1
|
Chamera S, Zajko W, Czarnocki-Cieciura M, Jaciuk M, Koziej Ł, Nowak J, Wycisk K, Sroka M, Chramiec-Głąbik A, Śmietański M, Gołębiowski F, Warmiński M, Jemielity J, Glatt S, Nowotny M. Structural and biochemical characterization of the 3'-5' tRNA splicing ligases. J Biol Chem 2025; 301:108506. [PMID: 40220997 DOI: 10.1016/j.jbc.2025.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
In archaea and metazoa, tRNA exons are ligated by the RNA ligases RtcB and RTCB, respectively. The metazoan RTCB forms a stable complex with four additional subunits, DDX1, FAM98B, CGI99, and ASHWIN. The role and assembly of these four components remain elusive. Furthermore, we lack structural information of how RNA substrates are recognized by 3'-5' tRNA ligases. Here, we use thiol-based chemical crosslinking to confirm the involvement of specific residues of RtcB in RNA binding, and we present a cryo-EM structure of the purified five-subunit Danio rerio tRNA ligase complex. The structure implies that the DDX1 helicase module is mobile and can modulate the activity of RTCB. Taken together, the presented results enhance our mechanistic understanding of RNA binding by 3'-5' tRNA splicing ligases and architecture of the metazoan tRNA ligase complex.
Collapse
Affiliation(s)
- Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Marcin Jaciuk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Łukasz Koziej
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Krzysztof Wycisk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Sroka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Mirosław Śmietański
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland; Explorna Therapeutics sp. z o.o., Warsaw, Poland
| | - Filip Gołębiowski
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Warmiński
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland; Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. ATPase activity profiling of three human DExD/H-box RNA helicases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100229. [PMID: 40194700 DOI: 10.1016/j.slasd.2025.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to characterize the ATPase activity of three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer ds-RNA (blunt-ended double-stranded RNA) or double-stranded RNA with a 25-nt 3' overhang (partial ds-RNA). These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. Kinetic characterization of three human DExD/H-box RNA helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637080. [PMID: 39975009 PMCID: PMC11839018 DOI: 10.1101/2025.02.07.637080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to kinetically characterize three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer RNA (blunt-ended double-stranded RNA) or double-stranded RNA (ds-RNA) with a 25-nt 3' overhang. These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Moore AT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-Box Protein. ACS OMEGA 2025; 10:2598-2607. [PMID: 39895751 PMCID: PMC11780465 DOI: 10.1021/acsomega.4c07522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/04/2025]
Abstract
DDX1 is a human DEAD-box RNA helicase involved in various stages of RNA metabolism, from transcription to decay, and is consequently implicated in many human diseases. The nucleotides hydrolyzed by DDX1 and the structures of the nucleic acids upon which it acts in cells remain largely unknown. In this study, we identify the nucleic acid sequences and structures that support DDX1's nucleotide hydrolysis activity and determine its nucleotide hydrolysis specificity. Our data demonstrate that DDX1 hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA, double-stranded RNA/DNA hybrid, and single-stranded DNA. Under our experimental conditions, single-stranded DNA stimulates DDX1's ATPase activity to a smaller extent compared to the other RNA constructs or the RNA/DNA hybrid. Given DDX1's involvement in numerous critical cellular processes and its implication in various human diseases, determining its substrate specificity not only enhances our understanding of its in vivo function, but also facilitates the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anthony
F. T. Moore
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Yepeth Berhie
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Isaac S. Weislow
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| | - Eda Koculi
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| |
Collapse
|
5
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
6
|
Fan J, Li Z, Pei L, Hou Y. Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies. Genes Dis 2024; 11:101252. [PMID: 38993792 PMCID: PMC11237855 DOI: 10.1016/j.gendis.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 07/13/2024] Open
Abstract
Hematopoiesis represents a meticulously regulated and dynamic biological process. Genetic aberrations affecting blood cells, induced by various factors, frequently give rise to hematological tumors. These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events, including RNA alternative splicing, RNA localization, RNA degradation, and storage. Notably, post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis. The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors, intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing, RNA modification, and ribosome assembly. This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEAD-Box RNA helicases in malignant hematopoiesis. Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
Collapse
Affiliation(s)
- Jiankun Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Bei Y, Bramé L, Kirchner M, Fritsche-Guenther R, Kunz S, Bhattacharya A, Rusu MC, Gürgen D, Dubios FPB, Köppke JKC, Proba J, Wittstruck N, Sidorova OA, Chamorro González R, Dorado Garcia H, Brückner L, Xu R, Giurgiu M, Rodriguez-Fos E, Yu Q, Spanjaard B, Koche RP, Schmitt CA, Schulte JH, Eggert A, Haase K, Kirwan J, Hagemann AIH, Mertins P, Dörr JR, Henssen AG. Passenger Gene Coamplifications Create Collateral Therapeutic Vulnerabilities in Cancer. Cancer Discov 2024; 14:492-507. [PMID: 38197697 PMCID: PMC10911929 DOI: 10.1158/2159-8290.cd-23-1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Yi Bei
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Bramé
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Core Unit Metabolomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Severine Kunz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, Berlin, Germany
| | - Animesh Bhattacharya
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mara-Camelia Rusu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology (EPO), Berlin, Germany
| | - Frank P B Dubios
