1
|
Xiong F, Jia S, Wang G, Wang S, Zhou L, Liu Q, Shen Y, Tu N, Zhu S, Song X, Zhang W. Proteomic Study Between Interstitial Channels Along Meridians and Adjacent Areas in Mini-Pigs. Biomolecules 2025; 15:804. [PMID: 40563444 DOI: 10.3390/biom15060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/28/2025] Open
Abstract
OBJECTIVE This study explores the material basis and biological functions of meridian interstitial channels in mini-pigs proximal to the stomach meridian by analyzing differential proteomics between interstitial channels and adjacent non-interstitial channel tissues. METHODS Liquid chromatography-mass spectrometry (LC-MS) under data-dependent acquisition mode was employed to analyze and identify the proteome of subcutaneous connective tissues along the stomach meridian and adjacent tissues. SWATH MSALL method and omicsbean online analysis platforms were used for protein quantification and differential proteomic analysis. Differential proteins were subjected to Gene Ontology annotation and KEGG pathway analysis to understand their functions and biological processes. Combining traditional Chinese meridian theory with modern meridian research, proteins most relevant to meridian functions were selected, and their expression levels were assessed using Western blotting. RESULTS GO annotation and KEGG pathway analysis revealed differences in molecular functions, biological processes, and metabolic pathways among differential proteins. Most downregulated proteins were enzyme functional proteins involved in amino acid metabolism (GOT1), adenosine nucleotide balance conversion (AK1), and calcium ion-binding processes (ANXA6). Most upregulated proteins were structural proteins in the extracellular matrix-collagen proteins (COL3A1, COL6A1, COL6A3, COL6A6, COL12A1, COL14A1) and proteoglycans (DCN, BGN, FMOD)-involved in influencing and regulating collagen fiber generation and arrangement. Intriguingly, almost all differential proteins were associated with gastrointestinal diseases, implying a pathological correlation of differential proteins in the stomach meridian interstitial channel. CONCLUSIONS The stomach meridian interstitial channels in mini-pigs show 72 differentially expressed proteins compared to adjacent tissues. These differences include the upregulation of structural proteins and downregulation of functional proteins, potentially forming the molecular biological basis for the structural and functional specificity of meridians.
Collapse
Affiliation(s)
- Feng Xiong
- Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan 430056, China
- School of Medicine, Jianghan University, Wuhan 430056, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuyong Jia
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangjun Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuyou Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Zhou
- Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan 430056, China
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qi Liu
- College of Acupuncture and Massage, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaohua Shen
- College of Acupuncture and Massage, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Na Tu
- College of Acupuncture and Massage, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuxiu Zhu
- Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan 430056, China
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaojing Song
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weibo Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Meester JAN, Hebert A, Bastiaansen M, Rabaut L, Bastianen J, Boeckx N, Ashcroft K, Atwal PS, Benichou A, Billon C, Blankensteijn JD, Brennan P, Bucks SA, Campbell IM, Conrad S, Curtis SL, Dasouki M, Dent CL, Eden J, Goel H, Hartill V, Houweling AC, Isidor B, Jackson N, Koopman P, Korpioja A, Kraatari-Tiri M, Kuulavainen L, Lee K, Low KJ, Lu AC, McManus ML, Oakley SP, Oliver J, Organ NM, Overwater E, Revencu N, Trainer AH, Trivedi B, Turner CLS, Whittington R, Zankl A, Zentner D, Van Laer L, Verstraeten A, Loeys BL. Expanding the clinical spectrum of biglycan-related Meester-Loeys syndrome. NPJ Genom Med 2024; 9:22. [PMID: 38531898 PMCID: PMC10966070 DOI: 10.1038/s41525-024-00413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Anne Hebert
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Bastiaansen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Laura Rabaut
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jarl Bastianen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Nele Boeckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Kathryn Ashcroft
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals, NHS Foundation Trust, Leeds, UK
| | - Paldeep S Atwal
- Genomic and Personalized Medicine, Atwal Clinic, Palm Beach, FL, USA
| | - Antoine Benichou
- Department of Internal and Vascular Medicine, CHU Nantes, Nantes Université, Nantes, France
| | - Clarisse Billon
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Paris, Assistance Publique Hôpitaux de Paris, Paris, France
- Université de Paris Cité, Inserm, PARCC, Paris, France
| | - Jan D Blankensteijn
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Paul Brennan
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Ian M Campbell
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Stephanie L Curtis
- Bristol Heart Institute, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK
| | - Majed Dasouki
- Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA
| | - Carolyn L Dent
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Bristol, UK
| | - James Eden
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | | | - Verity Hartill
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals, NHS Foundation Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Nicola Jackson
- Clinical Genetics Service, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pieter Koopman
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Anita Korpioja
- Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Minna Kraatari-Tiri
- Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Liina Kuulavainen
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kelvin Lee
- Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA
| | - Karen J Low
- Clinical Genetics Department, University Hospitals Bristol and Weston NHS Foundation Trust St Michael's Hospital, Bristol, UK
- University of Bristol, Canynge Hall, Bristol, UK
| | - Alan C Lu
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Morgan L McManus
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen P Oakley
- John Hunter Hospital, New Lambton Heights, NSW, Australia
- College of Health, Medicine and Wellbeing, School of Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - James Oliver
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Nicole M Organ
- John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Eline Overwater
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Alison H Trainer
- Department of Genomic Medicine, The Royal Melbourne Hospital and University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Bhavya Trivedi
- Department of Medical Genetics & Genomics, AdventHealth Medical Group, Orlando, FL, USA
| | - Claire L S Turner
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - Andreas Zankl
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Dominica Zentner
- Department of Genomic Medicine, The Royal Melbourne Hospital and University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Freiburg CD, Solomon-Degefa H, Freiburg P, Mörgelin M, Bolduc V, Schmitz S, Ala P, Muntoni F, Behrmann E, Bönnemann CG, Schiavinato A, Paulsson M, Wagener R. The UCMD-Causing COL6A1 ( c.930 + 189 C > T) Intron Mutation Leads to the Secretion and Aggregation of Single Mutated Collagen VI α1 Chains. Hum Mutat 2023; 2023:6892763. [PMID: 40225172 PMCID: PMC11919215 DOI: 10.1155/2023/6892763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 04/05/2025]
