1
|
Fernandez Garcia A, Jackson J, Iyer P, Oliver EG, Funato K. MYCN as an oncogene in pediatric brain tumors. Front Oncol 2025; 15:1584978. [PMID: 40365336 PMCID: PMC12069344 DOI: 10.3389/fonc.2025.1584978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
MYCN, or N-Myc, is a member of the MYC family of transcription factors, which plays a key role in tumor formation by regulating genes involved in proliferation, differentiation, and apoptosis. MYCN is essential for neural development, especially for the appropriate growth and differentiation of neural progenitor cells, and its aberrant expression contributes to tumorigenesis. Gene amplification and mutations of this gene have been observed in a wide variety of cancer types, particularly in pediatric brain and non-brain tumors, such as neuroblastoma. Previous studies have provided extensive insights into the complex regulatory network of this transcription factor. Additionally, the presence of MYCN alterations in patient tumors serve as a key factor for risk stratification, as it correlates with poorer outcomes, and presents a significant challenge for treatment. Despite its clinical significance, therapeutic targeting of MYCN is challenging due to its structure, nuclear localization, and complex regulatory pathways. Efforts to target MYCN have focused on destabilizing the protein, modulating epigenetic mechanisms, and disrupting its transcriptional network. This review explores the role of MYCN in different subtypes of pediatric brain tumors and highlights novel ongoing therapeutic approaches. However, further research is necessary to develop more effective therapies and improve survival outcomes for patients with MYCN-driven tumor.
Collapse
Affiliation(s)
- Adriana Fernandez Garcia
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jayden Jackson
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Poorvi Iyer
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Elissa G. Oliver
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kosuke Funato
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
3
|
Jakobsen ST, Siersbæk R. Transcriptional regulation by MYC: an emerging new model. Oncogene 2025; 44:1-7. [PMID: 39468222 DOI: 10.1038/s41388-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Meena JK, Wang JH, Neill NJ, Keough D, Putluri N, Katsonis P, Koire AM, Lee H, Bowling EA, Tyagi S, Orellana M, Dominguez-Vidaña R, Li H, Eagle K, Danan C, Chung HC, Yang AD, Wu W, Kurley SJ, Ho BM, Zoeller JR, Olson CM, Meerbrey KL, Lichtarge O, Sreekumar A, Dacso CC, Guddat LW, Rejman D, Hocková D, Janeba Z, Simon LM, Lin CY, Pillon MC, Westbrook TF. MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer. Cancer Discov 2024; 14:1699-1716. [PMID: 39193992 PMCID: PMC11372365 DOI: 10.1158/2159-8290.cd-22-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
Collapse
Affiliation(s)
- Jitendra K. Meena
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Jarey H. Wang
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Nicholas J. Neill
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Dianne Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Amanda M. Koire
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Elizabeth A. Bowling
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Siddhartha Tyagi
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Mayra Orellana
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Rocio Dominguez-Vidaña
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Heyuan Li
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kenneth Eagle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Charles Danan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Hsiang-Ching Chung
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Andrew D. Yang
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - William Wu
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Sarah J. Kurley
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Brian M. Ho
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Joseph R. Zoeller
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.
| | - Calla M. Olson
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Kristen L. Meerbrey
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Luke W. Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Dana Hocková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Lukas M. Simon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
| | - Charles Y. Lin
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| | - Monica C. Pillon
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
| | - Thomas F. Westbrook
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas.
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
5
|
Cisneros WJ, Soliman SHA, Walter M, Simons LM, Cornish D, De Fabritiis S, Halle AW, Kim EY, Wolinsky SM, Lorenzo-Redondo R, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. PLoS Pathog 2024; 20:e1012083. [PMID: 39259751 PMCID: PMC11419360 DOI: 10.1371/journal.ppat.1012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shimaa H. A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Simone De Fabritiis
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
7
|
Cisneros WJ, Walter M, Soliman SH, Simons LM, Cornish D, Halle AW, Kim EY, Wolinsky SM, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582881. [PMID: 38464055 PMCID: PMC10925308 DOI: 10.1101/2024.03.01.582881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H.A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
DeBerardine M, Booth GT, Versluis PP, Lis JT. The NELF pausing checkpoint mediates the functional divergence of Cdk9. Nat Commun 2023; 14:2762. [PMID: 37179384 PMCID: PMC10182999 DOI: 10.1038/s41467-023-38359-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Promoter-proximal pausing by RNA Pol II is a rate-determining step in gene transcription that is hypothesized to be a prominent point at which regulatory factors act. The pausing factor NELF is known to induce and stabilize pausing, but not all kinds of pausing are NELF-mediated. Here, we find that NELF-depleted Drosophila melanogaster cells functionally recapitulate the NELF-independent pausing we previously observed in fission yeast (which lack NELF). Critically, only NELF-mediated pausing establishes a strict requirement for Cdk9 kinase activity for the release of paused Pol II into productive elongation. Upon inhibition of Cdk9, cells with NELF efficiently shutdown gene transcription, while in NELF-depleted cells, defective, non-productive transcription continues unabated. By introducing a strict checkpoint for Cdk9, the evolution of NELF was likely critical to enable increased regulation of Cdk9 in higher eukaryotes, as Cdk9 availability can be restricted to limit gene transcription without inducing wasteful, non-productive transcription.
