1
|
Kennedy AE, Barczewski AH, Arnoldy CR, Pennington JP, Tiernan KA, Hidalgo MB, Reilly CC, Wongsri T, Ragusa MJ, Grigoryan G, Mierke DF, Pellegrini M. The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition. Structure 2025; 33:691-704.e6. [PMID: 39909030 PMCID: PMC11972163 DOI: 10.1016/j.str.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
NEMO is an essential component in the activation of the canonical nuclear factor κB (NF-κB) pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR measurements and crystallization, while preserving its biological function. ZipNEMO binds IKKβ with nanomolar affinity, is amenable to heteronuclear nuclear magnetic resonance (NMR) techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The crystal structure of zipNEMO reveals a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors.
Collapse
Affiliation(s)
- Amy E Kennedy
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | - Kelly A Tiernan
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Tanyawan Wongsri
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
2
|
Seyrek K, Ivanisenko NV, König C, Lavrik IN. Modulation of extrinsic apoptotic pathway by intracellular glycosylation. Trends Cell Biol 2024; 34:728-741. [PMID: 38336591 DOI: 10.1016/j.tcb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The importance of post-translational modifications (PTMs), particularly O-GlcNAcylation, of cytoplasmic proteins in apoptosis has been neglected for quite a while. Modification of cytoplasmic proteins by a single N-acetylglucosamine sugar is a dynamic and reversible PTM exhibiting properties more like phosphorylation than classical O- and N-linked glycosylation. Due to the sparse information existing, we have only limited understanding of how GlcNAcylation affects cell death. Deciphering the role of GlcNAcylation in cell fate may provide further understanding of cell fate decisions. This review focus on the modulation of extrinsic apoptotic pathway via GlcNAcylation carried out by O-GlcNAc transferase (OGT) or by other bacterial effector proteins.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
3
|
Li S, Song S, Liu X, Zhang X, Liang X, Chang X, Zhou D, Han J, Nie Y, Guo C, Yao X, Chang M, Peng Y. Development of a Decafluorobiphenyl Cyclized Peptide Targeting the NEMO-IKKα/β Interaction that Enhances Cell Penetration and Attenuates Lipopolysaccharide-Induced Acute Lung Injury. Bioconjug Chem 2024; 35:638-652. [PMID: 38669628 DOI: 10.1021/acs.bioconjchem.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/β has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/β inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueya Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Daijun Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianting Han
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yaoyan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 422] [Impact Index Per Article: 422.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, Cai M, Chen Y. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat 2024; 73:101042. [PMID: 38219532 DOI: 10.1016/j.drup.2023.101042] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Juzheng Peng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sicheng Wang
- School of Medicine, Sun Yat-sen University, China
| | - Sicheng Peng
- School of Medicine, Sun Yat-sen University, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junye Wang
- School of Medicine, Sun Yat-sen University, China
| | - Kai Ouyang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianjun Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
6
|
Cariulo C, Martufi P, Verani M, Toledo-Sherman L, Lee R, Dominguez C, Petricca L, Caricasole A. IKBKB reduces huntingtin aggregation by phosphorylating serine 13 via a non-canonical IKK pathway. Life Sci Alliance 2023; 6:e202302006. [PMID: 37553253 PMCID: PMC10410066 DOI: 10.26508/lsa.202302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
N-terminal phosphorylation at residues T3 and S13 is believed to have important beneficial implications for the biological and pathological properties of mutant huntingtin, where inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) was identified as a candidate regulator of huntingtin N-terminal phosphorylation. The paucity of mechanistic information on IKK pathways, together with the lack of sensitive methods to quantify endogenous huntingtin phosphorylation, prevented detailed study of the role of IKBKB in Huntington's disease. Using novel ultrasensitive assays, we demonstrate that IKBKB can regulate endogenous S13 huntingtin phosphorylation in a manner, dependent on its kinase activity and known regulators. We found that the ability of IKBKB to phosphorylate endogenous huntingtin S13 is mediated through a non-canonical interferon regulatory factor3-mediated IKK pathway, distinct from the established involvement of IKBKB in mutant huntingtin's pathological mechanisms mediated via the canonical pathway. Furthermore, increased huntingtin S13 phosphorylation by IKBKB resulted in decreased aggregation of mutant huntingtin in cells, again dependent on its kinase activity. These findings point to a non-canonical IKK pathway linking S13 huntingtin phosphorylation to the pathological properties of mutant huntingtin aggregation, thought to be significant to Huntington's disease.
Collapse
Affiliation(s)
- Cristina Cariulo
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Paola Martufi
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Margherita Verani
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Leticia Toledo-Sherman
- Rainwatercf.org Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
- UCLA, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | - Lara Petricca
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Andrea Caricasole
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| |
Collapse
|
7
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
9
|
Insco ML, Abraham BJ, Dubbury SJ, Kaltheuner IH, Dust S, Wu C, Chen KY, Liu D, Bellaousov S, Cox AM, Martin BJ, Zhang T, Ludwig CG, Fabo T, Modhurima R, Esgdaille DE, Henriques T, Brown KM, Chanock SJ, Geyer M, Adelman K, Sharp PA, Young RA, Boutz PL, Zon LI. Oncogenic CDK13 mutations impede nuclear RNA surveillance. Science 2023; 380:eabn7625. [PMID: 37079685 PMCID: PMC10184553 DOI: 10.1126/science.abn7625] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/27/2023] [Indexed: 04/22/2023]
Abstract
RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Collapse
Affiliation(s)
- Megan L. Insco
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Sara J. Dubbury
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ines H. Kaltheuner
- Institute of Structural Biology, University of Bonn, Bonn, 53127, Germany
| | - Sofia Dust
- Institute of Structural Biology, University of Bonn, Bonn, 53127, Germany
| | - Constance Wu
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Kevin Y. Chen
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Stanislav Bellaousov
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Anna M. Cox
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Benjamin J.E. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850, USA
| | - Calvin G. Ludwig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Tania Fabo
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Rodsy Modhurima
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Dakarai E. Esgdaille
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, 53127, Germany
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Phillip A. Sharp
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Richard A. Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Paul L. Boutz
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
- Center for Biomedical Informatics, University of Rochester, Rochester, NY, 14642, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Ko MS, Cohen SN, Polley S, Mahata SK, Biswas T, Huxford T, Ghosh G. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. J Biol Chem 2022; 298:101864. [PMID: 35339487 PMCID: PMC9035715 DOI: 10.1016/j.jbc.2022.101864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.
Collapse
Affiliation(s)
- Myung Soo Ko
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA; Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Samantha N Cohen
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Smarajit Polley
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California, USA; Medicine, VA San Diego Health Care System, San Diego, California, USA
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
12
|
Yu Z, Gao J, Zhang X, Peng Y, Wei W, Xu J, Li Z, Wang C, Zhou M, Tian X, Feng L, Huo X, Liu M, Ye M, Guo DA, Ma X. Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth. Signal Transduct Target Ther 2022; 7:71. [PMID: 35260565 PMCID: PMC8904520 DOI: 10.1038/s41392-022-00888-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
NEMO/IKKβ complex is a central regulator of NF-κB signaling pathway, its dissociation has been considered to be an attractive therapeutic target. Herein, using a combined strategy of molecular pharmacological phenotyping, proteomics and bioinformatics analysis, Shikonin (SHK) is identified as a potential inhibitor of the IKKβ/NEMO complex. It destabilizes IKKβ/NEMO complex with IC50 of 174 nM, thereby significantly impairing the proliferation of colorectal cancer cells by suppressing the NF-κB pathway in vitro and in vivo. In addition, we also elucidated the potential target sites of SHK in the NEMO/IKKβ complex. Our study provides some new insights for the development of potent small-molecule PPI inhibitors.