Abstract
Collagen VI is a unique member of the collagen family. Its assembly is a complex multistep process and the vulnerability of the process is manifested in muscular diseases. Mutations in COL6A1, COL6A2, and COL6A3 lead to the severe Ullrich Congenital Muscular Dystrophy (UCMD) and a spectrum of disease of varying severity including the milder Bethlem muscular dystrophy. The recently identified dominant intronic mutation in COL6A1 (c.930 + 189C > T) leads to the partial in-frame insertion of a pseudoexon between exon 11 and exon 12. The pseudoexon is translated into 24 amino acid residues in the N-terminal region of the triple helix and results in the interruption of the typical G-X-Y motif. This recurrent de novo mutation leads to UCMD with a severe progression within the first decade of life. Here, we demonstrate that a mutation-specific antibody detects the mutant chain colocalizing with wild type collagen VI in the endomysium in patient muscle. Surprisingly, in the cell culture of patient dermal fibroblasts, the mutant chain is secreted as a single α chain, while in parallel, normal collagen VI tetramers are assembled with the wild-type α1 chain. The mutant chain cannot be incorporated into collagen VI tetramers but forms large aggregates in the extracellular matrix that may retain the ability to interact with collagen VI and potentially with other molecules. Also, α1 chain-deficient WI-26 VA4 cells transfected with the mutant α1 chain do not assemble collagen VI tetramers but, instead, form aggregates. Interestingly, both the wild type and the mutant single α1 chains form amorphous aggregates when expressed in HEK293 cells in the absence of α2 and α3 chains. The detection of aggregated, assembly incompetent, mutant collagen VI α1 chains provides novel insights into the disease pathophysiology of UCMD patients with the COL6A1 (c.930 + 189C > T) mutation.
Collapse
Affiliation(s)
- Carolin D. Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Patrick Freiburg
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sebastian Schmitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Elmar Behrmann
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Jiang X, Boutin T, Vitart V. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening. Front Genet 2023; 14:1171217. [PMID: 37621707 PMCID: PMC10445647 DOI: 10.3389/fgene.2023.1171217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background: Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. Methods: 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. Results and discussion: 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.
Collapse
Affiliation(s)
- Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genetics and Molecular Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
6
|
Phan V, Hathazi D, Preuße C, Czech A, Freier E, Shema G, Zahedi RP, Roos A. Molecular mechanisms in chloroquine-exposed muscle cells elucidated by combined proteomic and microscopic studies. Neuropathol Appl Neurobiol 2023; 49:e12877. [PMID: 36633103 DOI: 10.1111/nan.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Chloroquine (CQ) is an antimalarial drug with a growing number of applications as recently demonstrated in attempts to treat Covid-19. For decades, it has been well known that skeletal and cardiac muscle cells might display vulnerability against CQ exposure resulting in the clinical manifestation of a CQ-induced myopathy. In line with the known effect of CQ on inhibition of the lysosomal function and thus cellular protein clearance, the build-up of autophagic vacuoles along with protein aggregates is a histological hallmark of the disease. Given that protein targets of the perturbed proteostasis are still not fully discovered, we applied different proteomic and immunological-based studies to improve the current understanding of the biochemical nature of CQ-myopathy. METHODS To gain a comprehensive understanding of the molecular pathogenesis of this acquired myopathy and to define proteins targets as well as pathophysiological processes beyond impaired proteolysis, utilising CQ-treated C2C12 cells and muscle biopsies derived from CQ-myopathy patients, we performed different proteomic approaches and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, in addition to immunohistochemical studies. RESULTS Our combined studies confirmed an impact of CQ-exposure on proper protein processing/folding and clearance, highlighted changes in the interactome of p62, a known aggregation marker and hereby identified the Rett syndrome protein MeCP2 as being affected. Moreover, our approach revealed-among others-a vulnerability of the extracellular matrix, cytoskeleton and lipid homeostasis. CONCLUSION We demonstrated that CQ exposure (secondarily) impacts biological processes beyond lysosomal function and linked a variety of proteins with known roles in the manifestation of other neuromuscular diseases.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Denisa Hathazi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Corinna Preuße
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Artur Czech
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Erik Freier
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Gerta Shema
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, Department of Biochemistry and Medical Genetics, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB, Canada
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Kahle ER, Patel N, Sreenivasappa HB, Marcolongo MS, Han L. Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:67-81. [PMID: 36055517 PMCID: PMC9691605 DOI: 10.1016/j.pbiomolbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensing at the interface of a cell and its surrounding microenvironment is an essential driving force of physiological processes. Understanding molecular activities at the cell-matrix interface has the potential to provide novel targets for improving tissue regeneration and early disease intervention. In the past few decades, the advancement of atomic force microscopy (AFM) has offered a unique platform for probing mechanobiology at this crucial microdomain. In this review, we describe key advances under this topic through the use of an integrated system of AFM (as a biomechanical testing tool) with complementary immunofluorescence (IF) imaging (as an in situ navigation system). We first describe the body of work investigating the micromechanics of the pericellular matrix (PCM), the immediate cell micro-niche, in healthy, diseased, and genetically modified tissues, with a focus on articular cartilage. We then summarize the key findings in understanding cellular biomechanics and mechanotransduction, in which, molecular mechanisms governing transmembrane ion channel-mediated mechanosensing, cytoskeleton remodeling, and nucleus remodeling have been studied in various cell and tissue types. Lastly, we provide an overview of major technical advances that have enabled more in-depth studies of mechanobiology, including the integration of AFM with a side-view microscope, multiple optomicroscopy, a fluorescence recovery after photobleaching (FRAP) module, and a tensile stretching device. The innovations described here have contributed greatly to advancing the fundamental knowledge of extracellular matrix biomechanics and cell mechanobiology for improved understanding, detection, and intervention of various diseases.