- Institute of pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia K C Köppke
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jutta Proba
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Wittstruck
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Alexandra Sidorova
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rocío Chamorro González
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lotte Brückner
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, Berlin, Germany
| | - Robin Xu
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mădălina Giurgiu
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Qinghao Yu
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bastiaan Spanjaard
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Clemens A Schmitt
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Kirwan
- Core Unit Metabolomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja I H Hagemann
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jan R Dörr
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| |
Collapse
|
8
|
Garg M, Li L, Godbout R. Role of DDX1 in the oxidative response of ataxia telangiectasia patient-derived fibroblasts. Redox Biol 2024; 69:102988. [PMID: 38096740 PMCID: PMC10761787 DOI: 10.1016/j.redox.2023.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
9
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300:105646. [PMID: 38219817 PMCID: PMC10875230 DOI: 10.1016/j.jbc.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024] Open
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
Affiliation(s)
- Julia L de Amorim
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Development Biology, Emory University, Atlanta, Georgia, USA
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Moore AFT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-box protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.573566. [PMID: 38260591 PMCID: PMC10802426 DOI: 10.1101/2024.01.09.573566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DDX1 is a human protein which belongs to the DEAD-box protein family of enzymes and is involved in various stages of RNA metabolism from transcription to decay. Many members of the DEAD-box family of enzymes use the energy of ATP binding and hydrolysis to perform their cellular functions. On the other hand, a few members of the DEAD-box family of enzymes bind and/or hydrolyze other nucleotides in addition to ATP. Furthermore, the ATPase activity of DEAD-box family members is stimulated differently by nucleic acids of various structures. The identity of the nucleotides that the DDX1 hydrolyzes and the structure of the nucleic acids upon which it acts in the cell remain largely unknown. Identifying the DDX1 protein's in vitro substrates is important for deciphering the molecular roles of DDX1 in cells. Here we identify the nucleic acid sequences and structures supporting the nucleotide hydrolysis activity of DDX1 and its nucleotide specificity. Our data demonstrate that the DDX1 protein hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by multiple molecules: single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA molecule, a hybrid of a double-stranded DNA-RNA molecule, and a single-stranded DNA molecule. Under our experimental conditions, the single-stranded DNA molecule stimulates the ATPase activity of DDX1 at a significantly reduced extent when compared to the other investigated RNA constructs or the hybrid double-stranded DNA/RNA molecule.
Collapse
Affiliation(s)
- Anthony F. T. Moore
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Yepeth Berhie
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Isaac S. Weislow
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| | - Eda Koculi
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| |
Collapse
|
11
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The RNA helicase DDX1 associates with the nuclear RNA exosome and modulates R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537228. [PMID: 37131662 PMCID: PMC10153151 DOI: 10.1101/2023.04.17.537228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A) followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks, and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing (DRIP-Seq). We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
|
12
|
Li L, Garg M, Wang Y, Wang W, Godbout R. DEAD Box 1 (DDX1) protein binds to and protects cytoplasmic stress response mRNAs in cells exposed to oxidative stress. J Biol Chem 2022; 298:102180. [PMID: 35752363 PMCID: PMC9293777 DOI: 10.1016/j.jbc.2022.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
The integrated stress response is a network of highly orchestrated pathways activated when cells are exposed to environmental stressors. While global repression of translation is a well-recognized hallmark of the integrated stress response, less is known about the regulation of mRNA stability during stress. DEAD box proteins are a family of RNA unwinding/remodeling enzymes involved in every aspect of RNA metabolism. We previously showed that DEAD box 1 (DDX1) protein accumulates at DNA double-strand breaks during genotoxic stress and promotes DNA double-strand break repair via homologous recombination. Here, we examine the role of DDX1 in response to environmental stress. We show that DDX1 is recruited to stress granules (SGs) in cells exposed to a variety of environmental stressors, including arsenite, hydrogen peroxide, and thapsigargin. We also show that DDX1 depletion delays resolution of arsenite-induced SGs. Using RNA immunoprecipitation sequencing, we identify RNA targets bound to endogenous DDX1, including RNAs transcribed from genes previously implicated in stress responses. We show the amount of target RNAs bound to DDX1 increases when cells are exposed to stress, and the overall levels of these RNAs are increased during stress in a DDX1-dependent manner. Even though DDX1’s RNA-binding property is critical for maintenance of its target mRNA levels, we found RNA binding is not required for localization of DDX1 to SGs. Furthermore, DDX1 knockdown does not appear to affect RNA localization to SGs. Taken together, our results reveal a novel role for DDX1 in maintaining cytoplasmic mRNA levels in cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
13
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
14
|
Naarmann-de Vries IS, Senatore R, Moritz B, Marx G, Urlaub H, Niessing D, Ostareck DH, Ostareck-Lederer A. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res 2021; 49:3507-3523. [PMID: 33660773 PMCID: PMC8034617 DOI: 10.1093/nar/gkab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3′ untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage.