Collapse
Affiliation(s)
- Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yulin Peng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Meirong Zhou
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Lei Feng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Min Liu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China.
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
13
|
Dong H, Liu Z, Wen H. Protein O-GlcNAcylation Regulates Innate Immune Cell Function. Front Immunol 2022; 13:805018. [PMID: 35185892 PMCID: PMC8850411 DOI: 10.3389/fimmu.2022.805018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolite-mediated protein posttranslational modifications (PTM) represent highly evolutionarily conserved mechanisms by which metabolic networks participate in fine-tuning diverse cellular biological activities. Modification of proteins with the metabolite UDP-N-acetylglucosamine (UDP-GlcNAc), known as protein O-GlcNAcylation, is one well-defined form of PTM that is catalyzed by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Previous studies have discovered critical roles of protein O-GlcNAcylation in many fundamental biological activities via modifying numerous nuclear and cytoplasmic proteins. A common mechanism by which O-GlcNAc affects protein function is through the cross-regulation between protein O-GlcNAcylation and phosphorylation. This is of particular importance to innate immune cell functions due to the essential role of protein phosphorylation in regulating many aspects of innate immune signaling. Indeed, as an integral component of cellular metabolic network, profound alteration in protein O-GlcNAcylation has been documented following the activation of innate immune cells. Accumulating evidence suggests that O-GlcNAcylation of proteins involved in the NF-κB pathway and other inflammation-associated signaling pathways plays an essential role in regulating the functionality of innate immune cells. Here, we summarize recent studies focusing on the role of protein O-GlcNAcylation in regulating the NF-κB pathway, other innate immune signaling responses and its disease relevance.
Collapse
Affiliation(s)
- Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States
| | - Zihao Liu
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Qian H, Yang H, Li X, Yang G, Zheng X, He T, Li S, Liu B, Wu Y, Cheng Y, Shen F. Andrographolide sulfonate attenuates alveolar hypercoagulation and fibrinolytic inhibition partly via NF-κB pathway in LPS-induced acute respiratory distress syndrome in mice. Biomed Pharmacother 2021; 143:112209. [PMID: 34649343 DOI: 10.1016/j.biopha.2021.112209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Alveolar hypercoagulation and fibrinolytic inhibition are important characteristics during acute respiratory distress syndrome (ARDS), and NF-κB p65 signaling pathway is involved to regulate these pathophysiologies. We hypothesize that targeting NF-κB signal pathway could ameliorate alveolar hypercoagulation and fibrinolyitc inhibition, thus attenuating lung injury in ARDS. PURPOSE We explore the efficacy and the potential mechanism of andrographolide sulfonate (Andro-S) on alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS in mice. METHODS ARDS was made by lipopolysaccharide (LPS) inhalation in C57BLmice. Andrographolide sulfonate (2.5, 5 and 10 mg/kg) was intraperitoneally given to the mice (once a day for three consecutive days) before LPS administration. NEMO binding domain peptide (NBD), an inhibitor of NF-κB, was used as the positive control and it replaced Andro-S in mice of NBD group. Mice in normal control received saline instead of LPS. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis of alveolar coagulation, fibrinolytic inhibition as well as of pulmonary inflammatory response after 8 h of LPS inhalation. NF-κB signal pathway in lung tissue was simultaneously determined. RESULTS Andro-S dose-dependently inhibited tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 expressions either in mRNA or in protein in lung tissue of ARDS mice, and it also decreased the concentrations of TF, PAI-1, thrombin-antithrombin complex (TAT), procollagen peptide type Ⅲ (PⅢP) while promoting the production of activated protein C (APC) in BALF. Meanwhile, Andro-S effectively inhibited inflammatory response (interleukin 1β and myeloperoxidase) induced by LPS. LPS stimulation dramatically activated NF-κB signal pathway, indicated by increased expressions of phosphorylation of p65 (p-p65), p-IKKα/β and p-IκBα and the higher p65-DNA binding activity, which were all dose-dependently reversed by Andro-S. Andro-S and NBD presented similar efficacies. CONCLUSIONS Andro-S treatment improves alveolar hypercoagulation and fibrinolytic inhibition and attenuates pulmonary inflammation in LPS-induced ARDS in mice partly through NF-κB pathway inactivation. The drug is expected to be an effective choice for ARDS.
Collapse
Affiliation(s)
- Hong Qian
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China; Department of Intensive Care Unit, The Second People's Hospital of Guiyang, 550001, China.
| | - Huilin Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xiang Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Guixia Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xinghao Zheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Tianhui He
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Shuwen Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Bo Liu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yanqi Wu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yumei Cheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Feng Shen
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| |
Collapse
|
15
|
Kumar V, Haldar S, Das NS, Ghosh S, Dhankhar P, Sircar D, Roy P. Pterostilbene-isothiocyanate inhibits breast cancer metastasis by selectively blocking IKK-β/NEMO interaction in cancer cells. Biochem Pharmacol 2021; 192:114717. [PMID: 34352281 DOI: 10.1016/j.bcp.2021.114717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/11/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
Metastasis, the main cause of breast cancer-associated fatalities, relies on many regular pathways involved in normal cell physiology and metabolism, thus, making it challenging to identify disease-specific therapeutic target(s). Chemically synthesized anti-metastatic agents are preferred for their fast and robust actions. However, these agents have adverse side effects, thus, increasingly favouring the identification of phytocompounds as suitable alternatives. Resveratrol and pterostilbene have long been established as potent anti-cancer agents. Earlier studies from our laboratory documented the anti-cancer activities associated with pterostilbene-isothiocyanate (PTER-ITC), a derivative of pterostilbene. The current study focuses on evaluating the anti-metastatic property of PTER-ITC and the underlying mechanism, by employing in silico, in vitro, and in vivo approaches. The significant anti-metastatic activity of PTER-ITC was observed in vitro against breast cancer metastatic cell line (MDA-MB-231) and in vivo in the 4T1 cell-induced metastatic mice model. Epithelial-mesenchymal transition (EMT), a hallmark of metastasis regulated by the transcription factors, Snail1 and Twist, was found to be reverted in vitro by PTER-ITC treatment. PTER-ITC blocked the activation of NF-κB/p65 and its concomitant nuclear translocation, resulting in the transcriptional repression of its target genes, Snail1 and Twist. PTER-ITC prevented the formation of IKK complex, central to NF-κB activation, by binding to the NEMO-binding domain (NBD) of IKK-β and inhibiting its interaction with NEMO (NF-κB essential modulator). According to our observations, PTER-ITC attenuated NF-κB activation selectively in cancerous cells. In conclusion, this study demonstrated that PTER-ITC is a potent anti-metastatic agent capable of targeting physiologically important pathways in a cancer-specific manner.
Collapse
Affiliation(s)
- Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Neeladri Singha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Tissue Engineering Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Poonam Dhankhar
- Structural and Protein Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
16
|
Methods to Analyze the Roles of TAK1, TRAF6, and NEMO in the Regulation of NF-κB Signaling by RANK Stimulation During Osteoclastogenesis. Methods Mol Biol 2021. [PMID: 34236644 DOI: 10.1007/978-1-0716-1669-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The skeletal system is constantly undergoing turnover in order to create strong, organized structures, requiring the bone breakdown and building properties by osteoclasts and osteoblasts, respectively. However, in pathological disease states, excessive osteoclast activity can cause bone loss leading to increase in morbidity and mortality. Osteoclasts differentiate from macrophages in the presence of various factors. M-CSF is a cytokine that is required to maintain the survival of macrophages. However, RANKL is the critical factor required for differentiation of osteoclasts. RANKL is produced from a variety of different cell types such as osteoblasts and osteocytes. RANKL binds to RANK, its receptor, on the surface of osteoclast precursors, which activates various signaling pathways to drive the transcription and production of genes important for osteoclast formation. The major signaling pathway activated by RANKL-RANK interaction is the NF-κB pathway. The NF-κB pathway is the principle inflammatory response pathway activated by a variety of stimuli such as inflammatory cytokines, genotoxic stress, and other factors. This likely explains the finding that inflammatory diseases often present with some component of increased osteoclast formation and activity, driving bone loss. Determining the signaling mechanisms downstream of RANKL can provide valuable therapeutic targets for the treatment of bone loss in various disease states.
