notion that checkpoint adaptation and recovery are different mechanisms distinguished in part by specific effectors.
Collapse
Affiliation(s)
- M. Arroyo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - A. Cañuelo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - J. Calahorra
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - F.D. Hastert
- Department of Biology, Technische Universität Darmstadt, Germany
| | - A. Sánchez
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - D. J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, US
| | - J.A. Marchal
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| |
Collapse
|
4
|
Aurora kinases and DNA damage response. Mutat Res 2020; 821:111716. [PMID: 32738522 DOI: 10.1016/j.mrfmmm.2020.111716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
It is well established that Aurora kinases perform critical functions during mitosis. It has become increasingly clear that the Aurora kinases also perform a myriad of non-mitotic functions including DNA damage response. The available evidence indicates that inhibition Aurora kinase A (AURKA) may contribute to the G2 DNA damage checkpoint through AURKA's functions in PLK1 and CDC25B activation. Both AURKA and Aurora kinase B (AURKB) are also essential in mitotic DNA damage response that guard against DNA damage-induced chromosome segregation errors, including the control of abscission checkpoint and prevention of micronuclei formation. Dysregulation of Aurora kinases can trigger DNA damage in mitosis that is sensed in the subsequent G1 by a p53-dependent postmitotic checkpoint. Aurora kinases are themselves linked to the G1 DNA damage checkpoint through p53 and p73 pathways. Finally, several lines of evidence provide a connection between Aurora kinases and DNA repair and apoptotic pathways. Although more studies are required to provide a comprehensive picture of how cells respond to DNA damage, these findings indicate that both AURKA and AURKB are inextricably linked to pathways guarding against DNA damage. They also provide a rationale to support more detailed studies on the synergism between small-molecule inhibitors against Aurora kinases and DNA-damaging agents in cancer therapies.
Collapse
|
5
|
Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A 2020; 117:12131-12142. [PMID: 32414923 DOI: 10.1073/pnas.2001760117] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase IIα (TOP2A) is a core component of mitotic chromosomes and important for establishing mitotic chromosome condensation. The primary roles of TOP2A in mitosis have been difficult to decipher due to its multiple functions across the cell cycle. To more precisely understand the role of TOP2A in mitosis, we used the auxin-inducible degron (AID) system to rapidly degrade the protein at different stages of the human cell cycle. Removal of TOP2A prior to mitosis does not affect prophase timing or the initiation of chromosome condensation. Instead, it prevents chromatin condensation in prometaphase, extends the length of prometaphase, and ultimately causes cells to exit mitosis without chromosome segregation occurring. Surprisingly, we find that removal of TOP2A from cells arrested in prometaphase or metaphase cause dramatic loss of compacted mitotic chromosome structure and conclude that TOP2A is crucial for maintenance of mitotic chromosomes. Treatments with drugs used to poison/inhibit TOP2A function, such as etoposide and ICRF-193, do not phenocopy the effects on chromosome structure of TOP2A degradation by AID. Our data point to a role for TOP2A as a structural chromosome maintenance enzyme locking in condensation states once sufficient compaction is achieved.
Collapse
|
6
|
Arroyo M, Kuriyama R, Guerrero I, Keifenheim D, Cañuelo A, Calahorra J, Sánchez A, Clarke DJ, Marchal JA. MCPH1 is essential for cellular adaptation to the G 2-phase decatenation checkpoint. FASEB J 2019; 33:8363-8374. [PMID: 30964711 DOI: 10.1096/fj.201802009rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular checkpoints controlling entry into mitosis monitor the integrity of the DNA and delay mitosis onset until the alteration is fully repaired. However, this canonical response can weaken, leading to a spontaneous bypass of the checkpoint, a process referred to as checkpoint adaptation. Here, we have investigated the contribution of microcephalin 1 (MCPH1), mutated in primary microcephaly, to the decatenation checkpoint, a less-understood G2 pathway that delays entry into mitosis until chromosomes are properly disentangled. Our results demonstrate that, although MCPH1 function is dispensable for activation and maintenance of the decatenation checkpoint, it is required for the adaptive response that bypasses the topoisomerase II inhibition----mediated G2 arrest. MCPH1, however, does not confer adaptation to the G2 arrest triggered by the ataxia telangiectasia mutated- and ataxia telangiectasia and rad3 related-based DNA damage checkpoint. In addition to revealing a new role for MCPH1 in cell cycle control, our study provides new insights into the genetic requirements that allow cellular adaptation to G2 checkpoints, a process that remains poorly understood.-Arroyo, M., Kuriyama, R., Guerrero, I., Keifenheim, D., Cañuelo, A., Calahorra, J., Sánchez, A., Clarke, D. J., Marchal, J. A. MCPH1 is essential for cellular adaptation to the G2-phase decatenation checkpoint.