Collapse
Affiliation(s)
| | - Roberta Senatore
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Bodo Moritz
- Institute of Pharmacy, Faculty of Natural Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| |
Collapse
|
15
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
17
|
Palrasu M, Knapinska AM, Diez J, Smith L, LaVoi T, Giulianotti M, Houghten RA, Fields GB, Minond D. A Novel Probe for Spliceosomal Proteins that Induces Autophagy and Death of Melanoma Cells Reveals New Targets for Melanoma Drug Discovery. Cell Physiol Biochem 2019; 53:656-686. [PMID: 31573152 PMCID: PMC6990463 DOI: 10.33594/000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background/Aims: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for approaches that identify new melanoma targets. We have previously reported a discovery of novel anti-melanoma compound 2155–14 (Onwuha-Ekpete et al., J Med Chem. 2014 Feb 27; 57(4):1599–608). In the report presented herein we aim to identify its target(s) and mechanism of action. Methods: We utilized biotinylated analog of 2155–14 to pull down its targets from melanoma cells. Proteomics in combination with western blot were used to identify the targets. Mechanism of action of 2155–14 was determined using flow cytometry, RT-PCR, microscopy, western blot, and enzymatic activity assays. Where applicable, one-way analysis of variance (ANOVA) was used followed by Dunnett post hoc test. Results: In the present study, we identified ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) H1, H2 and A2/B1 as targets of anti-melanoma compound 2155–14. To the best of our knowledge, this is a first report suggesting that these proteins could be targeted for melanoma therapy. Mechanistic investigations showed that 2155–14 induces ER stress leading to potentiation of basal autophagy resulting in melanoma cell death in BRAF and NRAS mutated melanoma cells. Conclusion: Identification of mode of action of 2155–14 may provide insight into novel therapies against a broad range of melanoma subtypes. These studies were enabled by the novel probe derived from a mixture-based library, an important class of chemical biology tools for discovering novel targets.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Juan Diez
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Travis LaVoi
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | - Gregg B Fields
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA,
| |
Collapse
|
18
|
Hildebrandt MR, Wang Y, Li L, Yasmin L, Glubrecht DD, Godbout R. Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout. Dev Biol 2019; 455:420-433. [DOI: 10.1016/j.ydbio.2019.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
|
19
|
Abstract
OBJECTIVE Pancreatic β cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the β cell gene expression program have received much attention, the post-transcriptional controls that are activated in β cells during stress are largely unknown. We recently identified JUND as a pro-oxidant transcription factor that is post-transcriptionally upregulated in β cells during metabolic stress. Here we seek to uncover the mechanisms underlying this maladaptive response to metabolic stress. METHODS RNA-protein and protein-protein interactions were measured using RNA immunoprecipitation and co-immunoprecipitation, respectively, in Min6 cells and mouse islets. Phos-tag analyses were used to assess hnRNPK phosphorylation in primary mouse and human islets and Min6 cells. Translating ribosome affinity purification (TRAP) followed by RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of CRISPR-Cas9 to Min6 cells. Apoptosis was measured in primary islets using a cell-permeable dye with a fluorescence readout of activated cleaved caspase-3 and-7. RESULTS A de novo motif analysis was performed on a subset of genes previously found to be regulated at the level of ribosome binding during PDX1-deficiency, which identified a poly-cytosine (polyC) motif in the 3'UTR of the transcript encoding JUND. The polyC-binding protein hnRNPK bound to the mRNA encoding JUND, leading us to hypothesize that hnRNPK regulates JUND expression during glucolipotoxicity. Indeed, loss of hnRNPK blocked the post-transcriptional upregulation of JUND during metabolic stress. hnRNPK was phosphorylated in mouse and human islets during glucolipotoxicity and in islets of diabetic db/db mice. The MEK/ERK signaling pathway was both necessary and sufficient for the phosphorylation of hnRNPK, upregulation of JUND levels, and induction of pro-oxidant and pro-inflammatory genes. Further, we identified the RNA helicase DDX3X as a new binding partner for hnRNPK that is required for efficient translation of JUND mRNA. Loss of hnRNPK reduced DDX3X binding to translation machinery, suggesting that these factors cooperate to regulate translation in β cells. CONCLUSIONS Our results identify a novel ERK/hnRNPK/DDX3X pathway that influences β cell survival and is activated under conditions associated with T2D.
Collapse
|
20
|
Garre S, Gamage AK, Faner TR, Dedigama-Arachchige P, Pflum MKH. Identification of Kinases and Interactors of p53 Using Kinase-Catalyzed Cross-Linking and Immunoprecipitation. J Am Chem Soc 2018; 140:16299-16310. [PMID: 30339384 DOI: 10.1021/jacs.8b10160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinase enzymes phosphorylate protein substrates in a highly ordered manner to control cell signaling. Unregulated kinase activity is associated with a variety of disease states, most notably cancer, making the characterization of kinase activity in cells critical to understand disease formation. However, the paucity of available tools has prevented a full mapping of the substrates and interacting proteins of kinases involved in cellular function. Recently we developed kinase-catalyzed cross-linking to covalently connect substrate and kinase in a phosphorylation-dependent manner. Here, we report a new method combining kinase-catalyzed cross-linking and immunoprecipitation (K-CLIP) to identify kinase-substrate pairs and kinase-associated proteins. K-CLIP was applied to the substrate p53, which is robustly phosphorylated. Both known and unknown kinases of p53 were isolated from cell lysates using K-CLIP. In follow-up validation studies, MRCKbeta was identified as a new p53 kinase. Beyond kinases, a variety of p53 and kinase-associated proteins were also identified using K-CLIP, which provided a snapshot of cellular interactions. The K-CLIP method represents an immediately useful chemical tool to identify kinase-substrate pairs and multiprotein complexes in cells, which will embolden cell signaling research and enhance our understanding of kinase activity in normal and disease states.
Collapse
Affiliation(s)
- Satish Garre
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Aparni K Gamage
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Todd R Faner
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | | | - Mary Kay H Pflum
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
21
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
22
|
Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell 2018; 70:650-662.e8. [PMID: 29731414 PMCID: PMC5971202 DOI: 10.1016/j.molcel.2018.04.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.