Collapse
Affiliation(s)
- Elizabeth R Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Harini B Sreenivasappa
- Cell Imaging Center, Office of Research and Innovation, Drexel University, PA 19104, United States
| | - Michele S Marcolongo
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
8
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Meester JAN, De Kinderen P, Verstraeten A, Loeys BL. The role of biglycan in the healthy and thoracic aneurysmal aorta. Am J Physiol Cell Physiol 2022; 322:C1214-C1222. [PMID: 35476501 DOI: 10.1152/ajpcell.00036.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as TGF-β and BMPs and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney lung, the immune system and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focusses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Pauline De Kinderen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
11
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
13
|
Leiphart RJ, Pham H, Harvey T, Komori T, Kilts TM, Shetye SS, Weiss SN, Adams SM, Birk DE, Soslowsky LJ, Young MF. Coordinate roles for collagen VI and biglycan in regulating tendon collagen fibril structure and function. Matrix Biol Plus 2022; 13:100099. [PMID: 35036900 PMCID: PMC8749075 DOI: 10.1016/j.mbplus.2021.100099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.
Collapse
Affiliation(s)
- Ryan J. Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hai Pham
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Harvey
- Carnegie Institution for Science, Department of Embryology, The Johns Hopkins University, USA
| | - Taishi Komori
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tina M. Kilts
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snehal S. Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila M. Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - David E. Birk
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Marian F. Young
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Sabatelli P, Merlini L, Di Martino A, Cenni V, Faldini C. Early Morphological Changes of the Rectus Femoris Muscle and Deep Fascia in Ullrich Congenital Muscular Dystrophy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031252. [PMID: 35162283 PMCID: PMC8834967 DOI: 10.3390/ijerph19031252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a severe form of muscular dystrophy caused by the loss of function of collagen VI, a critical component of the muscle-tendon matrix. Magnetic resonance imaging of UCMD patients’ muscles shows a peculiar rim of abnormal signal at the periphery of each muscle, and a relative sparing of the internal part. The mechanism/s involved in the early fat substitution of muscle fiber at the periphery of muscles remain elusive. We studied a muscle biopsy of the rectus femoris/deep fascia (DF) of a 3-year-old UCMD patient, with a homozygous mutation in the COL6A2 gene. By immunohistochemical and ultrastructural analysis, we found a marked fatty infiltration at the interface of the muscle with the epimysium/DF and an atrophic phenotype, primarily in fast-twitch fibers, which has never been reported before. An unexpected finding was the widespread increase of interstitial cells with long cytoplasmic processes, consistent with the telocyte phenotype. Our study documents for the first time in a muscle biopsy the peculiar pattern of outside-in muscle degeneration followed by fat substitution as already shown by muscle imaging, and an increase of telocytes in the interstitium of the deep fascia, which highlights a potential involvement of this structure in the pathogenesis of UCMD.
Collapse
Affiliation(s)
- Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366755; Fax: +39-051-4689922
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Vittoria Cenni
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
16
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
18
|
Abstract
Meester-Loeys syndrome is an X-linked form of syndromic thoracic aortic aneurysm, characterized by the involvement of multiple organ systems. More specifically, the cardiovascular, skeletal, craniofacial, cutaneous and neurological systems are affected. Clear clinical overlap with Marfan syndrome and Loeys-Dietz syndrome is observed. Aortic dissections occur typically at young ages and are most often observed in males. Meester-Loeys syndrome is caused by loss-of-function mutations in BGN, encoding the small leucine-rich proteoglycan biglycan. Although functional consequences of these mutations remain largely elusive, increased TGF-β signaling has been observed. Novel insights will provide opportunities for preventive therapeutic interventions.
Collapse
|
19
|
Proteoglycans and Diseases of Soft Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:127-138. [PMID: 34807417 DOI: 10.1007/978-3-030-80614-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.