Collapse
Affiliation(s)
- María Arroyo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Israel Guerrero
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA Centro El Toruño), El Puerto de Santa María, Spain
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - J Alberto Marchal
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
7
|
Brown A, Geiger H. Chromosome integrity checkpoints in stem and progenitor cells: transitions upon differentiation, pathogenesis, and aging. Cell Mol Life Sci 2018; 75:3771-3779. [PMID: 30066086 PMCID: PMC6154040 DOI: 10.1007/s00018-018-2891-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023]
Abstract
Loss of chromosome integrity is a major contributor to cancer. Checkpoints within the cell division cycle that facilitate the accuracy and outcome of chromosome segregation are thus critical pathways for preserving chromosome integrity and preventing chromosomal instability. The spindle assembly checkpoint, the decatenation checkpoint and the post-mitotic tetraploidy checkpoint ensure the appropriate establishment of the spindle apparatus, block mitotic entry upon entanglement of chromosomes or prevent further progression of post-mitotic cells that display massive spindle defects. Most of our knowledge on these mechanisms originates from studies conducted in yeast, cancer cell lines and differentiated cells. Considering that in many instances cancer derives from transformed stem and progenitor cells, our knowledge on these checkpoints in these cells just started to emerge. With this review, we provide a general overview of the current knowledge of these checkpoints in embryonic as well as in adult stem and progenitor cells with a focus on the hematopoietic system and outline common mis-regulations of their function associated with cancer and leukemia. Most cancers are aging-associated diseases. We will thus also discuss changes in the function and outcome of these checkpoints upon aging of stem and progenitor cells.
Collapse
Affiliation(s)
- Andreas Brown
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Zhou J, Chang M, Li J, Fang T, Hu J, Bai C. Knockdown of annexin A5 restores gefitinib sensitivity by promoting G2/M cell cycle arrest. Respir Res 2018; 19:96. [PMID: 29784046 PMCID: PMC5963077 DOI: 10.1186/s12931-018-0804-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/03/2018] [Indexed: 04/17/2025] Open
Abstract
Background Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, including gefitinib, are first-line drugs against advanced non-small cell lung cancer with activating EGFR mutations. However, the development of resistance to such drugs is a major clinical challenge. Methods The role of annexin A5 in resistance to EGFR tyrosine kinase inhibitors was investigated by qPCR and western blot of relevant molecules, by CCK8 and EdU assay of cell proliferation and viability, by annexin V/propidium iodide assay of apoptosis and cell cycle distribution, by JC-1 assay of mitochondrial integrity, and by xenograft assay of tumorigenicity. Results We found that annexin A5 is upregulated in gefitinib-resistant cell lines, as well as in clinical specimens resistant to EGFR tyrosine kinase inhibitors. Accordingly, knockdown of the gene from gefitinib-resistant cells restores gefitinib sensitivity in vitro and in vivo by downregulating polo-like kinase 1 signal pathway, thereby inducing mitochondrial damage, caspase activation, cell cycle arrest at G2/M, and, finally, apoptosis. Conclusions The data indicate that annexin A5 confers gefitinib resistance in lung cancer by inhibiting apoptosis and G2/M cell cycle arrest, and is thus a potential therapeutic target in non-small cell lung cancers resistant to EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Meijia Chang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Jing Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Shandong Province, China.
| | - Jie Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Respiratory Research Institute, Shanghai, China.
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Respiratory Research Institute, Shanghai, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Hau PM, Tsao SW. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses 2017; 9:v9110341. [PMID: 29144413 PMCID: PMC5707548 DOI: 10.3390/v9110341] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 2017; 9:cancers9100131. [PMID: 28953239 PMCID: PMC5664070 DOI: 10.3390/cancers9100131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays a key role in the regulation of the cell cycle. PLK1 is overexpressed in a variety of human tumors, and its expression level often correlates with increased cellular proliferation and poor prognosis in cancer patients. It has been suggested that PLK1 controls cancer development through multiple mechanisms that include canonical regulation of mitosis and cytokinesis, modulation of DNA replication, and cell survival. However, emerging evidence suggests novel and previously unanticipated roles for PLK1 during tumor development. In this review, we will summarize the recent advancements in our understanding of the oncogenic functions of PLK1, with a focus on its role in epithelial-mesenchymal transition and tumor invasion. We will further discuss the therapeutic potential of these functions.
Collapse
|
11
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Spoerri L, Brooks K, Chia K, Grossman G, Ellis JJ, Dahmer-Heath M, Škalamera D, Pavey S, Burmeister B, Gabrielli B. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma. Pigment Cell Melanoma Res 2016; 29:329-39. [PMID: 26854966 DOI: 10.1111/pcmr.12466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.
Collapse
Affiliation(s)
- Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Kelly Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - KeeMing Chia
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Gavriel Grossman
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Jonathan J Ellis
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Mareike Dahmer-Heath
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Dubravka Škalamera
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Sandra Pavey
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Bryan Burmeister
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Brian Gabrielli
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
13
|
Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Biol 2016; 211:757-63. [PMID: 26598613 PMCID: PMC4657169 DOI: 10.1083/jcb.201505058] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Suspended cells transiently increase their volume during mitosis because of ion exchange through the plasma membrane. Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro–B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.
Collapse
Affiliation(s)
- Sungmin Son
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - T J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Scott Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
14
|
Jain CK, Roychoudhury S, Majumder HK. Selective killing of G2 decatenation checkpoint defective colon cancer cells by catalytic topoisomerase II inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1195-204. [PMID: 25746763 DOI: 10.1016/j.bbamcr.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
15
|
Furniss KL, Tsai HJ, Byl JAW, Lane AB, Vas AC, Hsu WS, Osheroff N, Clarke DJ. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation. PLoS Genet 2013; 9:e1003832. [PMID: 24098144 PMCID: PMC3789831 DOI: 10.1371/journal.pgen.1003832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/10/2013] [Indexed: 02/04/2023] Open
Abstract
By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.