Collapse
|
17
|
NF-κB and neutrophil extracellular traps cooperate to promote breast cancer progression and metastasis. Exp Cell Res 2021; 405:112707. [PMID: 34153301 DOI: 10.1016/j.yexcr.2021.112707] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Aberrant NF-κB activation and neutrophil extracellular traps (NETs) are associated with breast cancer progression. How NF-κB and NETs modulate each other in breast cancer development remains unclear. Here, we found that NETs induced by phorbol 12-myristate 13-acetate promote breast cancer cell progression. In turn, cancer cells-derived factors, such as IL-8 and granulocyte colony-stimulating factor, stimulate neutrophils to form NETs. Mechanistically, NETs increased the interaction of NF-κB essential modifier (NEMO) with IκB kinase (IKK)α/β and enhanced NF-κB activation. We then employed a cell-permeable peptide corresponding to the NEMO-binding domain (NBD) of IKKα/β, termed NBD peptide, which disrupts NETs-mediated NEMO interaction with IKKα/β and abolished NF-κB activation in vitro. NBD peptide also reduced IL-8 level and NETs formation, and suppressed primary tumor growth and/or lung metastasis in human breast cancer mouse xenograft models and mouse spontaneous breast cancer model. Blockade of NET formation using a peptidylarginine deiminase 4 (PAD4) pharmacologic inhibitor decreased NF-κB activation and tumor metastasis. Collectively, these data suggest that NF-κB associates with NETs to form a positive loop facilitating breast tumor progression and metastasis, and that selective inhibition of NF-κB and PAD4-dependent NETs provides an effective therapeutic approach for treating breast cancer.
Collapse
|
18
|
Zhou P, Zeng Y, Rao Z, Li Y, Zheng H, Luo R. Molecular characterization and functional analysis of duck IKKα. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103880. [PMID: 33022353 DOI: 10.1016/j.dci.2020.103880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
IκB kinase α (IKKα) is a vital component of the IKK complex, which is involved in innate immune response, inflammation, cell death and proliferation. Although the functional characteristics of IKKα have been extensively studied in mammals and fish, the roles of IKKα in avian remain largely unknown. In this study, we cloned and characterized the duck IKKα (duIKKα) gene for the first time. DuIKKα encoded a protein of 757 amino acid residues and showed high sequence identities with the goose IKKα. The duIKKα was expressed in all tested tissues, and a relatively high expression of duIKKα mRNA was detected in liver and heart. Overexpression of duIKKα dramatically increased NF-κB activity and induced the expression of duck cytokines IFN-β, IL-1β, IL-6, IL-8 and RANTES in DEFs. Knockdown of duIKKα by small interfering RNA significantly decreased LPS-, poly(I:C)-, poly(dA:dT)-, duck enteritis virus (DEV)-, or duck Tembusu virus (DTMUV)-induced NF-κB activation. Moreover, duIKKα exhibited antiviral activity against DTMUV infection. These findings provide important insights into the roles of duIKKα in avian innate immunity.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yue Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zaixiao Rao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
19
|
Song K, Cai X, Dong Y, Wu H, Wei Y, Shankavaram UT, Cui K, Lee Y, Zhu B, Bhattacharjee S, Wang B, Zhang K, Wen A, Wong S, Yu L, Xia L, Welm AL, Bielenberg DR, Camphausen KA, Kang Y, Chen H. Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. J Clin Invest 2021; 131:129374. [PMID: 32960814 PMCID: PMC7773373 DOI: 10.1172/jci129374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.
Collapse
Affiliation(s)
- Kai Song
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Cai
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Uma T. Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alana L. Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin A. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Takenaka M, Takahashi Y, Takakura Y. Intercellular delivery of NF-κB inhibitor peptide utilizing small extracellular vesicles for the application of anti-inflammatory therapy. J Control Release 2020; 328:435-443. [DOI: 10.1016/j.jconrel.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
|
21
|
Ko MS, Biswas T, Mulero MC, Bobkov AA, Ghosh G, Huxford T. Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140526. [PMID: 32853772 DOI: 10.1016/j.bbapap.2020.140526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The human IκB Kinase (IKK) is a multisubunit protein complex of two kinases and one scaffolding subunit that controls induction of transcription factor NF-κB activity. IKK behaves as an entity of aberrantly high apparent molecular weight in solution. Recent X-ray crystallographic and cryo-electron microscopy structures of individual catalytic subunits (IKK1/IKKα and IKK2/IKKβ) reveal that they are both stably folded dimeric proteins that engage in extensive homo-oligomerization through unique surfaces that are required for activation of their respective catalytic activities. The NEMO/IKKγ subunit is a predominantly coiled coil protein that is required for activation of IKK through the canonical NF-κB signaling pathway. Here we report size-exclusion chromatography, multi-angle light scattering, analytical centrifugation, and thermal denaturation analyses of full-length human recombinant NEMO as well as deletion and disease-linked variants. We observe that NEMO is predominantly a dimer in solution, although by virtue of its modular coiled coil regions NEMO exhibits complicated solution dynamics involving portions that are mutually antagonistic toward homodimerization. This behavior causes NEMO to behave as a significantly larger sized particle in solution. Analyses of NEMO in complex with IKK2 indicate that NEMO preserves this structurally dynamic character within the multisubuit complex and provides the complex-bound IKK2 further propensity toward homo-oligomerization. These observations provide critical information on the structural plasticity of NEMO subunit dimers which helps clarify its role in diseases and in IKK regulation through oligomerization-dependent phosphorylation of catalytic IKK2 subunit dimers.
Collapse
Affiliation(s)
- Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States; Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | | | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States.
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States.