Collapse
|
20
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
21
|
Han B, Li Q, Wang C, Chandrasekaran P, Zhou Y, Qin L, Liu XS, Enomoto-Iwamoto M, Kong D, Iozzo RV, Birk DE, Han L. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2021; 29:1181-1192. [PMID: 33915295 PMCID: PMC8319061 DOI: 10.1016/j.joca.2021.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To delineate the activities of decorin and biglycan in the progression of post-traumatic osteoarthritis (PTOA). DESIGN Three-month-old inducible biglycan (BgniKO) and decorin/biglycan compound (Dcn/BgniKO) knockout mice were subjected to the destabilization of the medial meniscus (DMM) surgery to induce PTOA. The OA phenotype was evaluated by assessing joint structure and sulfated glycosaminoglycan (sGAG) staining via histology, surface collagen fibril nanostructure and calcium content via scanning electron microscopy, tissue modulus via atomic force microscopy-nanoindentation, as well as subchondral bone structure and meniscus ossification via micro-computed tomography. Outcomes were compared with previous findings in the inducible decorin (DcniKO) knockout mice. RESULTS In the DMM model, BgniKO mice developed similar degree of OA as the control (0.44 [-0.18 1.05] difference in modified Mankin score), different from the more severe OA phenotype observed in DcniKO mice (1.38 [0.91 1.85] difference). Dcn/BgniKO mice exhibited similar histological OA phenotype as DcniKO mice (1.51 [0.97 2.04] difference vs control), including aggravated loss of sGAGs, salient surface fibrillation and formation of osteophyte. Meanwhile, Dcn/BgniKO mice showed further cartilage thinning than DcniKO mice, resulting in the exposure of underlying calcified tissues and aberrantly high surface modulus. BgniKO and Dcn/BgniKO mice developed altered subchondral trabecular bone structure in both Sham and DMM groups, while DcniKO and control mice did not. CONCLUSION In PTOA, decorin plays a more crucial role than biglycan in regulating cartilage degeneration, while biglycan is more important in regulating subchondral bone structure. The two have distinct activities and modest synergy in the pathogenesis of PTOA.
Collapse
Affiliation(s)
- B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - C Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - P Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Y Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - L Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - X S Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - M Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - D Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - D E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States.
| |
Collapse
|
22
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
23
|
Castagnaro S, Gambarotto L, Cescon M, Bonaldo P. Autophagy in the mesh of collagen VI. Matrix Biol 2021; 100-101:162-172. [DOI: 10.1016/j.matbio.2020.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
|
24
|
Padhi A, Danielsson BE, Alabduljabbar DS, Wang J, Conway DE, Kapania RK, Nain AS. Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets. Adv Biol (Weinh) 2021; 5:e2000592. [PMID: 33759402 DOI: 10.1002/adbi.202000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments' spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob-like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers' fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body-fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho-associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Deema S Alabduljabbar
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Ji Wang
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Rakesh K Kapania
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
IGF-1 Upregulates Biglycan and Decorin by Increasing Translation and Reducing ADAMTS5 Expression. Int J Mol Sci 2021; 22:ijms22031403. [PMID: 33573338 PMCID: PMC7866853 DOI: 10.3390/ijms22031403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Proteoglycan (PG) is a glycosaminoglycan (GAG)-conjugated protein essential for maintaining tissue strength and elasticity. The most abundant skin PGs, biglycan and decorin, have been reported to decrease as skin ages. Insulin-like growth factor-1 (IGF-1) is important in various physiological functions such as cell survival, growth, and apoptosis. It is well known that the serum level of IGF-1 decreases with age. Therefore, we investigated whether and how IGF-1 affects biglycan and decorin. When primary cultured normal human dermal fibroblasts (NHDFs) were treated with IGF-1, protein levels of biglycan and decorin increased, despite no difference in mRNA expression. This increase was not inhibited by transcription blockade using actinomycin D, suggesting that it is mediated by IGF-1-induced enhanced translation. Additionally, both mRNA and protein expression of ADAMTS5, a PG-degrading enzyme, were decreased in IGF-1-treated NHDFs. Knockdown of ADAMTS5 via RNA interference increased protein expression of biglycan and decorin. Moreover, mRNA and protein expression of ADAMTS5 increased in aged human skin tissues compared to young tissue. Overall, IGF-1 increases biglycan and decorin, which is achieved by improving protein translation to increase synthesis and preventing ADAMTS5-mediated degradation. This suggests a new role of IGF-1 as a regulator for biglycan and decorin in skin aging process.
Collapse
|
26
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
27
|
Pham HT, Kram V, Dar QA, Komori T, Ji Y, Mohassel P, Rooney J, Li L, Kilts TM, Bonnemann C, Lamande S, Young MF. Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Sci Rep 2020; 10:13749. [PMID: 32792616 PMCID: PMC7426410 DOI: 10.1038/s41598-020-70730-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Collapse
Affiliation(s)
- Hai T Pham
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Qurratul-Ain Dar
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jachinta Rooney
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Li
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shireen Lamande
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem 2020; 68:747-762. [PMID: 32623936 DOI: 10.1369/0022155420937371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Josephina A N Meester
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| |
Collapse
|
29
|
Mukai C, Choi E, Sams KL, Klampen EZ, Anguish L, Marks BA, Rice EJ, Wang Z, Choate LA, Chou SP, Kato Y, Miller AD, Danko CG, Coonrod SA. Chromatin run-on sequencing analysis finds that ECM remodeling plays an important role in canine hemangiosarcoma pathogenesis. BMC Vet Res 2020; 16:206. [PMID: 32571313 PMCID: PMC7310061 DOI: 10.1186/s12917-020-02395-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/29/2020] [Indexed: 01/20/2023] Open
Abstract
Background Canine visceral hemangiosarcoma (HSA) is a highly aggressive cancer of endothelial origin that closely resembles visceral angiosarcoma in humans, both clinically and histopathologically. Currently there is an unmet need for new diagnostics and therapies for both forms of this disease. The goal of this study was to utilize Chromatin run-on sequencing (ChRO-seq) and immunohistochemistry (IHC) to identify gene and protein expression signatures that may be important drivers of HSA progression. Results ChRO-seq was performed on tissue isolated from 17 HSA samples and 4 normal splenic samples. Computational analysis was then used to identify differentially expressed genes and these factors were subjected to gene ontology analysis. ChRO-seq analysis revealed over a thousand differentially expressed genes in HSA tissue compared with normal splenic tissue (FDR < 0.005). Interestingly, the majority of genes overexpressed in HSA tumor tissue were associated with extracellular matrix (ECM) remodeling. This observation correlated well with our histological analysis, which found that HSA tumors contain a rich and complex collagen network. Additionally, we characterized the protein expression patterns of two highly overexpressed molecules identified in ChRO-seq analysis, podoplanin (PDPN) and laminin alpha 4 (LAMA4). We found that the expression of these two ECM-associated factors appeared to be largely limited to transformed endothelial cells within the HSA lesions. Conclusion Outcomes from this study suggest that ECM remodeling plays an important role in HSA progression. Additionally, our study identified two potential novel biomarkers of HSA, PDPN and LAMA4. Interestingly, given that function-blocking anti-PDPN antibodies have shown anti-tumor effects in mouse models of canine melanoma, our studies raise the possibility that these types of therapeutic strategies could potentially be developed for treating canine HSA.