Collapse
Affiliation(s)
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Quentin Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK.
| |
Collapse
|
23
|
Völgyi K, Gulyássy P, Todorov MI, Puska G, Badics K, Hlatky D, Kékesi KA, Nyitrai G, Czurkó A, Drahos L, Dobolyi A. Chronic Cerebral Hypoperfusion Induced Synaptic Proteome Changes in the rat Cerebral Cortex. Mol Neurobiol 2017; 55:4253-4266. [PMID: 28620701 DOI: 10.1007/s12035-017-0641-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary.
| | - Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mihail Ivilinov Todorov
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary.,Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hlatky
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Nyitrai
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - András Czurkó
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary
| |
Collapse
|
24
|
Lemos MVA, Chiaia HLJ, Berton MP, Feitosa FLB, Aboujaoud C, Camargo GMF, Pereira ASC, Albuquerque LG, Ferrinho AM, Mueller LF, Mazalli MR, Furlan JJM, Carvalheiro R, Gordo DM, Tonussi R, Espigolan R, Silva RMDO, de Oliveira HN, Duckett S, Aguilar I, Baldi F. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics 2016; 17:213. [PMID: 26960694 PMCID: PMC4784275 DOI: 10.1186/s12864-016-2511-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/23/2016] [Indexed: 01/15/2023] Open
Abstract
Background Saturated fatty acids can be detrimental to human health and have received considerable attention in recent years. Several studies using taurine breeds showed the existence of genetic variability and thus the possibility of genetic improvement of the fatty acid profile in beef. This study identified the regions of the genome associated with saturated, mono- and polyunsaturated fatty acids, and n-6 to n-3 ratios in the Longissimus thoracis of Nellore finished in feedlot, using the single-step method. Results The results showed that 115 windows explain more than 1 % of the additive genetic variance for the 22 studied fatty acids. Thirty-one genomic regions that explain more than 1 % of the additive genetic variance were observed for total saturated fatty acids, C12:0, C14:0, C16:0 and C18:0. Nineteen genomic regions, distributed in sixteen different chromosomes accounted for more than 1 % of the additive genetic variance for the monounsaturated fatty acids, such as the sum of monounsaturated fatty acids, C14:1 cis-9, C18:1 trans-11, C18:1 cis-9, and C18:1 trans-9. Forty genomic regions explained more than 1 % of the additive variance for the polyunsaturated fatty acids group, which are related to the total polyunsaturated fatty acids, C20:4 n-6, C18:2 cis-9 cis12 n-6, C18:3 n-3, C18:3 n-6, C22:6 n-3 and C20:3 n-6 cis-8 cis-11 cis-14. Twenty-one genomic regions accounted for more than 1 % of the genetic variance for the group of omega-3, omega-6 and the n-6:n-3 ratio. Conclusions The identification of such regions and the respective candidate genes, such as ELOVL5, ESSRG, PCYT1A and genes of the ABC group (ABC5, ABC6 and ABC10), should contribute to form a genetic basis of the fatty acid profile of Nellore (Bos indicus) beef, contributing to better selection of the traits associated with improving human health. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2511-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcos V A Lemos
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Hermenegildo Lucas Justino Chiaia
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Mariana Piatto Berton
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Fabieli L B Feitosa
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Carolyn Aboujaoud
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Gregório M F Camargo
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Angélica S C Pereira
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil.
| | - Lucia G Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Adrielle M Ferrinho
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Lenise F Mueller
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Monica R Mazalli
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Joyce J M Furlan
- Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Daniel M Gordo
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rafael Tonussi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rafael Espigolan
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rafael Medeiros de Oliveira Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Henrique Nunes de Oliveira
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Susan Duckett
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC, USA
| | - Ignacio Aguilar
- Department of Animal Breeding Montevideo, National Institute of Agricultural Research of Uruguayy, Montevideo, Uruguay
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
25
|
Wu CH, Chen PJ, Yeh SH. Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe 2015; 16:462-72. [PMID: 25299332 PMCID: PMC7104987 DOI: 10.1016/j.chom.2014.09.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 11/27/2022]
Abstract
Coronaviruses contain a positive-sense single-stranded genomic (g) RNA, which encodes nonstructural proteins. Several subgenomic mRNAs (sgmRNAs) encoding structural proteins are generated by template switching from the body transcription regulatory sequence (TRS) to the leader TRS. The process preferentially generates shorter sgmRNA. Appropriate readthrough of body TRSs is required to produce longer sgmRNAs and full-length gRNA. We find that phosphorylation of the viral nucleocapsid (N) by host glycogen synthase kinase-3 (GSK-3) is required for template switching. GSK-3 inhibition selectively reduces the generation of gRNA and longer sgmRNAs, but not shorter sgmRNAs. N phosphorylation allows recruitment of the RNA helicase DDX1 to the phosphorylated-N-containing complex, which facilitates template readthrough and enables longer sgmRNA synthesis. DDX1 knockdown or loss of helicase activity markedly reduces the levels of longer sgmRNAs. Thus, coronaviruses employ a unique strategy for the transition from discontinuous to continuous transcription to ensure balanced sgmRNAs and full-length gRNA synthesis.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; National Taiwan University Research Center for Medical Excellence, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; National Taiwan University Research Center for Medical Excellence, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, No. 1, Changde Street, Taipei 10048, Taiwan.
| |
Collapse
|
26
|
Masaki N, Ishizaki I, Hayasaka T, Fisher GL, Sanada N, Yokota H, Setou M. Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry. Sci Rep 2015; 5:10000. [PMID: 25961407 PMCID: PMC4426704 DOI: 10.1038/srep10000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 12/28/2022] Open
Abstract
Structural variations of DNA in nuclei are deeply related with development, aging, and diseases through transcriptional regulation. In order to bare cross sections of samples maintaining sub-micron structures, an Ar2500+-gas cluster ion beam (GCIB) sputter was recently engineered. By introducing GCIB sputter to time-of-flight secondary ion mass spectrometry (TOF-SIMS), we analyzed the 3D configuration and chemical composition of subnuclear structures of pyramidal cells in the CA2 region in mouse brain hippocampus. Depth profiles of chemicals were analyzed as 3D distributions by combining topographic analyses. Signals corresponding to anions such as CN− and PO3− were distributed characteristically in the shape of cell organelles. CN− signals overlapped DAPI fluorescence signals corresponding to nuclei. The clusters shown by PO3− and those of adenine ions were colocalized inside nuclei revealed by the 3D reconstruction. Taking into account their size and their number in each nucleus, those clusters could be in the cleavage bodies, which are a kind of intranuclear structure.