Collapse
Affiliation(s)
- Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Monmouth Junction, NJ, USA
| | - Philip P Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Cheung AHK, Hui CHL, Wong KY, Liu X, Chen B, Kang W, To KF. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer 2023; 152:1510-1525. [PMID: 36093588 DOI: 10.1002/ijc.34288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Wang D, Yin Z, Wang H, Wang L, Li T, Xiao R, Xie T, Han R, Dong R, Liu H, Liang K, Qing G. The super elongation complex drives transcriptional addiction in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadf0005. [PMID: 36989355 PMCID: PMC10058231 DOI: 10.1126/sciadv.adf0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
MYCN amplification in neuroblastoma leads to aberrant expression of MYCN oncoprotein, which binds active genes promoting transcriptional amplification. Yet, how MYCN coordinates transcription elongation to meet productive transcriptional amplification and which elongation machinery represents MYCN-driven vulnerability remain to be identified. We conducted a targeted screen of transcription elongation factors and identified the super elongation complex (SEC) as a unique vulnerability in MYCN-amplified neuroblastomas. MYCN directly binds EAF1 and recruits SEC to enhance processive transcription elongation. Depletion of EAF1 or AFF1/AFF4, another core subunit of SEC, leads to a global reduction in transcription elongation and elicits selective apoptosis of MYCN-amplified neuroblastoma cells. A combination screen reveals SEC inhibition synergistically potentiates the therapeutic efficacies of FDA-approved BCL-2 antagonist ABT-199, in part due to suppression of MCL1 expression, both in MYCN-amplified neuroblastoma cells and in patient-derived xenografts. These findings identify disruption of the MYCN-SEC regulatory axis as a promising therapeutic strategy in neuroblastoma.
Collapse
Affiliation(s)
- Donghai Wang
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyuan Wang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Tianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ting Xie
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ruyi Han
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guoliang Qing
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Braun TP, Estabrook J, Schonrock Z, Curtiss BM, Darmusey L, Macaraeg J, Enright T, Coblentz C, Callahan R, Yashar W, Taherinasab A, Mohammed H, Coleman DJ, Druker BJ, Demir E, Lusardi TA, Maxson JE. Asxl1 deletion disrupts MYC and RNA polymerase II function in granulocyte progenitors. Leukemia 2023; 37:478-487. [PMID: 36526735 PMCID: PMC9899319 DOI: 10.1038/s41375-022-01792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Mutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion. In granulocyte progenitors, Asxl1 deletion leads to hyperactivation of MYC and a quantitative decrease in neutrophil production. This loss of granulocyte production was not accompanied by significant changes in the landscape of covalent histone modifications. However, Asxl1 deletion results in a decrease in RNAPII promoter-proximal pausing in granulocyte progenitors, indicative of a global increase in productive transcription. These results suggest that ASXL1 inhibits productive transcription in granulocyte progenitors, identifying a new role for this epigenetic regulator in myeloid development.