Collapse
Affiliation(s)
- Katherine L. Furniss
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hung-Ji Tsai
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Andrew B. Lane
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amit C. Vas
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shan Hsu
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
16
|
Paschal CR, Maciejowski J, Jallepalli PV. A stringent requirement for Plk1 T210 phosphorylation during K-fiber assembly and chromosome congression. Chromosoma 2012; 121:565-72. [PMID: 22566210 PMCID: PMC3519967 DOI: 10.1007/s00412-012-0375-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Polo-like kinase 1 (Plk1) is an essential mitotic regulator and undergoes periodic phosphorylation on threonine 210, a conserved residue in the kinase's activation loop. While phosphate-mimicking alterations of T210 stimulate Plk1's kinase activity in vitro, their effects on cell cycle regulation in vivo remain controversial. Using gene targeting, we replaced the native PLK1 locus in human cells with either PLK1 (T210A) or PLK1 (T210D) in both dominant and recessive settings. In contrast to previous reports, PLK1 (T210D) did not accelerate cells prematurely into mitosis, nor could it fulfill the kinase's essential role in chromosome congression. The latter was traced to an unexpected defect in Plk1-dependent phosphorylation of BubR1, a key mediator of stable kinetochore-microtubule attachment. Using chemical genetics to bypass this defect, we found that Plk1(T210D) is nonetheless able to induce equatorial RhoA zones and cleavage furrows during mitotic exit. Collectively, our data indicate that K-fibers are sensitive to even subtle perturbations in T210 phosphorylation and caution against relying on Plk1(T210D) as an in vivo surrogate for the natively activated kinase.
Collapse
Affiliation(s)
- Catherine Randall Paschal
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - John Maciejowski
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Prasad V. Jallepalli
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065 USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
17
|
Russell B, Bhattacharyya S, Keirsey J, Sandy A, Grierson P, Perchiniak E, Kavecansky J, Acharya S, Groden J. Chromosome breakage is regulated by the interaction of the BLM helicase and topoisomerase IIalpha. Cancer Res 2011; 71:561-71. [PMID: 21224348 DOI: 10.1158/0008-5472.can-10-1727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells deficient in the recQ-like helicase BLM are characterized by chromosome changes that suggest the disruption of normal mechanisms needed to resolve recombination intermediates and to maintain chromosome stability. Human BLM and topoisomerase IIα interact directly via amino acids 489-587 of BLM and colocalize predominantly in late G2 and M phases of the cell cycle. Deletion of this region does not affect the inherent in vitro helicase activity of BLM but inhibits the topoisomerase IIα-dependent enhancement of its activity, based on the analysis of specific DNA substrates that represent some recombination intermediates. Deletion of the interaction domain from BLM fails to correct the elevated chromosome breakage of transfected BLM-deficient cells. Our results demonstrate that the BLM-topoisomerase IIα interaction is important for preventing chromosome breakage and elucidate a DNA repair mechanism that is critical to maintain chromosome stability in cells and to prevent tumor formation.
Collapse
Affiliation(s)
- Beatriz Russell
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bower JJ, Karaca GF, Zhou Y, Simpson DA, Cordeiro-Stone M, Kaufmann WK. Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 2010; 29:4787-99. [PMID: 20562910 PMCID: PMC2928865 DOI: 10.1038/onc.2010.232] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerase IIalpha (topoIIalpha) is an essential mammalian enzyme that topologically modifies DNA and is required for chromosome segregation during mitosis. Previous research suggests that inhibition of topoII decatenatory activity triggers a G(2) checkpoint response, which delays mitotic entry because of insufficient decatenation of daughter chromatids. Here we examine the effects of both topoIIalpha and topoIIbeta on decatenatory activity in cell extracts, DNA damage and decatenation G(2) checkpoint function, and the frequencies of p16(INK4A) allele loss and gain. In diploid human fibroblast lines, depletion of topoIIalpha by small-interfering RNA was associated with severely reduced decatenatory activity, delayed progression from G(2) into mitosis and insensitivity to G(2) arrest induced by the topoII catalytic inhibitor ICRF-193. Furthermore, interphase nuclei of topoIIalpha-depleted cells showed increased frequencies of losses and gains of the tumor suppressor genetic locus p16(INK4A). This study shows that the topoIIalpha protein is required for decatenation G(2) checkpoint function, and inactivation of decatenation and the decatenation G(2) checkpoint leads to abnormal chromosome segregation and genomic instability.