| |
Collapse
|
22
|
Sehnert B, Burkhardt H, Dübel S, Voll RE. Cell-Type Targeted NF-kappaB Inhibition for the Treatment of Inflammatory Diseases. Cells 2020; 9:E1627. [PMID: 32640727 PMCID: PMC7407293 DOI: 10.3390/cells9071627] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
Deregulated NF-k activation is not only involved in cancer but also contributes to the pathogenesis of chronic inflammatory diseases like rheumatoid arthritis (RA) and multiple sclerosis (MS). Ideally, therapeutic NF-KappaB inhibition should only take place in those cell types that are involved in disease pathogenesis to maintain physiological cell functions in all other cells. In contrast, unselective NF-kappaB inhibition in all cells results in multiple adverse effects, a major hindrance in drug development. Hitherto, various substances exist to inhibit different steps of NF-kappaB signaling. However, powerful tools for cell-type specific NF-kappaB inhibition are not yet established. Here, we review the role of NF-kappaB in inflammatory diseases, current strategies for drug delivery and NF-kappaB inhibition and point out the "sneaking ligand" approach. Sneaking ligand fusion proteins (SLFPs) are recombinant proteins with modular architecture consisting of three domains. The prototype SLC1 binds specifically to the activated endothelium and blocks canonical NF-kappaB activation. In vivo, SLC1 attenuated clinical and histological signs of experimental arthritides. The SLFP architecture allows an easy exchange of binding and effector domains and represents an attractive approach to study disease-relevant biological targets in a broad range of diseases. In vivo, SLFP treatment might increase therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, and Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany;
| | - Stefan Dübel
- Institute of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| |
Collapse
|
23
|
Adapala NS, Swarnkar G, Arra M, Shen J, Mbalaviele G, Ke K, Abu-Amer Y. Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO. eLife 2020; 9:e56095. [PMID: 32202502 PMCID: PMC7145425 DOI: 10.7554/elife.56095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/22/2020] [Indexed: 01/30/2023] Open
Abstract
Inflammatory osteolysis is governed by exacerbated osteoclastogenesis. Ample evidence points to central role of NF-κB in such pathologic responses, yet the precise mechanisms underpinning specificity of these responses remain unclear. We propose that motifs of the scaffold protein IKKγ/NEMO partly facilitate such functions. As proof-of-principle, we used site-specific mutagenesis to examine the role of NEMO in mediating RANKL-induced signaling in mouse bone marrow macrophages, known as osteoclast precursors. We identified lysine (K)270 as a target regulating RANKL signaling as K270A substitution results in exuberant osteoclastogenesis in vitro and murine inflammatory osteolysis in vivo. Mechanistically, we discovered that K270A mutation disrupts autophagy, stabilizes NEMO, and elevates inflammatory burden. Specifically, K270A directly or indirectly hinders binding of NEMO to ISG15, a ubiquitin-like protein, which we show targets the modified proteins to autophagy-mediated lysosomal degradation. Taken together, our findings suggest that NEMO serves as a toolkit to fine-tune specific signals in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Gaurav Swarnkar
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Manoj Arra
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Jie Shen
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Ke Ke
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| |
Collapse
|
24
|
Wang HY, Zhao HM, Wang Y, Liu Y, Lu XY, Liu XK, Chen F, Ge W, Zuo ZY, Liu DY. Sishen Wan ® Ameliorated Trinitrobenzene-Sulfonic-Acid-Induced Chronic Colitis via NEMO/NLK Signaling Pathway. Front Pharmacol 2019; 10:170. [PMID: 30894816 PMCID: PMC6414459 DOI: 10.3389/fphar.2019.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/11/2019] [Indexed: 01/22/2023] Open
Abstract
The nuclear factor (NF)-κB signaling pathway plays an important role in the initialization and development phase of inflammatory injuries, including inflammatory bowel disease (IBD). Sishen Wan (SSW) is a classic Chinese patent medicine listed in the Chinese Pharmacopoeia, which is usually used to treat chronic colitis; however, it is unclear whether SSW can treat IBD via the NF-κB signaling pathway. In the present study, the therapeutic effect of SSW was demonstrated by the decreased index of colonic weight, macroscopic and microscopic score, and pathological observation in chronic colitis induced by trinitrobenzene sulfonic acid. In colonic mucosa of rats with chronic colitis, SSW reduced the levels of calprotectin and eliminated oxidative lesions; downregulated expression of interferon-γ, interleukin (IL)-1β and IL-17; increased expression of IL-4; and suppressed expression of NF-κB p65, and NF-κB essential modulator (NEMO)-like kinase (NLK). Furthermore, SSW inhibited ubiquitinated NEMO, ubiquitin-activated enzyme, and E2i activation, and phosphorylation of downstream proteins (cylindromatosis protein, transforming growth factor-β-activated kinase and P38). These results show that the therapeutic effects of SSW in chronic colitis were mediated by inhibiting the NEMO/NLK signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yao Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fang Chen
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Ge
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Yun Zuo
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
25
|
Lan Y, Xie H, Shi Y, Jin Q, Zhang X, Wang Y, Xie Z. NEMO‑binding domain peptide ameliorates inflammatory bone destruction in a Staphylococcus aureus‑induced chronic osteomyelitis model. Mol Med Rep 2019; 19:3291-3297. [PMID: 30816459 DOI: 10.3892/mmr.2019.9975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/17/2019] [Indexed: 11/05/2022] Open
Abstract
Osteomyelitis, which is characterized by progressive inflammatory bone destruction and resorption, is a difficult‑to‑treat infection. Staphylococcus aureus (S. aureus) is one of the major causes of this disease. This pathogenic microorganism possesses several characteristics, which facilitate its involvement in the occurrence and progression of osteomyelitis. A cell‑permeable peptide inhibitor of the IκB kinase complex, the nuclear factor (NF)‑κB essential modulator‑binding domain (NBD) peptide, has been reported to block osteoclastogenesis and may be considered a potential strategy for preventing inflammatory bone resorption. However, it remains to be determined as to whether the NBD peptide can regulate inflammation and bone resorption in S. aureus‑induced osteomyelitis. In order to investigate the role of NBD in S. aureus‑induced osteomyelitis, the present study obtained the NBD peptide, and confirmed that it inhibited receptor activator of NF‑κB ligand‑induced osteoclastogenesis in vitro. Subsequently, a bone defect was generated and S. aureus was injected into the mandible of experimental animals, in order to establish an in vivo osteomyelitis model. The present study analyzed the following three experimental groups: Untreated, treated with debridement, and treated with debridement plus NBD peptide administration. The results revealed that treatment with the NBD peptide reduced the bone defect in a 3‑dimensional manner, and reduced bone resorption. To the best of our knowledge, the present study is the first to demonstrate that, in a model of osteomyelitis caused by S. aureus, the NBD peptide serves a role in inhibiting osteolysis and promoting bone remodeling in the direction of osteogenesis. The effects were better than those produced by debridement alone, thus suggesting that it may have promising therapeutic potential in osteomyelitis.
Collapse
Affiliation(s)
- Yanhua Lan
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huizhi Xie
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yang Shi
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qianrui Jin
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaolei Zhang
- Department of General Dentistry, Hangzhou Dental Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
26
|
The azatryptophan-based fluorescent platform for in vitro rapid screening of inhibitors disrupting IKKβ-NEMO interaction. Bioorg Chem 2018; 81:504-511. [DOI: 10.1016/j.bioorg.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 01/24/2023]
|
27
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
28
|
Perinatal Hypoxic-Ischemic Encephalopathy and Neuroprotective Peptide Therapies: A Case for Cationic Arginine-Rich Peptides (CARPs). Brain Sci 2018; 8:brainsci8080147. [PMID: 30087289 PMCID: PMC6119922 DOI: 10.3390/brainsci8080147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is only used for term infants (>36 weeks gestation) in tertiary hospitals and improves outcomes in only 30% of patients. For these reasons, a more effective and easily administrable pharmacological therapeutic agent, that can be used in combination with hypothermia or alone when hypothermia cannot be applied, is urgently needed to treat pre-term (≤36 weeks gestation) and term infants suffering HIE. Several recent studies have demonstrated that cationic arginine-rich peptides (CARPs), which include many cell-penetrating peptides [CPPs; e.g., transactivator of transcription (TAT) and poly-arginine-9 (R9; 9-mer of arginine)], possess intrinsic neuroprotective properties. For example, we have demonstrated that poly-arginine-18 (R18; 18-mer of arginine) and its D-enantiomer (R18D) are neuroprotective in vitro following neuronal excitotoxicity, and in vivo following perinatal hypoxia-ischemia (HI). In this paper, we review studies that have used CARPs and other peptides, including putative neuroprotective peptides fused to TAT, in animal models of perinatal HIE. We critically evaluate the evidence that supports our hypothesis that CARP neuroprotection is mediated by peptide arginine content and positive charge and that CARPs represent a novel potential therapeutic for HIE.