Collapse
Affiliation(s)
- Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Eunju Choi
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kelly L Sams
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elena Zu Klampen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lynne Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brooke A Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
32
|
Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations. Cells 2020; 9:cells9020409. [PMID: 32053901 PMCID: PMC7072441 DOI: 10.3390/cells9020409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/31/2023] Open
Abstract
Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function. To gain further insight into the role of collagen VI in human tendon structure and function, we performed ultrastructural, biochemical, and RT-PCR analysis on tendon biopsies and on cell cultures derived from two patients affected with BM and UCMD. In vitro studies revealed striking alterations in the collagen VI network, associated with disruption of the collagen VI-NG2 (Collagen VI-neural/glial antigen 2) axis and defects in cell polarization and migration. The organization of extracellular matrix (ECM) components, as regards collagens I and XII, was also affected, along with an increase in the active form of metalloproteinase 2 (MMP2). In agreement with the in vitro alterations, tendon biopsies from collagen VI-related myopathy patients displayed striking changes in collagen fibril morphology and cell death. These data point to a critical role of collagen VI in tendon matrix organization and cell behavior. The remodeling of the tendon matrix may contribute to the muscle dysfunction observed in BM and UCMD patients.
Collapse
|
33
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
34
|
Abstract
Purpose: Biglycan is a proteoglycan of the small leucine-rich repeat family. It is present in all connective tissues and plays key structural and signaling roles. This review aimed to compile available evidence in the characteristics and distribution of biglycan and its glycosylated and non-glycosylated forms in connective tissues with a specific focus on the contribution to homeostasis of bone and changes of biglycan structure with aging.Methods: The Pubmed database was searched and included the terms "biglycan", "proteoglycans", "glycosaminoglycans", "bone", "osteoblast", "osteocyte", "osteoclast", "aging", "inflammation", "cartilage". Abstracts were appraised and a series of original articles and reviews studied to generate this narrative review.Results: Based on the search, biglycan significantly affects bone development and homeostasis and can be significantly changed by the aging process in several connective tissues, which in turn affects the behavior of tissue and cell responses in aged networks. Further, as the understanding of the various forms of biglycan in vivo is expanded and the function of its components in vitro is dissected, this proteoglycan can potentially serve as a therapeutic or biomarker molecule to detect tissue destruction.Conclusions: Biglycan is a key player in skeletal bone homeostasis, and overall, there is more evidence on the role of biglycan in development and less in the adult physiological or diseased young and aged systems. Further understanding of its conformation, degradation peptides and post-translational modifications will be required to understand the role of biglycan in bone maintenance and to support the development of treatments for age-related bone dysfunctions.
Collapse
Affiliation(s)
- Patricia A Miguez
- Adams School of Dentistry, Division of Comprehensive Oral Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Xu J, Luo H, Yu M, Yang C, Shu Y, Gong B, Lin Y, Wang J. Association of polymorphism rs11656696 in GAS7 with primary open-Angle Glaucoma in a Chinese Population. Ophthalmic Genet 2019; 40:237-241. [PMID: 31269845 DOI: 10.1080/13816810.2019.1627465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: It has been shown that genetic factors play an important role in the pathogenesis of primary open-angle glaucoma (POAG). This study was conducted to investigate the association between the polymorphism rs11656696 located in the growth arrest-specific 7 gene (GAS7) and POAG. Methods: A cohort of 799 unrelated POAG patients and 799 unrelated control subjects was enrolled in this case-control association study. The polymorphism rs11656696 was genotyped using the SNaPshot method. The genotype and allele frequencies were evaluated using the χ2 tests. Results: The allele frequency distribution of rs11656696 in the GAS7 gene showed that there was significant difference between POAG cases and controls (P= .006448, OR = 0.82, 95%CI = (0.72-0.95). The minor "A" allele frequency of this polymorphism was 0.477 in the POAG cases, whereas it was 0.526 in controls, suggesting a protective effect for POAG. Significant associations were detected under the homozygous model (p = .006425, OR = 0.68, 95%CI = 0.51-0.90) and recessive model (p = .0003432, OR = 0.66, 95%CI = 0.52-0.84), indicating that subjects carrying rs11656696 AA genotype were less likely to suffer from POAG than those carrying AC/CC genotypes. Conclusion: This case-control association study showed that polymorphism rs11656696 in GAS7 is related to POAG and might be a protective factor against POAG.