Collapse
Affiliation(s)
- J J Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bower JJ, Zhou Y, Zhou T, Simpson DA, Arlander SJ, Paules RS, Cordeiro-Stone M, Kaufmann WK. Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM. Cell Cycle 2010; 9:1617-28. [PMID: 20372057 DOI: 10.4161/cc.9.8.11470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Greer Card DA, Sierant ML, Davey S. Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. J Biol Chem 2010; 285:15653-15661. [PMID: 20305300 DOI: 10.1074/jbc.m109.096156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rad9A checkpoint protein interacts with and is required for proper localization of topoisomerase II-binding protein 1 (TopBP1) in response to DNA damage. Topoisomerase II (Topo II), another binding partner of TopBP1, decatenates sister chromatids that become intertwined during replication. Inhibition of Topo II by ICRF-193 (meso-4,4'-(3,2-butanediyl)-bis-(2,6-piperazinedione)), a catalytic inhibitor that does not induce DNA double-strand breaks, causes a mitotic delay known as the G(2) decatenation checkpoint. Here, we demonstrate that this checkpoint, dependent on ATR and BRCA1, also requires Rad9A. Analysis of different Rad9A phosphorylation mutants suggests that these modifications are required to prevent endoreduplication and to maintain decatenation checkpoint arrest. Furthermore, Rad9A Ser(272) is phosphorylated in response to Topo II inhibition. ICRF-193 treatment also causes phosphorylation of an effector kinase downstream of Rad9A in the DNA damage checkpoint pathway, Chk2, at Thr(68). Both of these sites are major targets of phosphorylation by the ATM kinase, although it has previously been shown that ATM is not required for the decatenation checkpoint. Examination of ataxia telangectasia (A-T) cells demonstrates that ATR does not compensate for ATM loss, suggesting that phosphorylation of Rad9A and Chk2 by ATM plays an additional role in response to Topo II inhibition than checkpoint function alone. Finally, we have shown that murine embryonic stem cells deficient for Rad9A have higher levels of catenated mitotic spreads than wild-type counterparts. Together, these results emphasize the importance of Rad9A in preserving genomic integrity in the presence of catenated chromosomes and all types of DNA aberrations.
Collapse
Affiliation(s)
- Deborah A Greer Card
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Megan L Sierant
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Scott Davey
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Oncology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
21
|
Compromise in mRNA processing machinery in senescent human fibroblasts: implications for a novel potential role of Phospho-ATR (ser428). Biogerontology 2010; 11:421-36. [PMID: 20084458 DOI: 10.1007/s10522-010-9261-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/03/2010] [Indexed: 01/30/2023]
Abstract
Ataxia-Telangiectasia and Rad3 related kinase (ATR) is a major gatekeeper of genomic stability and has been the subject of exhaustive study in the context of cell cycle progression and senescence as a DNA damage-induced response. Conditional knockout of the kinase in adult mice results in accelerated aging phenomena, such as such hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. In addition to that, recent reports strongly implicate signaling mediated by this kinase in the regulation of alternative splicing of certain, mostly cancer-associated transcripts. Interest to the function of mRNA synthesis and processing is constantly increasing as severe degenerative diseases, such as cancer, cystic fibrosis and Hutchinson-Gilford progeria syndrome are at least partly attributed to these abnormalities. In light of the above, we investigate the RNA processing machinery in senescent fibroblasts as opposed to young, either exponentially proliferating or quiescent, further focusing on the distribution and localization of active, phosphorylated ATR at ser428. This study implicates the spatiotemporal presence of the phosphorylated kinase in the regulation of mRNA splicing and polyadenylation. This function appears perturbed in senescent cells, accompanied by a distinct pattern of phospho-ATR in the senescent nucleus.
Collapse
|
22
|
Naphthalimides induce G(2) arrest through the ATM-activated Chk2-executed pathway in HCT116 cells. Neoplasia 2010; 11:1226-34. [PMID: 19881958 DOI: 10.1593/neo.09986] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 01/18/2023] Open
Abstract
Naphthalimides, particularly amonafide and 2-(2-dimethylamino)-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16), have been identified to possess anticancer activities and to induce G(2)-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s) responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G(2) arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM) responding to DNA double-strand breaks (DSBs). Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA) rescued the G(2) arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G(2) arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G(2) arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.
Collapse
|
23
|
Skladanowski A, Bozko P, Sabisz M. DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem Rev 2009; 109:2951-73. [PMID: 19522503 DOI: 10.1021/cr900026u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | | | | |
Collapse
|
24
|
Wray J, Williamson EA, Royce M, Shaheen M, Beck BD, Lee SH, Nickoloff JA, Hromas R. Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells. PLoS One 2009; 4:e5323. [PMID: 19390626 PMCID: PMC2669129 DOI: 10.1371/journal.pone.0005323] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/23/2009] [Indexed: 12/25/2022] Open
Abstract
DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIalpha (Topo IIalpha) is the primary decatenating enzyme. Cells monitor catenation status and activate decatenation checkpoints when decatenation is incomplete, which occurs when Topo IIalpha is inhibited by chemotherapy agents such as the anthracyclines and epididophyllotoxins. We recently demonstrated that the DNA repair component Metnase (also called SETMAR) enhances Topo IIalpha-mediated decatenation, and hypothesized that Metnase could mediate resistance to Topo IIalpha inhibitors. Here we show that Metnase interacts with Topo IIalpha in breast cancer cells, and that reducing Metnase expression significantly increases metaphase decatenation checkpoint arrest. Repression of Metnase sensitizes breast cancer cells to Topo IIalpha inhibitors, and directly blocks the inhibitory effect of the anthracycline adriamycin on Topo IIalpha-mediated decatenation in vitro. Thus, Metnase may mediate resistance to Topo IIalpha inhibitors, and could be a biomarker for clinical sensitivity to anthracyclines. Metnase could also become an important target for combination chemotherapy with current Topo IIalpha inhibitors, specifically in anthracycline-resistant breast cancer.