Collapse
|
29
|
Zhao J, Zhang L, Mu X, Doebelin C, Nguyen W, Wallace C, Reay DP, McGowan SJ, Corbo L, Clemens PR, Wilson GM, Watkins SC, Solt LA, Cameron MD, Huard J, Niedernhofer LJ, Kamenecka TM, Robbins PD. Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS Biol 2018; 16:e2004663. [PMID: 29889904 PMCID: PMC6013238 DOI: 10.1371/journal.pbio.2004663] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 06/21/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of β subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKβ and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKβ and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lei Zhang
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Christelle Doebelin
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - William Nguyen
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Callen Wallace
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Reay
- Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| | - Sara J. McGowan
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Lana Corbo
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| | - Gabriela Mustata Wilson
- Department of Health Informatics and Information Management, College of Nursing and Health Professions, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Laura A. Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael D. Cameron
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Theodore M. Kamenecka
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Paul D. Robbins
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhuang Z, Li H, Lee H, Aguilar M, Gocho T, Ju H, Iida T, Ling J, Fu J, Wu M, Sun Y, Lu Y, Chiao PJ. NEMO peptide inhibits the growth of pancreatic ductal adenocarcinoma by blocking NF-κB activation. Cancer Lett 2017; 411:44-56. [PMID: 28951128 DOI: 10.1016/j.canlet.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
NF-κB essential modulator (NEMO) binds and regulates IκB kinase (IKK) and is required for NF-κB activation. The NEMO-binding domain peptide (NBDP) of IKK was found to inhibit NF-κB activation and promote apoptosis in cancer cells. Studies have shown that constitutive NF-κB activation, one of the signature molecular alterations in pancreatic ductal adenocarcinoma (PDAC), is a potential therapeutic target. However, preclinical and therapeutic evidence that supports direct targeting of IKK activation in therapy is lacking. The aim of this study was to determine whether the combination of NBDP and gemcitabine would sensitize pancreatic cancer to the gemcitabine. We confirmed that NBDP inhibited NF-κB activation and found that NBDP indeed promoted chemo-sensitivity to gemcitabine in PDAC. NBDP increased PARP and caspase 3 cleavage in the apoptosis pathway, increased apoptosis of PDAC cells, and suppressed PDAC cell growth in vitro. In addition, NBDP combined with gemcitabine significantly decreased levels of NF-κB activity and inhibited the growth of PDAC in vivo in an orthotopic xenograft mouse model. Mechanistic investigations showed that NBDP effectively competed with NEMO/IKKγ for binding to IKKs and thus inhibited IKK and NF-κB activation, down-regulated expression levels of Erk, and decreased PDAC cell growth. Taken together, our current data demonstrate that NBDP sensitizes human pancreatic cancer to gemcitabine by inhibiting the NF-κB pathway. NBDP is a potential adjuvant chemotherapeutic agent for treating pancreatic cancer.
Collapse
Affiliation(s)
- Zhuonan Zhuang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Hao Li
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, PR China; Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Harold Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mitzi Aguilar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Takashi Gocho
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Department of Surgery, Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Huaiqiang Ju
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Tomonori Iida
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Department of Surgery, Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
31
|
Sehnert B, Burkhardt H, Finzel S, Dübel S, Voll RE. The sneaking ligand approach for cell type-specific modulation of intracellular signalling pathways. Clin Immunol 2017; 186:14-20. [PMID: 28867254 DOI: 10.1016/j.clim.2017.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Small molecules interfering with intracellular signalling pathways are used in the treatment of multiple diseases including RA. However, small molecules usually affect signalling in most cell types, not only in those which need to be targeted. This general inhibition of signalling pathways causes often adverse effects, which could be avoided by cell type-specific inhibitors. For cell-type specific modulation of signal transduction, we developed the sneaking ligand fusion proteins (SLFPs). SLFPs contain three domains: (1) the binding domain mediating cell type-specific targeting and endocytosis; (2) the endosomal release sequence releasing the effector domain into the cytoplasm; (3) the effector domain modulating signalling. Using our SLFP NF-kappaB inhibitor termed SLC1 we demonstrated that cell-type-specific modulation of intracellular signalling pathways is feasible, that endothelial NF-kappaB activation is critical for arthritis and peritonitis and that SLFPs help to identify disease-relevant pathways in defined cell types. Hence, SLFPs may improve risk-benefit ratios of therapeutic interventions.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Harald Burkhardt
- Division of Rheumatology, Department of Internal Medicine II, Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technical University Braunschweig, Braunschweig, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Wang Z, Li MY, Mi C, Wang KS, Ma J, Jin X. Mollugin Has an Anti-Cancer Therapeutic Effect by Inhibiting TNF-α-Induced NF-κB Activation. Int J Mol Sci 2017; 18:ijms18081619. [PMID: 28933726 PMCID: PMC5578011 DOI: 10.3390/ijms18081619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
The NF-κB signaling pathway plays a pivotal role in regulating the immune response and inflammation. However, it has been shown that NF-κB also has a major role in oncogenesis. Therefore, NF-κB inhibitors have been considered as potential drugs against cancer. Herein, we searched for NF-κB inhibitors from natural sources and identified mollugin from the roots of Rubia cordifolia L. as an inhibitor of NF-κB activation. We found that mollugin significantly inhibited the expression of an NF-κB reporter gene induced by tumor necrosis factor (TNF)-α in a dose-dependent manner. Moreover, mollugin inhibited TNF-α-induced phosphorylation and nuclear translocation of p65, phosphorylation and degradation of inhibitor of κB (IκBα), and IκB kinase (IKK) phosphorylation. Furthermore, we discovered that pretreatment of cells with mollugin prevented the TNF-α-induced expression of NF-κB target genes, such as genes related to proliferation (COX-2, Cyclin D1 and c-Myc), anti-apoptosis (Bcl-2, cIAP-1 and survivin), invasion (MMP-9 and ICAM-1), and angiogenesis (VEGF). We also demonstrated that mollugin potentiated TNF-α-induced apoptosis and inhibited proliferation of HeLa cells. We further demonstrated in vivo that mollugin suppressed the growth of tumor xenografts derived from HeLa cells. Taken together, mollugin may be a valuable candidate for cancer treatment by targeting NF-κB.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
33
|
Wu D, Huang RT, Hamanaka RB, Krause M, Oh MJ, Kuo CH, Nigdelioglu R, Meliton AY, Witt L, Dai G, Civelek M, Prabhakar NR, Fang Y, Mutlu GM. HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. eLife 2017; 6:e25217. [PMID: 28556776 PMCID: PMC5495571 DOI: 10.7554/elife.25217] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown. Using transcriptomics and bioenergetic analysis, we discovered that DF induces glycolysis and reduces mitochondrial respiratory capacity in human aortic ECs. DF-induced metabolic reprogramming required hypoxia inducible factor-1α (HIF-1α), downstream of NAD(P)H oxidase-4 (NOX4)-derived reactive oxygen species (ROS). HIF-1α increased glycolytic enzymes and pyruvate dehydrogenase kinase-1 (PDK-1), which reduces mitochondrial respiratory capacity. Swine aortic arch endothelia exhibited elevated ROS, NOX4, HIF-1α, and glycolytic enzyme and PDK1 expression, suggesting that DF leads to metabolic reprogramming in vivo. Inhibition of glycolysis reduced inflammation suggesting a causal relationship between flow-induced metabolic changes and EC activation. These findings highlight a previously uncharacterized role for flow-induced metabolic reprogramming and inflammation in ECs.