Collapse
Affiliation(s)
- Noritaka Masaki
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | - Takahiro Hayasaka
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Gregory L Fisher
- Physical Electronics, 18725 Lake Drive East, Chanhassen, MN 55317, USA
| | - Noriaki Sanada
- ULVAC-PHI, 370 Enzo, Chigasaki, Kanagawa 253-8522, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsutoshi Setou
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
27
|
Kellner JN, Reinstein J, Meinhart A. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1. Nucleic Acids Res 2015; 43:2813-28. [PMID: 25690890 PMCID: PMC4357711 DOI: 10.1093/nar/gkv106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1′s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change.
Collapse
Affiliation(s)
- Julian N Kellner
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Int J Mol Sci 2015; 16:2269-93. [PMID: 25622248 PMCID: PMC4346836 DOI: 10.3390/ijms16022269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.
Collapse
|
29
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
30
|
hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One 2014; 9:e90957. [PMID: 24608264 PMCID: PMC3946611 DOI: 10.1371/journal.pone.0090957] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/05/2014] [Indexed: 02/05/2023] Open
Abstract
hCLE/C14orf166 is a nuclear and cytoplasmic protein that interacts with the RNAP II, modulates nuclear RNA metabolism and is present in cytoplasmic RNA granules involved in localized translation. Here we have studied whether hCLE shares common interactors in the nucleus and the cytosol, which could shed light on its participation in the sequential phases of RNA metabolism. Nuclear and cytoplasmic purified hCLE-associated factors were identified and proteins involved in mRNA metabolism, motor-related proteins, cytoskeletal and translation-related factors were found. Purified hCLE complexes also contain RNAs and as expected some hCLE-interacting proteins (DDX1, HSPC117, FAM98B) were found both in the nucleus and the cytoplasm. Moreover, endogenous hCLE fractionates in protein complexes together with DDX1, HSPC117 and FAM98B and silencing of hCLE down-regulates their nuclear and cytosolic accumulation levels. Using a photoactivatable hCLE-GFP protein, nuclear import and export of hCLE was observed indicating that hCLE is a shuttling protein. Interestingly, hCLE nuclear import required active transcription, as did the import of DDX1, HSPC117 and FAM98B proteins. The data indicate that hCLE probably as a complex with DDX1, HSPC117 and FAM98B shuttles between the nucleus and the cytoplasm transporting RNAs suggesting that this complex has a prominent role on nuclear and cytoplasmic RNA fate.
Collapse
|
31
|
Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R. PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol Oncol 2014; 8:389-400. [PMID: 24447537 PMCID: PMC3943689 DOI: 10.1016/j.molonc.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a proto-oncogene that functions as coactivator of the estrogen receptor and is an independent prognostic predictor of shorter survival of breast cancer patients. The dysregulation of PELP1 in breast cancer has been implicated in oncogenesis, metastasis, and therapy resistance. Although several aspects of PELP1 have been studied, a complete list of PELP1 target genes remains unknown, and the molecular mechanisms of PELP1 mediated oncogenesis remain elusive. In this study, we have performed a whole genome analysis to profile the PELP1 transcriptome by RNA-sequencing and identified 318 genes as PELP1 regulated genes. Pathway analysis revealed that PELP1 modulates several pathways including the molecular mechanisms of cancer, estrogen signaling, and breast cancer progression. Interestingly, RNA-seq analysis also revealed that PELP1 regulates the expression of several genes involved in alternative splicing. Accordingly, the PELP1 regulated genome includes several uniquely spliced isoforms. Mechanistic studies show that PELP1 binds RNA with a preference to poly-C, co-localizes with the splicing factor SC35 at nuclear speckles, and participates in alternative splicing. Further, PELP1 interacts with the arginine methyltransferase PRMT6 and modifies PRMT6 functions. Inhibition of PRMT6 reduced PELP1-mediated estrogen receptor activation, cellular proliferation, and colony formation. PELP1 and PRMT6 are co-recruited to estrogen receptor target genes, PELP1 knockdown affects the enrichment of histone H3R2 di-methylation, and PELP1 and PRMT6 coordinate to regulate the alternative splicing of genes involved in cancer. Collectively, our data suggest that PELP1 oncogenic functions involve alternative splicing leading to the activation of unique pathways that support tumor progression and that the PELP1-PRMT6 axis may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Monica Mann
- The Department of Cellular and Structural Biology, San Antonio, TX 78229, USA; The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA.
| | - Yi Zou
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yidong Chen
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA.