Collapse
Affiliation(s)
- Justin Wray
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Elizabeth A. Williamson
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Melanie Royce
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Montaser Shaheen
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Brian D. Beck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Robert Hromas
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
25
|
Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish. Mol Cell Biol 2009; 29:3746-53. [PMID: 19380487 DOI: 10.1128/mcb.01684-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Topoisomerases solve the topological problems encountered by DNA throughout the lifetime of a cell. Topoisomerase II alpha, which is highly conserved among eukaryotes, untangles replicated chromosomes during mitosis and is absolutely required for cell viability. A homozygous lethal mutant, can4, was identified in a screen to identify genes important for cell proliferation in zebrafish by utilizing an antibody against a mitosis-specific marker, phospho-histone H3. Mutant embryos have a decrease in the number of proliferating cells and display increases in DNA content and apoptosis, as well as mitotic spindle defects. Positional cloning revealed that the genetic defect underlying these phenotypes was the result of a mutation in the zebrafish topoisomerase II alpha (top2a) gene. top2a was found to be required for decatenation but not for condensation in embryonic mitoses. In addition to being required for development, top2a was found to be a haploinsufficient regulator of adult liver regrowth in zebrafish. Regeneration analysis of other adult tissues, including fins, revealed no heterozygous phenotype. Our results confirm a conserved role for TOP2A in vertebrates as well as a dose-sensitive requirement for top2a in adults.
Collapse
|
26
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
27
|
Kaufmann WK. Analysis of the topoisomerase II-dependent decatenation G2 checkpoint and checkpoint kinases in human cells. Methods Mol Biol 2009; 582:155-66. [PMID: 19763949 DOI: 10.1007/978-1-60761-340-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inhibition of Topo II function using poisons and catalytic inhibitors triggers checkpoints that act to delay progression of G2 cells into mitosis. Topo II poisons induce Topo II-associated DNA double-strand breaks that activate ATM and the DNA damage G2 checkpoint. Topo II catalytic inhibitors do not induce DNA double-strand breaks but block decatenation of intertwined daughter chromatids. Complete decatenation before anaphase of mitosis is required for chromatid segregation. G2 cells appear to sense the degree of chromatid arm catenations and actively delay the onset of mitosis by sustaining the inhibition of mitosis-promoting factor (MPF) and polo-like kinase 1 (Plk-1) kinase activities that normally propel G2 cells into mitosis. This chapter details the methods for assay of decatenation G2 checkpoint function and checkpoint kinase activities.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| |
Collapse
|
28
|
Abstract
Topoisomerase II activity is crucial to maintain genome stability through the removal of catenanes in the DNA formed during DNA replication and scaffolding the mitotic chromosome. Perturbed Topo II activity causes defects in chromosome segregation due to persistent catenations and aberrant DNA condensation during mitosis. Recently, novel top2 alleles in the yeast Saccharomyces cerevisiae revealed a checkpoint control that responds to perturbed Topo II activity. Described in this chapter are protocols for assaying the phenotypes seen in top2 mutants on a cell biological basis in live cells: activation of the Topo II checkpoint using spindle morphology, chromosome condensation using fluorescently labeled chromosomal loci, and cell cycle progression by flow cytometry. Further characterization of this novel checkpoint is warranted so that we can further our understanding of the cell cycle, genomic stability, and the possibility of identifying novel drug targets.
Collapse
|
29
|
Taylor WR, Grabovich A. Targeting the Cell Cycle to Kill Cancer Cells. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Luo K, Yuan J, Chen J, Lou Z. Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol 2008; 11:204-10. [PMID: 19098900 DOI: 10.1038/ncb1828] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/27/2008] [Indexed: 01/27/2023]
Abstract
Topoisomerase II (Topo II) is required to separate intertwined sister chromatids before chromosome segregation can occur in mitosis. However, it remains to be resolved whether Topo II has any role in checkpoint control. Here we report that when phosphorylated, Ser 1524 of Topo IIalpha acts as a binding site for the BRCT domain of MDC1 (mediator of DNA damage checkpoint protein-1), thereby recruiting MDC1 to chromatin. Although Topo IIalpha-MDC1 interaction is not required for checkpoint activation induced by DNA damage, it is required for activation of the decatenation checkpoint. Mutation of Ser 1524 results in a defective decatenation checkpoint. These results reveal an important role of Topo II in checkpoint activation and in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Kuntian Luo
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
31
|
Williamson EA, Rasila KK, Corwin LK, Wray J, Beck BD, Severns V, Mobarak C, Lee SH, Nickoloff JA, Hromas R. The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation. Nucleic Acids Res 2008; 36:5822-31. [PMID: 18790802 PMCID: PMC2566874 DOI: 10.1093/nar/gkn560] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIα (Topo IIα), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo IIα inhibitors ICRF-193 and VP-16. Purified Metnase greatly enhanced Topo IIα decatenation of kinetoplast DNA to relaxed circular forms. Nuclear extracts containing Metnase decatenated kDNA more rapidly than those without Metnase, and neutralizing anti-sera against Metnase reversed that enhancement of decatenation. Metnase automethylates at K485, and the presence of a methyl donor blocked the enhancement of Topo IIα decatenation by Metnase, implying an internal regulatory inhibition. Thus, Metnase enhances Topo IIα decatenation, and this activity is repressed by automethylation. These results suggest that cancer cells could subvert Metnase to mediate clinically relevant resistance to Topo IIα inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Williamson
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kanwaldeep Kaur Rasila
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Lori Kwan Corwin
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Justin Wray
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Brian D. Beck
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Virginia Severns
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Charlotte Mobarak
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Suk-Hee Lee
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jac A. Nickoloff
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Robert Hromas
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- *To whom correspondence should be addressed. Tel: +1 505 272 5837; Fax: +1 505 272 5865;
| |
Collapse
|
32
|
Abstract
The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.