Collapse
Affiliation(s)
- David Wu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Ru-Ting Huang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Matt Krause
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Myung-Jin Oh
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Cheng-Hsiang Kuo
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Recep Nigdelioglu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Leah Witt
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, United States
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, The University of Chicago, Chicago, United States
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, United States
| |
Collapse
|
34
|
Okawada M, Wilson MW, Larsen SD, Lipka E, Hillfinger J, Teitelbaum DH. Blockade of the renin-angiotensin system prevents acute and immunologically relevant colitis in murine models. Pediatr Surg Int 2016; 32:1103-1114. [PMID: 27670279 DOI: 10.1007/s00383-016-3965-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Blockade of the renin-angiotensin system (RAS) has been shown to alleviate inflammatory processes in the gastrointestinal tract. The aim of this study was to determine if blockade of the RAS would be effective in an immunologically relevant colitis model, and to compare outcome with an acute colitis model. METHODS A losartan analog, CCG-203025 (C23H26ClN3O5S) containing a highly polar sulfonic acid moiety that we expected would allow localized mucosal antagonism with minimal systemic absorption was selected as an angiotensin II type 1a receptor antagonist (AT1aR-A). Two colitis models were studied: (1) Acute colitis was induced in 8- to 10-week-old C57BL/6J mice by 2.5 % dextran sodium sulfate (DSS, in drinking water) for 7 days. (2) IL10-/-colitis Piroxicam (200 ppm) was administered orally in feed to 5-week-old IL-10-/-mice (C57BL/6J background) for 14 days followed by enalaprilat (ACE-I), CCG-203025 or PBS administered transanally for 14 days. RESULTS In the DSS model, weight loss and histologic score for CCG-203025 were better than with placebo. In the IL10-/-model, ACE-I suppressed histologic damage better than CCG-203025. Both ACE-I and CCG-203025 reduced pro-inflammatory cytokines and chemokines. CONCLUSIONS This study demonstrated the therapeutic efficacy of both ACE-I and AT1aR-A for preventing the development of both acute and immunologically relevant colitis.
Collapse
Affiliation(s)
- Manabu Okawada
- Section of Pediatric Surgery, Department of Surgery, The University of Michigan Medical School, Mott Children's Hospital, F3970, Ann Arbor, MI, 48109-0245, USA. .,Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Michael W Wilson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI, 48108, USA
| | - John Hillfinger
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI, 48108, USA
| | - Daniel H Teitelbaum
- Section of Pediatric Surgery, Department of Surgery, The University of Michigan Medical School, Mott Children's Hospital, F3970, Ann Arbor, MI, 48109-0245, USA
| |
Collapse
|
35
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016; 55:14997-15001. [PMID: 27791341 PMCID: PMC5587901 DOI: 10.1002/anie.201607990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 11/06/2022]
Abstract
Aberrant canonical NF-κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many non-canonical NF-κB functions. Here we show that a selective peptide-based inhibitor of canonical NF-κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a non-labile bond, shows an about 10-fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NF-κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many protein-protein interactions mediated by such structures.
Collapse
Affiliation(s)
- Paul A Bruno
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Andrew R Henderson
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
36
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
37
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul A. Bruno
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Andrew R. Henderson
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Anna K. Mapp
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| |
Collapse
|
38
|
Swarnkar G, Shim K, Nasir AM, Seehra K, Chen HPT, Mbalaviele G, Abu-Amer Y. Myeloid Deletion of Nemo Causes Osteopetrosis in Mice Owing to Upregulation of Transcriptional Repressors. Sci Rep 2016; 6:29896. [PMID: 27435916 PMCID: PMC4951754 DOI: 10.1038/srep29896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
The transcription factor NF-κB is central to numerous physiologic processes including bone development, and its activation is controlled by IKKγ (also called NEMO), the regulatory subunit of IKK complex. NEMO is X-linked, and mutations in this gene result in Incontinentia Pigmenti in human hemizygous females. In mice, global deficiency causes embryonic lethality. In addition, certain point mutations in the NEMO (IKBKG) human gene manifest skeletal defects implicating NEMO in the regulation of bone homeostasis. To specifically investigate such role, we conditionally deleted Nemo from osteoclast and myeloid progenitors. Morphometric, histologic, and molecular analyses demonstrate that myeloid NEMO deletion causes osteopetrosis in mice. Mechanistically, NEMO deficiency hampered activation of IKK complex in osteoclast precursors, causing arrest of osteoclastogenesis and apoptosis. Interestingly, inhibiting apoptosis by genetic ablation of TNFr1 significantly increased cell survival, but failed to rescue osteoclastogenesis or reverse osteopetrosis. Based on this observation, we analyzed the expression of different regulators of osteoclastogenesis and discovered that NEMO deletion leads to increased RBPJ expression, resulting in a decrease of Blimp1 expression. Consequently, expression of IRF8 and Bcl6 which are targets of Blimp1 and potent osteoclastogenic transcriptional repressors, is increased. Thus, NEMO governs survival and osteoclast differentiation programs through serial regulation of multiple transcription factors.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Amjad M Nasir
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Kuljeet Seehra
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Hung-Po Tim Chen
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
39
|
De Falco F, Di Giovanni C, Cerchia C, De Stefano D, Capuozzo A, Irace C, Iuvone T, Santamaria R, Carnuccio R, Lavecchia A. Novel non-peptide small molecules preventing IKKβ/NEMO association inhibit NF-κB activation in LPS-stimulated J774 macrophages. Biochem Pharmacol 2016; 104:83-94. [PMID: 26776306 DOI: 10.1016/j.bcp.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 01/29/2023]
Abstract
Nuclear Factor-κB (NF-κB) is a transcription factor regulating several genes involved in important physiological and pathological processes. NF-κB has been found constitutively activated in many inflammatory/immune diseases. In addition, a positive correlation between persistent activation of NF-κB and tumor promotion has been demonstrated. Since the IKK (IκB kinase) activation is an indispensable component of all pro-inflammatory signaling pathways leading to NF-κB activation, considerable efforts have been done in order to develop novel anti-inflammatory therapeutics targeting IKK. Association of the IKK complex relies on critical interactions between the C-terminus NBD (NEMO binding domain) of the catalytic subunits IKKα and IKKβ, and the regulatory subunit NEMO (NF-κB Essential Modulator). Thus, this IKK/NEMO interacting region provides an attractive target to prevent the IKK complex formation and NF-κB activation. In this regard, we have identified non-peptide small molecule disruptors of IKKβ/NEMO complex through a structure-based virtual screening (SBVS) of the NCI chemical library. Phenothiazine 22 and its close analogues (22.2, 22.4 and 22.10) were able to reduce nitrite production and iNOS mRNA expression in J774 murine macrophages stimulated with LPS for 24h. These effects were associated with a reduced NF-κB/DNA binding activity as well as a decreased expression of phosphorylated IKKβ, IκBα and NF-κB/p65 in these cells. These observations suggest that compound 22 and its three structural analogues by inhibiting IKKβ/NEMO association mediate the blockage of NF-κB signaling pathway and may prove effective in treatment of diseases in which the IKK/NF-κB pathway is dysregulated.
Collapse
Affiliation(s)
- Francesca De Falco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Di Giovanni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniela De Stefano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonella Capuozzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
40
|
Hussein MMA, Ahmed MM. The Th1/Th2 paradigm in lambda cyhalothrin-induced spleen toxicity: The role of thymoquinone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:14-21. [PMID: 26645134 DOI: 10.1016/j.etap.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
This study investigates the retrofitted role of thymoquinone (TQ) in the Th1/Th2 paradigm imbalance in lambda-cyhalothrin (LCT) treated rats. Four groups of male Wistar rats were formed: Group I served as control. Group II received 5 mg TQ/(kg bw) daily. Group III received 0.6 mg LCT/(kg bw). Group IV was treated with TQ and LCT. All treatments were given orally for 10 weeks. The LCT-treated group elicited a significant increase in MDA and NO levels with up-regulation of NF-κB/p65 and pro-inflammatory genes expression and their levels. Meanwhile, GSH and immunoglobulins concentrations were markedly decreased concomitant with lessening the activities of antioxidant enzymes and anti-inflammatory cytokine genes mRNA levels. The co-administration of TQ and LCT improved the altered antioxidant enzymes activities and concentration of cytokines with attenuation of NF-κB/p65 mRNA. These data support the antioxidant role of TQ in the Th1/Th2 imbalance paradigm during LCT toxicity.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt.