| | - Ratna Vadlamudi
- The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
32
|
Rosner A, Moiseeva E, Rabinowitz C, Rinkevich B. Germ lineage properties in the urochordate Botryllus schlosseri - from markers to temporal niches. Dev Biol 2013; 384:356-74. [PMID: 24120376 DOI: 10.1016/j.ydbio.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/25/2013] [Accepted: 10/03/2013] [Indexed: 01/28/2023]
Abstract
The primordial germ cells (PGCs) in the colonial urochordate Botryllus schlosseri are sequestered in late embryonic stage. PGC-like populations, located at any blastogenic stage in specific niches, inside modules with curtailed lifespan, survive throughout the life of the colony by repeated weekly migration to newly formed buds. This cyclical migration and the lack of specific markers for PGC-like populations are obstacles to the study on PGCs. For that purpose, we isolated the Botryllus DDX1 (BS-DDX1) and characterized it by normal expression patterns and by specific siRNA knockdown experiments. Expression of BS-DDX1 concurrent with BS-Vasa, γ-H2AX, BS-cadherin and phospho-Smad1/5/8, demarcate PGC cells from soma cells and from more differentiated germ cells lineages, which enabled the detection of additional putative transient niches in zooids. Employing BS-cadherin siRNA knockdown, retinoic acid (RA) administration or β-estradiol administration affirmed the BS-Vasa(+)BS-DDX1(+)BS-cadherin(+)γ-H2AX(+)phospho-Smad1/5/8(+) population as the B. schlosseri PGC-like cells. By striving to understand the PGC-like cells trafficking between transient niches along blastogenic cycles, CM-DiI-stained PGC-like enriched populations from late blastogenic stage D zooids were injected into genetically matched colonial ramets at blastogenic stages A or C and their fates were observed for 9 days. Based on the accumulated data, we conceived a novel network of several transient and short lived 'germ line niches' that preserve PGCs homeostasis, protecting these cells from the weekly astogenic senescence processes, thus enabling the survival of the PGCs throughout the organism's life.
Collapse
Affiliation(s)
- Amalia Rosner
- National Institute of Oceanography, Israel Oceanography & Limnological Research, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
33
|
Chou CF, Lin WJ, Lin CC, Luber CA, Godbout R, Mann M, Chen CY. DEAD box protein DDX1 regulates cytoplasmic localization of KSRP. PLoS One 2013; 8:e73752. [PMID: 24023901 PMCID: PMC3762726 DOI: 10.1371/journal.pone.0073752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
mRNA decay mediated by the AU-rich elements (AREs) is one of the most studied post-transcriptional mechanisms and is modulated by ARE-binding proteins (ARE-BPs). To understand the regulation of K homology splicing regulatory protein (KSRP), a decay-promoting ARE-BP, we purified KSRP protein complexes and identified an RNA helicase, DDX1. We showed that down-regulation of DDX1 expression elevated cytoplasmic levels of KSRP and facilitated ARE-mediated mRNA decay. Association of KSRP with 14-3-3 proteins, that are predominately located in the cytoplasm, increased upon reduction of DDX1. We also demonstrated that KSRP associated with DDX1 or 14-3-3, but not both. These observations indicate that subcellular localization of KSRP is regulated by competing interactions with DDX1 or 14-3-3.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei-Jye Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chen-Chung Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christian A. Luber
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
34
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
35
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
36
|
Rapid purification of ribosomal particles assembled on histone H4 mRNA: a new method based on mRNA–DNA chimaeras. Biochem J 2013; 449:719-28. [DOI: 10.1042/bj20121211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Detailed knowledge of the structure of the ribosomal particles during their assembly on mRNA is a prerequisite for understanding the intricate translation initiation process. In vitro preparation of eukaryotic translation initiation complexes is limited by the rather tricky assembly from individually purified ribosomal subunits, initiation factors and initiator tRNA. In order to directly isolate functional complexes from living cells, methods based on affinity tags have been developed which, however, often suffer from non-specific binding of proteins and/or RNAs. In the present study we present a novel method designed for the purification of high-quality ribosome/mRNA particles assembled in RRL (rabbit reticulocyte lysate). Chimaerical mRNA–DNA molecules, consisting of the full-length mRNA ligated to a biotinylated desoxy-oligonucleotide, are immobilized on streptavidin-coated beads and incubated with RRL to form initiation complexes. After a washing step, the complexes are eluted by specific DNase I digestion of the DNA moiety of the chimaera, releasing initiation complexes in native conditions. Using this simple and robust purification setup, 80S particles properly programmed with full-length histone H4 mRNA were isolated with the expected ribosome/mRNA molar ratio of close to 1. We show that by using this novel approach purified ribosomal particles can be obtained that are suitable for biochemical and structural studies, in particular single-particle cryo-EM (cryo-electron microscopy). This purification method thus is a versatile tool for the isolation of fully functional RNA-binding proteins and macromolecular RNPs.
Collapse
|
37
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
38
|
Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire ACS, Gerace L, Williamson JR. DDX1 is an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. J Mol Biol 2011; 415:61-74. [PMID: 22051512 PMCID: PMC3249508 DOI: 10.1016/j.jmb.2011.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev protein is essential for the virus because it promotes nuclear export of alternatively processed mRNAs, and Rev is also linked to translation of viral mRNAs and genome encapsidation. Previously, the human DEAD-box helicase DDX1 was suggested to be involved in Rev functions, but this relationship is not well understood. Biochemical studies of DDX1 and its interactions with Rev and model RNA oligonucleotides were carried out to investigate the molecular basis for association of these components. A combination of gel-filtration chromatography and circular dichroism spectroscopy demonstrated that recombinant DDX1 expressed in Escherichia coli is a well-behaved folded protein. Binding assays using fluorescently labeled Rev and cell-based immunoprecipitation analysis confirmed a specific RNA-independent DDX1–Rev interaction. Additionally, DDX1 was shown to be an RNA-activated ATPase, wherein Rev-bound RNA was equally effective at stimulating ATPase activity as protein-free RNA. Gel mobility shift assays further demonstrated that DDX1 forms complexes with Rev-bound RNA. RNA silencing of DDX1 provided strong evidence that DDX1 is required for both Rev activity and HIV production from infected cells. Collectively, these studies demonstrate a clear link between DDX1 and HIV-1 Rev in cell-based assays of HIV-1 production and provide the first demonstration that recombinant DDX1 binds Rev and RNA and has RNA-dependent catalytic activity.