Collapse
Affiliation(s)
- Jiaxin Xu
- a School of Clinic Medicine , Southwest Medical University , Luzhou , Sichuan , China
| | - Huanchao Luo
- b Department of Clinical Laboratory , Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Man Yu
- c Department of Ophthalmology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Chen Yang
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Yi Shu
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Bo Gong
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Yin Lin
- a School of Clinic Medicine , Southwest Medical University , Luzhou , Sichuan , China.,d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Jin Wang
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| |
Collapse
|
36
|
Ali MS, Wang X, Lacerda CMR. The effect of physiological stretch and the valvular endothelium on mitral valve proteomes. Exp Biol Med (Maywood) 2019; 244:241-251. [PMID: 30722697 PMCID: PMC6425102 DOI: 10.1177/1535370219829006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT This work is important to the field of heart valve pathophysiology as it provides new insights into molecular markers of mechanically induced valvular degeneration as well as the protective role of the valvular endothelium. These discoveries reported here advance our current knowledge of the valvular endothelium and how its removal essentially takes valve leaflets into an environmental shock. In addition, it shows that static conditions represent a mild pathological state for valve leaflets, while 10% cyclic stretch provides valvular cell quiescence. These findings impact the field by informing disease stages and by providing potential new drug targets to reverse or slow down valvular change before it affects cardiac function.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Carla MR Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| |
Collapse
|
37
|
Roedig H, Nastase MV, Wygrecka M, Schaefer L. Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 2019; 286:2965-2979. [PMID: 30776184 DOI: 10.1111/febs.14791] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Madalina Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry Faculty of Medicine Universities of Giessen and Marburg Lung Center Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
38
|
Wang Y, Zhang Y, Su X, Wang H, Yang W, Zan L. Cooperative and Independent Functions of the miR-23a~27a~24-2 Cluster in Bovine Adipocyte Adipogenesis. Int J Mol Sci 2018; 19:ijms19123957. [PMID: 30544847 PMCID: PMC6321175 DOI: 10.3390/ijms19123957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
The miR-23a~27a~24-2 cluster is an important regulator in cell metabolism. However, the cooperative and independent functions of this cluster in bovine adipocyte adipogenesis have not been elucidated. In this study, we found that expression of the miR-23a~27a~24-2 cluster was induced during adipogenesis and this cluster acted as a negative regulator of adipogenesis. miR-27a and miR-24-2 were shown to inhibit adipogenesis by directly targeting glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) and diacylglycerol O-acyltransferase 2 (DGAT2), both of which promoted adipogenesis. Meanwhile, miR-23a and miR-24-2 were shown to target decorin (DCN), glucose-6-phosphate dehydrogenase (G6PD), and lipoprotein lipase (LPL), all of which repressed adipogenesis in this study. Thus, the miR-23a~27a~24-2 cluster exhibits a non-canonical regulatory role in bovine adipocyte adipogenesis. To determine how the miR-23a~27a~24-2 cluster inhibits adipogenesis while targeting anti-adipogenic genes, we identified another target gene, fibroblast growth factor 11 (FGF11), a positive regulator of adipogenesis, that was commonly targeted by the entire miR-23a~27a~24-2 cluster. Our findings suggest that the miR-23a~27a~24-2 cluster fine-tunes the regulation of adipogenesis by targeting two types of genes with pro- or anti-adipogenic effects. This balanced regulatory role of miR-23a~27a~24-2 cluster finally repressed adipogenesis.
Collapse
Affiliation(s)
- Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yingying Zhang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Xiaotong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| |
Collapse
|
39
|
Mohassel P, Foley AR, Bönnemann CG. Extracellular matrix-driven congenital muscular dystrophies. Matrix Biol 2018; 71-72:188-204. [PMID: 29933045 DOI: 10.1016/j.matbio.2018.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle function relies on the myofibrillar apparatus inside myofibers as well as an intact extracellular matrix surrounding each myofiber. Muscle extracellular matrix (ECM) plays several roles including but not limited to force transmission, regulation of growth factors and inflammatory responses, and influencing muscle stem cell (i.e. satellite cell) proliferation and differentiation. In most myopathies, muscle ECM undergoes remodeling and fibrotic changes that may be maladaptive for normal muscle function and recovery. In addition, mutations in skeletal muscle ECM and basement proteins can cause muscle disease. In this review, we summarize the clinical features of two of the most common congenital muscular dystrophies, COL6-related dystrophies and LAMA2-related dystrophies, which are caused by mutations in muscle ECM and basement membrane proteins. The study of clinical features of these diseases has helped to inform basic research and understanding of the biology of muscle ECM. In return, basic studies of muscle ECM have provided the conceptual framework to develop therapeutic interventions for these and other similar disorders of muscle.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America.