Collapse
|
33
|
Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W. p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 2007; 218:174-85. [PMID: 17174997 PMCID: PMC1864945 DOI: 10.1016/j.taap.2006.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 02/08/2023]
Abstract
This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45alpha was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21(Cip1/Waf1) or activation of Chk1.
Collapse
Affiliation(s)
- Feng Cao
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tong Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jayne Boyer
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bo Chen
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Taiyi Jin
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
34
|
Abstract
The decatenation checkpoint delays entry into mitosis until the chromosomes have been disentangled. Deficiency in or bypass of the decatenation checkpoint can cause chromosome breakage and nondisjunction during mitosis, which results in aneuploidy and chromosome rearrangements in the daughter cells. A deficiency in the decatenation checkpoint has been reported in lung and bladder cancer cell lines and may contribute to the accumulation of chromosome aberrations that commonly occur during tumour progression. A checkpoint deficiency has also been documented in cultured stem and progenitor cells, and cancer stem cells are likely to be derived from stem and progenitor cells that lack an effective decatenation checkpoint. An inefficient decatenation checkpoint is likely to be a source of the chromosome aberrations that are common features of most tumours, but an inefficient decatenation checkpoint in cancer stem cells could also provide a potential target for chemotherapy.
Collapse
Affiliation(s)
- M Damelin
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | - T H Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W. 168th St., New York, NY 10032, USA
- E-mail:
| |
Collapse
|
35
|
Innes CL, Heinloth AN, Flores KG, Sieber SO, Deming PB, Bushel PR, Kaufmann WK, Paules RS. ATM requirement in gene expression responses to ionizing radiation in human lymphoblasts and fibroblasts. Mol Cancer Res 2006; 4:197-207. [PMID: 16547157 DOI: 10.1158/1541-7786.mcr-05-0154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.
Collapse
Affiliation(s)
- Cynthia L Innes
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, PO Box 12233, MD D2-03, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kaufmann WK. Dangerous entanglements. Trends Mol Med 2006; 12:235-7. [PMID: 16631407 DOI: 10.1016/j.molmed.2006.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/22/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
The promise of stem-cell therapy is long-term repair of damaged organs by transplantation. Inoculum size might be a determinant of successful repair, and efforts are being made to improve conditions for ex vivo expansion of stem cells prior to transplantation. A recent article by Damelin and colleagues raised concerns about this approach, demonstrating that stem cells lack the decatenation G2 checkpoint that preserves genetic stability. Cells that fail to disentangle chromatids prior to mitosis are prone to the types of chromosomal aberrations that are observed in cancer cells. Ex vivo expansion of stem cells might have the unintended consequence of encouraging malignant progression.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
37
|
Damelin M, Sun YE, Sodja VB, Bestor TH. Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 2005; 8:479-84. [PMID: 16338661 DOI: 10.1016/j.ccr.2005.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/07/2005] [Accepted: 11/10/2005] [Indexed: 12/21/2022]
Abstract
The decatenation checkpoint normally delays entry into mitosis until chromosomes have been disentangled through the action of topoisomerase II. We have found that the decatenation checkpoint is highly inefficient in mouse embryonic stem cells, mouse neural progenitor cells, and human CD34+ hematopoietic progenitor cells. Checkpoint efficiency increased when embryonic stem cells were induced to differentiate, which suggests that the deficiency is a feature of the undifferentiated state. Embryonic stem cells completed cell division in the presence of entangled chromosomes, which resulted in severe aneuploidy in the daughter cells. The decatenation checkpoint deficiency is likely to increase the rates of chromosome aberrations in progenitor cells, stem cells, and cancer stem cells.
Collapse
Affiliation(s)
- Marc Damelin
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
38
|
Guan R, Tapang P, Leverson JD, Albert D, Giranda VL, Luo Y. Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res 2005; 65:2698-704. [PMID: 15805268 DOI: 10.1158/0008-5472.can-04-2131] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (Plk1) is required for multiple stages of mitosis and is up-regulated in many human malignancies. We depleted Plk1 expression using small interfering RNA (siRNA) and showed defects in bipolar spindle formation and cytokinesis, growth inhibition, and apoptosis induction in human cancer cell lines. To our surprise, depletion of Plk1 in normal human cells did not result in obvious cell cycle defects, and did not induce significant inhibition of cell growth for at least two cell cycles. In addition, Plk1 siRNA inhibited colony formation in soft agar and tumorigenesis in a HT1080 xenograft model in a dose-dependent manner. Analysis with isogenic pairs of cell lines, differing in p53 status, revealed that Plk1 depletion preferentially induced mitotic arrest, aneuploidy, and reduced cell survival in the p53-defective cell lines. No obvious defects were observed in most p53 wild-type cells during the first few cell cycles. In addition, long-term survival studies revealed that p53 facilitates survival upon Plk1 depletion. Therefore, short-term inhibition of Plk1 can kill tumor cells while allowing normal cells to survive. These data validate the episodic inhibition of Plk1 as a very useful approach for cancer treatment.