Collapse
Affiliation(s)
- Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Division of Hematology & Medical Oncology, Oregon
Health & Science University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| | - Joseph Estabrook
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Zachary Schonrock
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Brittany M. Curtiss
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Lucie Darmusey
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Trevor Enright
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Cody Coblentz
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Rowan Callahan
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - William Yashar
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Akram Taherinasab
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Division of Hematology & Medical Oncology, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Theresa A. Lusardi
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| |
Collapse
|
15
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
16
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
17
|
Ling X, Wu W, Aljahdali IAM, Liao J, Santha S, Fountzilas C, Boland PM, Li F. FL118, acting as a 'molecular glue degrader', binds to dephosphorylates and degrades the oncoprotein DDX5 (p68) to control c-Myc, survivin and mutant Kras against colorectal and pancreatic cancer with high efficacy. Clin Transl Med 2022; 12:e881. [PMID: 35604033 PMCID: PMC9126027 DOI: 10.1002/ctm2.881] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a difficult-to-treat cancer, is expected to become the second-largest cause of cancer-related deaths by 2030, while colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer deaths. Currently, there is no effective treatment for PDAC patients. The development of novel agents to effectively treat these cancers remains an unmet clinical need. FL118, a novel anticancer small molecule, exhibits high efficacy against cancers; however, the direct biochemical target of FL118 is unknown. METHODS FL118 affinity purification, mass spectrometry, Nanosep centrifugal device and isothermal titration calorimetry were used for identifying and confirming FL118 binding to DDX5/p68 and its binding affinity. Immunoprecipitation (IP), western blots, real-time reverse transcription PCR, gene silencing, overexpression (OE) and knockout (KO) were used for analysing gene/protein function and expression. Chromatin IP was used for analysing protein-DNA interactions. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid assay and human PDAC/CRC cell/tumour models were used for determining PDAC/CRC cell/tumour in vitro and in vivo growth. RESULTS We discovered that FL118 strongly binds to dephosphorylates and degrades the DDX5 oncoprotein via the proteasome degradation pathway without decreasing DDX5 mRNA. Silencing and OE of DDX5 indicated that DDX5 is a master regulator for controlling the expression of multiple oncogenic proteins, including survivin, Mcl-1, XIAP, cIAP2, c-Myc and mutant Kras. Genetic manipulation of DDX5 in PDAC cells affects tumour growth. PDAC cells with DDX5 KO are resistant to FL118 treatment. Our human tumour animal model studies further indicated that FL118 exhibits high efficacy to eliminate human PDAC and CRC tumours that have a high expression of DDX5, while FL118 exhibits less effectiveness in PDAC and CRC tumours with low DDX5 expression. CONCLUSION DDX5 is a bona fide FL118 direct target and can act as a biomarker for predicting PDAC and CRC tumour sensitivity to FL118. This would greatly impact FL118 precision medicine for patients with advanced PDAC or advanced CRC in the clinic. FL118 may act as a 'molecular glue degrader' to directly glue DDX5 and ubiquitination regulators together to degrade DDX5.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Wenjie Wu
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Ieman A. M. Aljahdali
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of Cellular & Molecular BiologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | | | | | - Christos Fountzilas
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Patrick M. Boland
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Present address:
Development of Medical Oncology, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Fengzhi Li
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
18
|
Debbarma S, Acharya PC. Targeting G-Quadruplex Dna For Cancer Chemotherapy. Curr Drug Discov Technol 2022; 19:e140222201110. [PMID: 35156574 DOI: 10.2174/1570163819666220214115408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
The self-association of DNA formed by Hoogsteen hydrogen bonding comprises several layers of four guanine or G-tetrads or G4s. The distinct feature of G4s, such as the G-tetrads and loops, qualify structure-selective recognition by small molecules and various ligands and can act as potential anticancer therapeutic molecules. The G4 selective-ligands, can influence gene expression by targeting a nucleic acid structure rather than sequence. Telomere G4 can be targeted for cancer treatment by small molecules inhibiting the telomerase activity whereas c-MYC is capable of controlling transcription, can be targeted to influence transcription. The k-RAS is one of the most frequently encountered oncogenic driver mutations in pancreatic, colorectal, and lung cancers. The k-RAS oncogene plays important role in acquiring and increasing the drug resistance and can also be directly targeted by small molecules to combat k-RAS mutant tumors. Modular G4 ligands with different functional groups, side chains and rotatable bonds as well as conformation affect the binding affinity/selectivity in cancer chemotherapeutic interventions. These modular G4 ligands act by targeting the diversity of G4 loops and groves and assists to develop more drug-like compounds with selectivity. In this review, we present the recent research on synthetic G4 DNA-interacting ligands as an approach toward the discovery of target specific anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Sumanta Debbarma