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| |
Collapse
|
41
|
Sneaking-ligand fusion proteins attenuate serum transfer arthritis by endothelium-targeted NF-κB inhibition. Methods Mol Biol 2015; 1280:579-91. [PMID: 25736773 DOI: 10.1007/978-1-4939-2422-6_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear transcription factor κB (NF-κB) is a crucial mediator of the inflammatory and immune response. The contribution of dysregulated NF-κB is established in the pathogenesis of arthritis. Accordingly, NF-κB represents an attractive molecular target for the development of therapeutic interventions in inflammatory diseases. However, ubiquitous pharmacologic suppression of NF-κB activity is limited by the hazards of toxic side effects and profound immunosuppression. Cell type-specific NF-κB inhibition with the "sneaking-ligand" approach could identify disease-relevant cell types and improve risk-benefit ratios of therapeutic interventions. Vascular endothelial cells act as a gatekeeper and are crucial for leukocyte recruitment into sites of inflammation. The endothelium-specific NF-κB inhibitor SLC1 ameliorates serum transfer arthritis in mice and protects against inflammation and cartilage destruction. In this chapter, we describe the SLC1 treatment schedule in the K/BxN serum transfer arthritis and present the evaluation system to analyze arthritis severity and histopathological alterations.
Collapse
|
42
|
Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1405-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Reay DP, Bastacky SI, Wack KE, Stolz DB, Robbins PD, Clemens PR. D-Amino Acid Substitution of Peptide-Mediated NF-κB Suppression in mdx Mice Preserves Therapeutic Benefit in Skeletal Muscle, but Causes Kidney Toxicity. Mol Med 2015; 21:442-52. [PMID: 26018805 DOI: 10.2119/molmed.2013.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) patients and the mdx mouse model of DMD, chronic activation of the classical nuclear factor-κB (NF-κB) pathway contributes to the pathogenesis that causes degeneration of muscle fibers, inflammation and fibrosis. Prior studies demonstrate that inhibition of inhibitor of κB kinase (IKK)-mediated NF-κB activation using L-isomer NF-κB essential modulator (NEMO)-binding domain (NBD) peptide-based approaches reduce muscle pathology in the mdx mouse. For our studies, the NBD peptide is synthesized as a fusion peptide with an eight-lysine (8K) protein transduction domain to facilitate intracellular delivery. We hypothesized that the d-isoform peptide could have a greater effect than the naturally occurring L-isoform peptide due to the longer persistence of the D-isoform peptide in vivo. In this study, we compared systemic treatment with low (1 mg/kg) and high (10 mg/kg) doses of L- and D-isomer 8K-wild-type-NBD peptide in mdx mice. Treatment with both L- or D-isoform 8K-wild-type-NBD peptide resulted in decreased activation of NF-κB and improved histology in skeletal muscle of the mdx mouse. However, we observed kidney toxicity (characterized by proteinuria), increased serum creatinine, activation of NF-κB and pathological changes in kidney cortex that were most severe with treatment with the D-isoform of 8K-wild-type-NBD peptide. The observed toxicity was also seen in normal mice.
Collapse
Affiliation(s)
- Daniel P Reay
- Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh, Pennsylvania, United States of America
| | - Kathryn E Wack
- Department of Cell Biology, University of Pittsburgh, Pennsylvania, United States of America
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pennsylvania, United States of America.,Center for Biologic Imaging, University of Pittsburgh, Pennsylvania, United States of America
| | - Paul D Robbins
- Department of Metabolism and Aging, Scripps Florida, Jupiter, Florida, United States of America
| | - Paula R Clemens
- Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
44
|
Ng PY, Ireland DJ, Keelan JA. Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front Immunol 2015; 6:166. [PMID: 25941525 PMCID: PMC4403506 DOI: 10.3389/fimmu.2015.00166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022] Open
Abstract
Preterm birth (PTB) at less than 37 weeks of gestation is the leading cause of neonatal morbidity and mortality. Intrauterine infection (IUI) due to microbial invasion of the amniotic cavity is the leading cause of early PTB (<32 weeks). Commensal genital tract Ureaplasma and Mycoplasma species, as well as Gram-positive and Gram-negative bacteria, have been associated with IUI-induced PTB. Bacterial activation of Toll-like receptors and other pattern recognition receptors initiates a cascade of inflammatory signaling via the NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways, prematurely activating parturition. Antenatal antibiotic treatment has had limited success in preventing PTB or fetal inflammation. Administration of anti-inflammatory drugs with antibiotics could be a viable therapeutic option to prevent PTB and fetal complications in women at risk of IUI and inflammation. In this mini-review, we will discuss the potential for anti-inflammatory drugs in obstetric care, focusing on the class of drugs termed “cytokine suppressive anti-inflammatory drugs” or CSAIDs. These inhibitors work by specifically targeting the NF-κB and p38 MAPK inflammatory signaling pathways. Several CSAIDs are discussed, together with clinical and toxicological considerations associated with the administration of anti-inflammatory agents in pregnancy.
Collapse
Affiliation(s)
- Pearl Y Ng
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Demelza J Ireland
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Jeffrey A Keelan
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| |
Collapse
|
45
|
Mukherjee N, Houston TJ, Cardenas E, Ghosh R. To be an ally or an adversary in bladder cancer: the NF-κB story has not unfolded. Carcinogenesis 2015; 36:299-306. [PMID: 25543121 PMCID: PMC4425835 DOI: 10.1093/carcin/bgu321] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/09/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Signaling and regulation of transcription factor nuclear factor-kappaB (NF-κB) has been an area of extensive research since its first discovery nearly three decades ago. Members of the NF-κB family have been reported to critically mediate a multitude of responses in normal cells. Therefore, it is not surprising that NF-κB function can go awry and result in pathological conditions including cancer. Despite its critical importance, the functional role of NF-κB has not received the same attention in cancers of all tissue types. In the case of cancer of the urinary bladder, which is the second most common urologic cancer, the involvement of NF-κB in the development of superficial or muscle invasive disease and during cancer recurrence is rudimentary at best. Nuclear expression of p65/RelA is seen in bladder cancer patients and has been found to negatively affect survival of patients with superficial and muscle invasive disease. Despite these observations, the exact mechanism of NF-κB upregulation and function remains unknown. Furthermore, the emergence of a tumor suppressive role for NF-κB in recent years suggests that the family may play the role of a double-edged sword in cancer, which remains unexplored in bladder cancer. The challenge now is to delineate the increasing complexity of this pathway in the development and progression of bladder cancer. Here, we review key aspects of the current knowledge of signaling and regulation by the NF-κB family focusing on its controversial role in cancer and highlight the importance of studying NF-κB in bladder cancer in particular.