Collapse
Affiliation(s)
- Ran Guan
- Department R47S, Cancer Research, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Protein kinases play a pivotal role in execution of cell division. Polo and Polo-like kinases have emerged as major regulators for various cell cycle checkpoints. Early genetic studies have demonstrated that CDC5, a budding yeast counterpart of vertebrate Plks, is essential for successful mitotic progression. Mammalian Plks localize primarily to the centrosome during interphase and the mitotic apparatus during mitosis. Many key cell cycle regulators such as p53, Cdc25C, cyclin B, components of the anaphase-promoting complex, and mitotic motor proteins are directly targeted by Plks. Although the exact mechanism of action of these protein kinases in vivo remains to be elucidated, Plks are important mediators for various cell cycle checkpoints that monitor centrosome duplication, DNA replication, formation of bipolar mitotic spindle, segregation of chromosomes, and mitotic exit, thus protecting cells against genetic instability during cell division.
Collapse
Affiliation(s)
- Suqing Xie
- Molecular Carcinogenesis Division, Department of Medicine, Brander Cancer Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
40
|
Goh KC, Wang H, Yu N, Zhou Y, Zheng Y, Lim Z, Sangthongpitag K, Fang L, Du M, Wang X, Jefferson AB, Rose J, Shamoon B, Reinhard C, Carte B, Entzeroth M, Ni B, Taylor ML, Stünkel W. PLK1 as a potential drug target in cancer therapy. Drug Dev Res 2004. [DOI: 10.1002/ddr.10392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Yamada A, Duffy B, Perry JA, Kornbluth S. DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7. J Cell Biol 2004; 167:841-9. [PMID: 15583029 PMCID: PMC2172454 DOI: 10.1083/jcb.200406048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 10/28/2004] [Indexed: 11/22/2022] Open
Abstract
G2/M checkpoints prevent mitotic entry upon DNA damage or replication inhibition by targeting the Cdc2 regulators Cdc25 and Wee1. Although Wee1 protein stability is regulated by DNA-responsive checkpoints, the vertebrate pathways controlling Wee1 degradation have not been elucidated. In budding yeast, stability of the Wee1 homologue, Swe1, is controlled by a regulatory module consisting of the proteins Hsl1 and Hsl7 (histone synthetic lethal 1 and 7), which are targeted by the morphogenesis checkpoint to prevent Swe1 degradation when budding is inhibited. We report here the identification of Xenopus Hsl7 as a positive regulator of mitosis that is controlled, instead, by an entirely distinct checkpoint, the DNA replication checkpoint. Although inhibiting Hsl7 delayed mitosis, Hsl7 overexpression overrode the replication checkpoint, accelerating Wee1 destruction. Replication checkpoint activation disrupted Hsl7-Wee1 interactions, but binding was restored by active polo-like kinase. These data establish Hsl7 as a component of the replication checkpoint and reveal that similar cell cycle control modules can be co-opted for use by distinct checkpoints in different organisms.
Collapse
Affiliation(s)
- Ayumi Yamada
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
42
|
Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL, Blackett J, Choudhary SK, Camerini D, Nghiem P, Planelles V. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 2004; 24:9286-94. [PMID: 15485898 PMCID: PMC522272 DOI: 10.1128/mcb.24.21.9286-9294.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G(2) phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G(2) arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G(2) arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4(+)-lymphocyte cell cycle and apoptosis induction in the progressive CD4(+)-lymphocyte depletion characteristic of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Erik S Zimmerman
- Department of Pathology, School of Medicine, University of Utah, 30 N. 1900 East, SOM 5C210, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mikhailov A, Shinohara M, Rieder CL. Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. ACTA ACUST UNITED AC 2004; 166:517-26. [PMID: 15302851 PMCID: PMC2172207 DOI: 10.1083/jcb.200405167] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Division of Molecular Medicine, Wadsworth Center, P.O. Box 509, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
44
|
Nakagawa T, Hayashita Y, Maeno K, Masuda A, Sugito N, Osada H, Yanagisawa K, Ebi H, Shimokata K, Takahashi T. Identification of Decatenation G2 Checkpoint Impairment Independently of DNA Damage G2 Checkpoint in Human Lung Cancer Cell Lines. Cancer Res 2004; 64:4826-32. [PMID: 15256452 DOI: 10.1158/0008-5472.can-04-0871] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been suggested that attenuation of the decatenation G(2) checkpoint function, which ensures sufficient chromatid decatenation by topoisomerase II before entering into mitosis, may contribute to the acquisition of genetic instability in cancer cells. To date, however, very little information is available on this type of checkpoint defect in human cancers. In this study, we report for the first time that a proportion of human lung cancer cell lines did not properly arrest before entering mitosis in the presence of a catalytic, circular cramp-forming topoisomerase II inhibitor ICRF-193, whereas the decatenation G(2) checkpoint impairment was present independently of the impaired DNA damage G(2) checkpoint. In addition, the presence of decatenation G(2) checkpoint dysfunction was found to be associated with diminished activation of ataxia-telangiectasia mutated in response to ICRF-193, suggesting the potential involvement of an upstream pathway sensing incompletely catenated chromatids. Interestingly, hypersensitivity to ICRF-193 was observed in cell lines with decatenation G(2) checkpoint impairment and negligible activation of ataxia-telangiectasia mutated. These findings suggest the possible involvement of decatenation G(2) checkpoint impairment in the development of human lung cancers, as well as the potential clinical implication of selective killing of lung cancer cells with such defects by this type of topoisomerase II inhibitor.