Collapse
Affiliation(s)
- Stephen P Edgcomb
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kunde SA, Musante L, Grimme A, Fischer U, Muller E, Wanker EE, Kalscheuer VM. The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules. Hum Mol Genet 2011; 20:4916-31. [DOI: 10.1093/hmg/ddr430] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010; 7:775-87. [PMID: 21173576 DOI: 10.4161/rna.7.6.14249] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, which have revealed two types of activity by RNA helicases. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in mRNA translation. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology, and has provided fresh perspective to continue unraveling the complexity of virus-host interactions.
Collapse
Affiliation(s)
- Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
41
|
Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010; 2010:458927. [PMID: 20150968 PMCID: PMC2817807 DOI: 10.1155/2010/458927] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022] Open
Abstract
Translation initiation is a highly regulated process that exerts a strong influence on the posttranscriptional control of gene expression. Two alternative mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism operating in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism, first discovered in picornaviruses. IRES elements are highly structured RNA sequences that, in most instances, require specific proteins for recruitment of the translation machinery. Some of these proteins are eukaryotic initiation factors. In addition, RNA-binding proteins (RBPs) play a key role in internal initiation control. RBPs are pivotal regulators of gene expression in response to numerous stresses, including virus infection. This review discusses recent advances on riboproteomic approaches to identify IRES transacting factors (ITAFs) and the relationship between RNA-protein interaction and IRES activity, highlighting the most relevant features on picornavirus and hepatitis C virus IRESs.
Collapse
|
42
|
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 2009; 29:2899-912. [PMID: 19273590 DOI: 10.1128/mcb.01774-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Collapse
|
43
|
Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q, Guo D. The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription. J Cell Biochem 2009; 106:296-305. [PMID: 19058135 DOI: 10.1002/jcb.22004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicases constitute the largest family of RNA helicases and are involved in many aspects of RNA metabolism. In this study, we identified RelA (p65), a subunit of nuclear factor-kappaB (NF-kappaB), as a cellular co-factor of DEAD-box RNA helicase DDX1, through mammalian two hybrid system and co-immunoprecipitation assay. Additionally, confocal microscopy and chromatin immunoprecipitation assays confirmed this interaction. In NF-kappaB dependent reporter gene assay, DDX1 acted as a co-activator to enhance NF-kappaB-mediated transcription activation. The functional domains involved were mapped to the carboxy terminal transactivation domain of RelA and the amino terminal ATPase/helicase domain of DDX1. The DDX1 trans-dominant negative mutant lacking ATP-dependent RNA helicase activity lost it transcriptional inducer activity. Moreover, depletion of endogenous DDX1 by specific small interfering RNAs significantly reduced NF-kappaB-dependent transcription. Taken together, the results suggest that DDX1 may play an important role in NF-kappaB-mediated transactivation, and revelation of this regulatory pathway may help to explore the novel mechanisms for regulating NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Musarat Ishaq
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pacheco A, Reigadas S, Martínez-Salas E. Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Proteomics 2008; 8:4782-90. [DOI: 10.1002/pmic.200800338] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Abstract
DEAD box proteins are a family of putative RNA helicases associated with all aspects of cellular metabolism involving the modification of RNA secondary structure. DDX1 is a member of the DEAD box protein family that is overexpressed in a subset of retinoblastoma and neuroblastoma cell lines and tumors. DDX1 is found primarily in the nucleus, where it forms two to four large aggregates called DDX1 bodies. Here, we report a rapid redistribution of DDX1 in cells exposed to ionizing radiation, resulting in the formation of numerous foci that colocalize with gamma-H2AX and phosphorylated ATM foci at sites of DNA double-strand breaks (DSBs). The formation of DDX1 ionizing-radiation-induced foci (IRIF) is dependent on ATM, which was shown to phosphorylate DDX1 both in vitro and in vivo. The treatment of cells with RNase H prevented the formation of DDX1 IRIF, suggesting that DDX1 is recruited to sites of DNA damage containing RNA-DNA structures. We have shown that DDX1 has RNase activity toward single-stranded RNA, as well as ADP-dependent RNA-DNA- and RNA-RNA-unwinding activities. We propose that DDX1 plays an RNA clearance role at DSB sites, thereby facilitating the template-guided repair of transcriptionally active regions of the genome.
Collapse
|
46
|
Sato N, Sugimura Y, Hayashi Y, Murase T, Kanou Y, Kikkawa F, Murata Y. Identification of genes differentially expressed in mouse fetuses from streptozotocin-induced diabetic pregnancy by cDNA subtraction. Endocr J 2008; 55:317-23. [PMID: 18323671 DOI: 10.1507/endocrj.k07-117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epidemiological studies have shown that the risks of fetal malformation such as neural tube defects increase in diabetic pregnancy. To explore the mechanism of fetal malformation induced by diabetes, cDNA subtraction using mouse embryos (E9.5) of diabetic dams and those of controls was performed to identify differentially expressed genes. The expression level of genes identified by cDNA subtraction was further verified by quantitative RT-PCR using E8.5 embryos, and differential expression of 4 genes, Brcc3, Commd3, Ddx1, and SET was confirmed. We also analyzed the expression level of neural tube defect-related genes, and found that Folbp1, EphrinA5 and Sox10 were differentially expressed. Altered expression of these genes mostly persisted throughout the later stages of the development (E10.5-14.5). Hierarchical clustering analysis showed correlation between expression levels of these genes, suggesting that these genes cooperatively play a role in embryonic development. Our results suggest that an altered gene expression profile in embryos underlies the development of congenital malformation in diabetic pregnancies.