| |
Collapse
|
40
|
Crossman DJ, Shen X, Jüllig M, Munro M, Hou Y, Middleditch M, Shrestha D, Li A, Lal S, Dos Remedios CG, Baddeley D, Ruygrok PN, Soeller C. Increased collagen within the transverse tubules in human heart failure. Cardiovasc Res 2018; 113:879-891. [PMID: 28444133 DOI: 10.1093/cvr/cvx055] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
Abstract
Aims In heart failure transverse-tubule (t-tubule) remodelling disrupts calcium release, and contraction. T-tubules in human failing hearts exhibit increased labelling by wheat germ agglutinin (WGA), a lectin that binds to the dystrophin-associated glycoprotein complex. We hypothesized changes in this complex may explain the increased WGA labelling and contribute to t-tubule remodelling in the failing human heart. In this study we sought to identify the molecules responsible for this increased WGA labelling. Methods and results Confocal and super-resolution fluorescence microscopy and proteomic analyses were used to quantify left ventricle samples from healthy donors and patients with idiopathic dilated cardiomyopathy (IDCM). Confocal microscopy demonstrated both WGA and dystrophin were located at t-tubules. Super-resolution microscopy revealed that WGA labelling of t-tubules is largely located within the lumen while dystrophin was restricted to near the sarcolemma. Western blots probed with WGA reveal a 5.7-fold increase in a 140 kDa band in IDCM. Mass spectrometry identified this band as type VI collagen (Col-VI) comprised of α1(VI), α2(VI), and α3(VI) chains. Pertinently, mutations in Col-VI cause muscular dystrophy. Western blotting identified a 2.4-fold increased expression and 3.2-fold increased WGA binding of Col-VI in IDCM. Confocal images showed that Col-VI is located in the t-tubules and that their diameter increased in the IDCM samples. Super-resolution imaging revealed Col-VI was restricted to the t-tubule lumen where increases were associated with displacement in the sarcolemma as identified from dystrophin labelling. Samples were also labelled for type I, III, and IV collagen. Both confocal and super-resolution imaging identified that these collagens were also present within t-tubule lumen. Conclusion Increased expression and labelling of collagen in IDCM samples indicates fibrosis may contribute to t-tubule remodelling in human heart failure.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Xin Shen
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Mia Jüllig
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Michelle Munro
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Yufeng Hou
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Darshan Shrestha
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Amy Li
- Bosch Institute, University of Sydney, Fisher Road Sydney, NSW 2006, Australia
| | - Sean Lal
- Bosch Institute, University of Sydney, Fisher Road Sydney, NSW 2006, Australia
| | | | - David Baddeley
- Department of Cell Biology, Yale University, West Campus, 300 Heffernan Drive, Haven, CT 06515, USA
| | - Peter N Ruygrok
- Department of Cardiology, Auckland City Hospital, Auckland 1042, New Zealand
| | - Christian Soeller
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.,Living Systems Institute and Biomedical Physics, University of Exeter, Stocker Road, Exeter EX4QL, UK
| |
Collapse
|
41
|
Andrlová H, Mastroianni J, Madl J, Kern JS, Melchinger W, Dierbach H, Wernet F, Follo M, Technau-Hafsi K, Has C, Rao Mittapalli V, Idzko M, Herr R, Brummer T, Ungefroren H, Busch H, Boerries M, Narr A, Ihorst G, Vennin C, Schmitt-Graeff A, Minguet S, Timpson P, Duyster J, Meiss F, Römer W, Zeiser R. Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-β1 expression. Oncotarget 2018; 8:42901-42916. [PMID: 28476030 PMCID: PMC5522114 DOI: 10.18632/oncotarget.17160] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/14/2017] [Indexed: 02/04/2023] Open
Abstract
Novel targeted and immunotherapeutic approaches have revolutionized the treatment of metastatic melanoma. A better understanding of the melanoma-microenvironment, in particular the interaction of cells with extracellular matrix molecules, may help to further improve these new therapeutic strategies.We observed that the extracellular matrix molecule biglycan (Bgn) was expressed in certain human melanoma cells and primary fibroblasts when evaluated by microarray-based gene expression analysis. Bgn expression in the melanoma tissues correlated with low overall-survival and low progression-free-survival in patients. To understand the functional role of Bgn we used gene-targeted mice lacking functional Bgn. Here we observed that melanoma growth, metastasis-formation and tumor-related death were reduced in Bgn-/- mice compared to Bgn+/+ mice. In vitro invasion of melanoma cells into organotypic-matrices derived from Bgn-/- fibroblasts was reduced compared to melanoma invasion into Bgn-proficient matrices. Tissue stiffness as determined by atomic-force-microscopy was reduced in Bgn-/- matrices. Isolation of melanoma cells and fibroblasts from the stiffer Bgn+/+ matrices revealed an increase in integrin-β1 expression compared to the Bgn-/- fibroblast matrices. Overexpression of integrin-β1 in B16-melanoma cells abolished the survival benefit seen in Bgn-/- mice. Consistent with the studies performed in mice, the abundance of Bgn-expression in human melanoma samples positively correlated with the expression of integrin-β1, which is in agreement with results from the organotypic invasion-assay and the in vivo mouse studies.This study describes a novel role for Bgn-related tissue stiffness in the melanoma-microenvironment via regulation of integrin-β1 expression by melanoma cells in both mice and humans.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Justin Mastroianni
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert Ludwigs University, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Johannes S Kern
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Heide Dierbach
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Florian Wernet
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Marie Follo
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Kristin Technau-Hafsi
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | | | - Marco Idzko
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | - Ricarda Herr
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany
| | - Tilman Brummer
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany
| | | | - Hauke Busch
- First Department of Medicine, University of Lübeck, Lübeck, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Narr
- Department of Immunology, BIOSS Center for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, University Medical Center, Freiburg, Germany
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Annette Schmitt-Graeff
- Department of Pathology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, BIOSS Center for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Justus Duyster
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert Ludwigs University, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Crossman DJ, Jayasinghe ID, Soeller C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma? Biophys Rev 2017; 9:919-929. [PMID: 28695473 DOI: 10.1007/s12551-017-0273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200-400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
44
|
Rämisch S, Pramhed A, Tillgren V, Aspberg A, Logan DT. Crystal structure of human chondroadherin: solving a difficult molecular-replacement problem usingde novomodels. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:53-63. [DOI: 10.1107/s205979831601980x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023]
Abstract
Chondroadherin (CHAD) is a cartilage matrix protein that mediates the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats (LRR) flanked by cysteine-rich domains. CHAD makes important interactions with collagen as well as with cell-surface heparin sulfate proteoglycans and α2β1integrins. The integrin-binding site is located in a region of hitherto unknown structure at the C-terminal end of CHAD. Peptides based on the C-terminal human CHAD (hCHAD) sequence have shown therapeutic potential for treating osteoporosis. This article describes a still-unconventional structure solution by phasing withde novomodels, the first of a β-rich protein. Structure determination of hCHAD using traditional, though nonsystematic, molecular replacement was unsuccessful in the hands of the authors, possibly owing to a combination of low sequence identity to other LRR proteins, four copies in the asymmetric unit and weak translational pseudosymmetry. However, it was possible to solve the structure by generating a large number ofde novomodels for the central LRR domain usingRosettaand multiple parallel molecular-replacement attempts usingAMPLE. The hCHAD structure reveals an ordered C-terminal domain belonging to the LRRCT fold, with the integrin-binding motif (WLEAK) being part of a regular α-helix, and suggests ways in which experimental therapeutic peptides can be improved. The crystal structure itself and docking simulations further support that hCHAD dimers form in a similar manner to other matrix LRR proteins.