Collapse
Affiliation(s)
- Taku Nakagawa
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chukusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, Bryant MF, Zhou T, Luche DD, Nikolaishvili-Feinberg N, Simpson DA, Cordeiro-Stone M. Caffeine and human DNA metabolism: the magic and the mystery. Mutat Res 2004; 532:85-102. [PMID: 14643431 PMCID: PMC4046582 DOI: 10.1016/j.mrfmmm.2003.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Doherty SC, McKeown SR, McKelvey-Martin V, Downes CS, Atala A, Yoo JJ, Simpson DA, Kaufmann WK. Cell Cycle Checkpoint Function in Bladder Cancer. J Natl Cancer Inst 2003; 95:1859-68. [PMID: 14679155 DOI: 10.1093/jnci/djg120] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cell cycle checkpoints function to maintain genetic stability by providing additional time for repair of DNA damage and completion of events that are necessary for accurate cell division. Some checkpoints, such as the DNA damage G1 checkpoint, are dependent on p53, whereas other checkpoints, such as the decatenation G(2) checkpoint, are not. Because bladder transitional cell carcinomas (TCCs) often contain numerous chromosomal aberrations and appear to have highly unstable genomes, we analyzed cell cycle checkpoint functions in a panel of TCC lines. METHODS Cell cycle arrest was induced in normal human fibroblasts (NHF1-hTERT) and normal human uroepithelial cells (HUCs), and TCC lines and checkpoint functions were quantified using flow cytometry and fluorescence microscopy. The inducers and checkpoints were ionizing radiation (i.e., DNA damage) (G1 and G2 checkpoints), the mitotic inhibitor colcemid (polyploidy checkpoint), or the topoisomerase II catalytic inhibitor ICRF-193 (decatenation G2 checkpoint). Four of the five TCC lines expressed mutant p53. RESULTS HUCs had an effective G1 checkpoint response to ionizing radiation, with 68% of cells inhibited from moving from G1 into S phase. By contrast, G1 checkpoint function was severely attenuated (<15% inhibition) in three of the five TCC lines and moderately attenuated (<50% inhibition) in the other two lines. NHF1-hTERT had an effective polyploidy checkpoint response, but three of five TCC lines were defective in this checkpoint. HUCs had effective ionizing radiation and decatenation G2 checkpoint responses. All TCC lines had a relatively effective G2 checkpoint response to DNA damage, although the responses of two of the TCC lines were moderately attenuated relative to HUCs. All TCC lines had a severe defect in the decatenation G2 checkpoint response. CONCLUSION Bladder TCC lines have defective cell cycle checkpoint functions, suggesting that the p53-independent decatenation G2 checkpoint may cooperate with the p53-dependent G1 checkpoints to preserve chromosomal stability and suppress bladder carcinogenesis.
Collapse
Affiliation(s)
- Sharon C Doherty
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Haggarty SJ, Koeller KM, Kau TR, Silver PA, Roberge M, Schreiber SL. Small Molecule Modulation of the Human Chromatid Decatenation Checkpoint. ACTA ACUST UNITED AC 2003; 10:1267-79. [PMID: 14700634 DOI: 10.1016/j.chembiol.2003.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After chromosome replication, the intertwined sister chromatids are disentangled by topoisomerases. The integrity of this process is monitored by the chromatid decatenation checkpoint. Here, we describe small molecule modulators of the human chromatid decatenation checkpoint identified using a cell-based, chemical genetic modifier screen. Similar to 1,2,7-trimethylyxanthine (caffeine), these small molecules suppress the G(2)-phase arrest caused by ICRF-193, a small molecule inhibitor of the enzymatic activity of topoisomerase II. Analysis of specific suppressors, here named suptopins for suppressor of Topoisomerase II inhibition, revealed distinct effects on cell cycle progression, microtubule stability, nucleocytoplasmic transport of cyclin B1, and no effect on the chromatin deacetylation checkpoint induced by trichostatin A. The suptopins provide new molecular tools for dissecting the role of topoisomerases in maintaining genomic stability and determining whether inhibiting the chromatid decatenation checkpoint sensitizes tumor cells to chemotherapeutics.
Collapse
Affiliation(s)
- Stephen J Haggarty
- Department of Molecular Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF. The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci U S A 2003; 100:3239-44. [PMID: 12629207 PMCID: PMC152276 DOI: 10.1073/pnas.0736401100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Indexed: 01/28/2023] Open
Abstract
It has been proposed that the topoisomerase II (TOP2)beta-DNA covalent complex arrests transcription and triggers 26S proteasome-mediated degradation of TOP2beta. It is unclear whether the initial trigger for proteasomal degradation is due to DNA damage or transcriptional arrest. In the current study we show that the TOP2 catalytic inhibitor 4,4-(2,3-butanediyl)-bis(2,6-piperazinedione) (ICRF-193), which traps TOP2 into a circular clamp rather than the TOP2-DNA covalent complex, can also arrest transcription. Arrest of transcription, which is TOP2beta-dependent, is accompanied by proteasomal degradation of TOP2beta. Different from TOP2 poisons and other DNA-damaging agents, ICRF-193 did not induce proteasomal degradation of the large subunit of RNA polymerase II. These results suggest that proteasomal degradation of TOP2beta induced by the TOP2-DNA covalent complex or the TOP2 circular clamp is due to transcriptional arrest but not DNA damage. By contrast, degradation of the large subunit of RNA polymerase II is due to a DNA-damage signal.
Collapse
Affiliation(s)
- Hai Xiao
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|