Collapse
Affiliation(s)
- Nanako Sato
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Godbout R, Li L, Liu RZ, Roy K. Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol 2008; 3:575-87. [PMID: 17927523 DOI: 10.2217/14796694.3.5.575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of hereditary and nonhereditary retinoblastoma led to the formulation of the two-hit hypothesis of cancer in the early 1970s. The two-hit hypothesis was validated in the 1980s when both copies of the RB1 gene were shown to be mutated in hereditary and nonhereditary retinoblastoma. However, consistent genetic abnormalities other than RB1 mutations suggest that additional events may be required for the formation of these malignant tumors. For example, MYCN amplification has long been known to occur in both retinoblastoma and neuroblastoma tumors and is strongly associated with poor prognosis in neuroblastoma. The DEAD box gene, DEAD box 1 (DDX1), is often coamplified with MYCN in both these childhood tumors. Here, we examine possible roles for DDX1 overexpression in retinoblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Roseline Godbout
- Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | |
Collapse
|
48
|
Kaneko S, Ohira M, Nakamura Y, Isogai E, Nakagawara A, Kaneko M. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma. J Cancer Res Clin Oncol 2006; 133:185-92. [PMID: 17028906 DOI: 10.1007/s00432-006-0156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Amplification of the MYCN gene strongly correlates with advanced stage, rapid tumor progression and poor prognosis in neuroblastoma (NB). Several genes in the MYCN amplicon, including the DEAD box polypeptide 1 (DDX1) gene, and neuroblastoma-amplified gene (NAG gene), have been found to be frequently co-amplified with MYCN in NB. The aim of this study was to clarify the prognostic significance of the co-amplification or overexpression of DDX1 and NAG with MYCN. PROCEDURE The gene copy numbers and mRNA expression levels of MYCN, DDX1, and NAG in 113 primary NBs were determined by the real-time quantitative polymerase chain reaction or quantitative reverse transcriptase/polymerase chain reaction assay. The relationships between gene co-amplification/overexpression status and stage, age at diagnosis, and overall survival were analyzed. RESULTS For evaluating the frequency of DDX1 and NAG co-amplification, it proved appropriate to discriminate NBs with <40 copies of MYCN amplification from those with > or =40 copies of MYCN (DDX1, p = 0.00058; NAG, p = 0.0242, chi(2) for independence test). In patients with MYCN-amplified NB aged > or =18 months, those with tumor with enhanced DDX1 expression and low-NAG expression showed a significantly better outcome than those with low-DDX1 expression or enhanced NAG expression (p = 0.0245, log-rank test). None of the gene expression statuses had a significant relation to disease stage or survival for patients <18 months old. No relationship between any gene co-amplification status and disease stage, age at diagnosis, or overall survival was found. CONCLUSIONS Our findings suggest that there may be a subset of NB in which enhanced DDX1 and low-NAG expression consequent to DDX1 co-amplification without NAG amplification contributes to susceptibility to intensive therapy. A larger study using an age cut-off of 18 months will be required.
Collapse
Affiliation(s)
- Setsuko Kaneko
- Department of Pediatric Surgery, Institute of Clinical Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 2006; 139:921-30. [PMID: 16751600 DOI: 10.1093/jb/mvj104] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) core protein has been suggested to play crucial roles in the pathogeneses of liver steatosis and hepatocellular carcinomas due to HCV infection. Intracellular HCV core protein is localized mainly in lipid droplets, in which the core protein should exert its significant biological/pathological functions. In this study, we performed comparative proteomic analysis of lipid droplet proteins in core-expressing and non-expressing hepatoma cell lines. We identified 38 proteins in the lipid droplet fraction of core-expressing (Hep39) cells and 30 proteins in that of non-expressing (Hepswx) cells by 1-D-SDS-PAGE/MALDI-TOF mass spectrometry (MS) or direct nanoflow liquid chromatography-MS/MS. Interestingly, the lipid droplet fraction of Hep39 cells had an apparently lower content of adipose differentiation-related protein and a much higher content of TIP47 than that of Hepswx cells, suggesting the participation of the core protein in lipid droplet biogenesis in HCV-infected cells. Another distinct feature is that proteins involved in RNA metabolism, particularly DEAD box protein 1 and DEAD box protein 3, were detected in the lipid droplet fraction of Hep39 cells. These results suggest that lipid droplets containing HCV core protein may participate in the RNA metabolism of the host and/or HCV, affecting the pathopoiesis and/or virus replication/production in HCV-infected cells.
Collapse
Affiliation(s)
- Shigeko Sato
- Department of Biochemistry and Cell Biology and Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pérez-González A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A. hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol 2006; 362:887-900. [PMID: 16950395 DOI: 10.1016/j.jmb.2006.07.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
The human protein hCLE was previously identified by its interaction with the PA subunit of influenza virus polymerase. It exhibits a sequence similarity of 38% with the yeast Spt16 component of the FACT complex, which is involved in transcriptional regulation. Therefore, we studied the possible relationship of hCLE with the transcription machinery. Here we show that hCLE and different phosphorylated forms of the RNA polymerase II (RNAP II) largest subunit, co-immunoprecipitate and colocalize by confocal microscopy analysis. Furthermore, hCLE was found in nuclear sites of active mRNA synthesis, as demonstrated by its colocalization with spots of in situ Br-UTP incorporation. Silencing of hCLE expression by RNA interference inhibited the synthesis of RNAP II transcripts around 50%. Accordingly, the expression profiling in hCLE-silenced cells studied by microarray analysis showed that, among the genes that exhibited a differential expression under hCLE silencing, more than 90% were down-regulated. Collectively these results indicate that hCLE works as a positive modulator of the RNA polymerase II activity.
Collapse
|