Collapse
|
45
|
Meester JAN, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S, Waitzman K, Young L, Markham LW, Vogt J, Richer J, Beauchesne LM, Unger S, Superti-Furga A, Prsa M, Dhillon R, Reyniers E, Dietz HC, Wuyts W, Mortier G, Verstraeten A, Van Laer L, Loeys BL. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 2016; 19:386-395. [PMID: 27632686 PMCID: PMC5207316 DOI: 10.1038/gim.2016.126] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Pintelon
- Department of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Lana Van Hoorick
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Simon De Belder
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Kathryn Waitzman
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Luciana Young
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Larry W Markham
- Divisions of Pediatric and Adult Cardiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Luc M Beauchesne
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sheila Unger
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Milan Prsa
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rami Dhillon
- The Heart Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Edwin Reyniers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Harry C Dietz
- Howard Hughes Medical Institute, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
46
|
Sardone F, Santi S, Tagliavini F, Traina F, Merlini L, Squarzoni S, Cescon M, Wagener R, Maraldi NM, Bonaldo P, Faldini C, Sabatelli P. Collagen VI–NG2 axis in human tendon fibroblasts under conditions mimicking injury response. Matrix Biol 2016; 55:90-105. [DOI: 10.1016/j.matbio.2016.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 01/07/2023]
|
47
|
Etrych T, Boustta M, Leclercq L, Vert M. Release of Polyanions from Polyelectrolyte Complexes by Selective Degradation of the Polycation. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506062974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major problems associated with analyzing polyelectrolyte complexes is the separation of strongly bound oppositely charged polymeric components. As part of a work aimed at better understanding the factors that affect polyelectrolyte complex formation and stability, an investigation of the possibility to release and analyze the polyanion, after hydrolytic or enzymatic degradation of the partner polycation, was made. Mixtures of poly(acrylic acid) or poly(L-lysine citramide) polyanions with poly(L-lysine) or poly(amino serinate) polycations were investigated. For each polycation-polyanion couple, four complex fractions were obtained by adding the polycation to the polyanion according to a titration protocol. The selective degradation of the polycation within the different complex fractions was investigated after the complex was disrupted with a NaCl solution. The molecular weights of the recovered polyanionic macromolecules were assessed by both static light scattering and size exclusion chromatography. The data supported previous findings that complexation was selective according to the molecular weight of the polyanion for a given polycation. The lower the degree of neutralization of the polyanion negative charges by the polycation positive charges, the greater the molecular weight of the complexed polyanionic macromolecules.
Collapse
Affiliation(s)
- T. Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, Prague 6, 162 06, Czech Republic
| | - M. Boustta
- Research Centre for Artificial Biopolymers - UMR CNRS 5473, University of Montpellier 1 - Faculty of Pharmacy, 15 Avenue Charles Flahault - BP 14491, F-34093 Montpellier Cedex 5, France
| | - L. Leclercq
- Research Centre for Artificial Biopolymers - UMR CNRS 5473, University of Montpellier 1 - Faculty of Pharmacy, 15 Avenue Charles Flahault - BP 14491, F-34093 Montpellier Cedex 5, France,
| | - M. Vert
- Research Centre for Artificial Biopolymers - UMR CNRS 5473, University of Montpellier 1 - Faculty of Pharmacy, 15 Avenue Charles Flahault - BP 14491, F-34093 Montpellier Cedex 5, France
| |
Collapse
|
48
|
Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1121-1131. [PMID: 27317982 DOI: 10.1016/j.bbalip.2016.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023]
Abstract
Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis.
Collapse
|
49
|
Sardone F, Traina F, Bondi A, Merlini L, Santi S, Maraldi NM, Faldini C, Sabatelli P. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy. Front Aging Neurosci 2016; 8:131. [PMID: 27375477 PMCID: PMC4896961 DOI: 10.3389/fnagi.2016.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies.
Collapse
Affiliation(s)
- Francesca Sardone
- Department of Biomedical Sciences, University of PadovaPadova, Italy; National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy
| | - Francesco Traina
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Alice Bondi
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Luciano Merlini
- Muscle Clinic, Villa Erbosa Hospital, Gruppo San Donato Bologna, Italy
| | - Spartaco Santi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Nadir Mario Maraldi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Cesare Faldini
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| |
Collapse
|
50
|
|