Collapse
Affiliation(s)
| | | | | | - Rita Ghosh
- Department of Urology, Department of Pharmacology, Department of Molecular Medicine and Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
46
|
McCorkell KA, May MJ. NEMO-binding domain peptide inhibition of inflammatory signal-induced NF-κB activation in vivo. Methods Mol Biol 2015; 1280:505-525. [PMID: 25736769 DOI: 10.1007/978-1-4939-2422-6_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
NF-κB comprises a family of transcription factors that regulate the expression of diverse gene families essential for inflammatory and immune responses as well as cell survival and cell death pathways. Aberrant NF-κB transcriptional activity plays pivotal roles in a large number of human pathologies, including a variety of cancers and chronic inflammatory diseases. Therefore, there has been a large increase in studies aimed at identifying and testing drugs or small molecule inhibitors that would specifically block NF-κB activation in inflammatory diseases and cancer. In this chapter, we describe an in vivo system to test the inhibitory effects of the NEMO-binding domain (NBD) peptide on NF-κB activation specifically in the vascular endothelium and lymphocytes in mice. We demonstrate that pretreatment of mice with the NBD peptide reduces the NF-κB induced gene expression of cell adhesion molecules and DNA-binding activity following systemic LPS stimulation. These methods can be further used to test alternate inhibitors for effects on NF-κB signaling in murine endothelium and immune cells.
Collapse
Affiliation(s)
- Kelly A McCorkell
- Department of Animal Biology, The University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA, 19104, USA
| | | |
Collapse
|
47
|
Gaurnier-Hausser A, Mason NJ. Assessment of canonical NF-κB activity in canine diffuse large B-cell lymphoma. Methods Mol Biol 2015; 1280:469-504. [PMID: 25736768 DOI: 10.1007/978-1-4939-2422-6_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Companion dogs with spontaneous malignancies are clinically relevant models in which to study the corresponding human diseases and potential therapies. In both dogs and people, non-Hodgkin's lymphoma (NHL) is the most common hematopoietic malignancy. Diffuse large B-cell lymphoma (DLBCL) is the most common NHL subtype in dogs and people, sharing similar biologic, behavioral, genetic, and molecular characteristics in both species. One such molecular characteristic is the constitutive activation of the canonical NF-κB pathway, which in health regulates the expression of target genes that control cellular proliferation, survival, and immune and inflammatory responses as well as multidrug resistance. We found that canine and human DLBCL patients share similar NF-κB activity profiles. Using the cell-permeable NBD peptide, which blocks NF-κB signaling, we inhibited constitutive NF-κB activity and induced apoptosis of primary canine malignant B cells in vitro. In addition, we found that NBD peptide administration to dogs with relapsed B-cell lymphoma inhibited the expression of NF-κB target genes and reduced tumor burden. In this chapter, we describe our methods for processing canine malignant lymphoid tissue. We also describe our methods for treating the lymphocytes isolated from this tissue with NBD peptide and evaluating constitutive canonical NF-κB activity in these cells via immunoblot and electrophoretic mobility shift assay (EMSA). We highlight the nuances of working with canine primary cells.
Collapse
Affiliation(s)
- Anita Gaurnier-Hausser
- Department of Professional Studies in the Health Sciences, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
48
|
Zhou L, Yeo AT, Ballarano C, Weber U, Allen KN, Gilmore TD, Whitty A. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO). Biochemistry 2014; 53:7929-44. [PMID: 25400026 PMCID: PMC4278678 DOI: 10.1021/bi500920n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Human NEMO (NF-κB
essential modulator) is a 419 residue scaffolding
protein that, together with catalytic subunits IKKα and IKKβ,
forms the IκB kinase (IKK) complex, a key regulator of NF-κB
pathway signaling. NEMO is an elongated homodimer comprising mostly
α-helix. It has been shown that a NEMO fragment spanning residues
44–111, which contains the IKKα/β binding site,
is structurally disordered in the absence of bound IKKβ. Herein
we show that enforcing dimerization of NEMO1–120 or NEMO44–111 constructs through introduction
of one or two interchain disulfide bonds, through oxidation of the
native Cys54 residue and/or at position 107 through a Leu107Cys mutation,
induces a stable α-helical coiled-coil structure that is preorganized
to bind IKKβ with high affinity. Chemical and thermal denaturation
studies showed that, in the context of a covalent dimer, the ordered
structure was stabilized relative to the denatured state by up to
3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers
upon treatment of mammalian cells with H2O2.
Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells,
reconstituted TNF-induced NF-κB signaling in NEMO-deficient
cells, and interacted with TRAF6. Our results indicate that the IKKβ
binding domain of NEMO possesses an ordered structure in the unbound
state, provided that it is constrained within a dimer as is the case
in the constitutively dimeric full-length NEMO protein. The stability
of the NEMO coiled coil is maintained by strong interhelix interactions
in the region centered on residue 54. The disulfide-linked constructs
we describe herein may be useful for crystallization of NEMO’s
IKKβ binding domain in the absence of bound IKKβ, thereby
facilitating the structural characterization of small-molecule inhibitors.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry and ‡Department of Biology, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
Fakhrudin N, Waltenberger B, Cabaravdic M, Atanasov AG, Malainer C, Schachner D, Heiss EH, Liu R, Noha SM, Grzywacz AM, Mihaly-Bison J, Awad EM, Schuster D, Breuss JM, Rollinger JM, Bochkov V, Stuppner H, Dirsch VM. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br J Pharmacol 2014; 171:1676-86. [PMID: 24329519 PMCID: PMC3966748 DOI: 10.1111/bph.12558] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor NF-κB orchestrates many pro-inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF-κB pathway with a novel chemical scaffold, which was isolated via a bioactivity-guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation-related disorders. EXPERIMENTAL APPROACH A NF-κB luciferase reporter gene assay was used to identify NF-κB pathway inhibitors from H. sucuuba extracts. Monitoring of TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin by flow cytometry was used to confirm NF-κB inhibition in endothelial cells, and thioglycollate-induced peritonitis in mice to confirm effects in vivo. Western blotting and transfection experiments were used to investigate the mechanism of action of plumericin. KEY RESULTS Plumericin inhibited NF-κB-mediated transactivation of a luciferase reporter gene (IC50 1 μM), abolished TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin in endothelial cells and suppressed thioglycollate-induced peritonitis in mice. Plumericin exerted its NF-κB pathway inhibitory effect by blocking IκB phosphorylation and degradation. Plumericin also inhibited NF-κB activation induced by transfection with the constitutively active catalytic subunit of the IκB kinase (IKK-β), suggesting IKK involvement in the inhibitory action of this natural product. CONCLUSION AND IMPLICATIONS Plumericin is a potent inhibitor of NF-κB pathways with a new chemical scaffold. It could be further explored as a novel anti-inflammatory lead compound.
Collapse
Affiliation(s)
- N Fakhrudin
- Department of Pharmacognosy, University of Vienna, Vienna, Austria; Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Habineza Ndikuyeze G, Gaurnier-Hausser A, Patel R, Baldwin AS, May MJ, Flood P, Krick E, Propert KJ, Mason NJ. A phase I clinical trial of systemically delivered NEMO binding domain peptide in dogs with spontaneous activated B-cell like diffuse large B-cell lymphoma. PLoS One 2014; 9:e95404. [PMID: 24798348 PMCID: PMC4010398 DOI: 10.1371/journal.pone.0095404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023] Open
Abstract
Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL.
Collapse
Affiliation(s)
- Georges Habineza Ndikuyeze
- Division of Hematology/Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anita Gaurnier-Hausser
- Office of Professional Studies in the Health Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reema Patel
- Antech Diagnostics, New Hyde Park, New York, United States of America
| | - Albert S. Baldwin
- TheraLogics, Inc., Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael J. May
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patrick Flood
- 7-020G Katz Centre for Pharmacy and Health Research, The University of Alberta, Edmonton, Alberta, Canada
| | - Erika Krick
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathleen J. Propert
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nicola J. Mason
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|