- Department of Pharmacy, Tripura University, Suryamaninagar-799022, India
| | | |
Collapse
|
19
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Liu Y, Li L, Timani K, White C, He JJ. Tip110 Expression Facilitates the Release of HEXIM1 and pTEFb from the 7SK Ribonucleoprotein Complex Involving Regulation of the Intracellular Redox Level. Aging Dis 2021; 12:2113-2124. [PMID: 34881089 PMCID: PMC8612609 DOI: 10.14336/ad.2021.0528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Tat-interacting protein of 110 kDa (Tip110; p110nrb/SART3) has been identified to be important for HIV gene transcription and several host gene expression. In this study, we showed that Tip110 was present in the 7SK snRNP through direct binding to MEPCE, a component of the 7SK snRNP complex. In addition, we found a positive association between Tip110 expression, change of HEXIM1 from dimer/oligomer to monomer, and release of HEXIM1 and P-TEFb from the 7SK snRNP complex. A similar association was also noted specifically in nuclear matrix as well as in chromatin where the free HEXIM1 and 7SK snRNP-bound HEXIM1 are located. Moreover, we demonstrated that Tip110 expression was linked to the glutathione metabolic pathway and the intracellular redox level, which in turn regulated HEXIM1 dimerization/oligomerization. Lastly, we performed the FRET microscopic analysis and confirmed the direct relationship between Tip110 expression and HEXIM1 dimerization/oligomerization in vivo. Taken together, these results identified a new mechanism governing HEXIM1 dimerization/oligomerization and the release of HEXIM1 and P-TEFb from the 7SK snRNP complex. These results also yield new insights to the roles of Tip110 in HIV gene transcription and replication.
Collapse
Affiliation(s)
- Ying Liu
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Lu Li
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Khalid Timani
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Carl White
- 2Center for Cancer Cell Biology, Immunology and Infection, and.,3Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Johnny J He
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| |
Collapse
|
21
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Guo H, Golczer G, Wittner BS, Langenbucher A, Zachariah M, Dubash TD, Hong X, Comaills V, Burr R, Ebright RY, Horwitz E, Vuille JA, Hajizadeh S, Wiley DF, Reeves BA, Zhang JM, Niederhoffer KL, Lu C, Wesley B, Ho U, Nieman LT, Toner M, Vasudevan S, Zou L, Mostoslavsky R, Maheswaran S, Lawrence MS, Haber DA. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol Cell 2021; 81:4041-4058.e15. [PMID: 34624217 PMCID: PMC8549465 DOI: 10.1016/j.molcel.2021.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 09/12/2021] [Indexed: 01/14/2023]
Abstract
Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Chromatin Assembly and Disassembly
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- HEK293 Cells
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Indoles/pharmacology
- MCF-7 Cells
- Mice, Inbred NOD
- Mice, SCID
- Mitosis/drug effects
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- R-Loop Structures
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Signal Transduction
- Transcription Elongation, Genetic
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hongshan Guo
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | | | - Xin Hong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Elad Horwitz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Joanna A Vuille
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Chenyue Lu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine and Shriners Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Wang W, Cui J, Ma H, Lu W, Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front Oncol 2021; 11:684961. [PMID: 34123854 PMCID: PMC8194085 DOI: 10.3389/fonc.2021.684961] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is conserved in all living organism and is necessary to maintain cellular fundamental function (i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction of pyrimidine metabolism is closely related to cancer progression and numerous drugs targeting pyrimidine metabolism have been approved for multiple types of cancer. However, the non-negligible side effects and limited efficacy warrants a better strategy for negating pyrimidine metabolism in cancer. In recent years, increased studies have evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis. Here, we review the recent conceptual advances on pyrimidine metabolism, especially dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology medicine and prospect how this would guide the development of new drug precisely targeting the pyrimidine metabolism in cancer.
Collapse
Affiliation(s)
- Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Cui
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets 2021; 21:326-352. [PMID: 33504307 DOI: 10.2174/1568009621666210127092828] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Shaun Wood
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Amber Willbanks
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Jason X Cheng
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| |
Collapse
|
26
|
Pellanda P, Dalsass M, Filipuzzi M, Loffreda A, Verrecchia A, Castillo Cano V, Thabussot H, Doni M, Morelli MJ, Soucek L, Kress T, Mazza D, Mapelli M, Beaulieu ME, Amati B, Sabò A. Integrated requirement of non-specific and sequence-specific DNA binding in Myc-driven transcription. EMBO J 2021; 40:e105464. [PMID: 33792944 DOI: 10.15252/embj.2020105464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.
Collapse
Affiliation(s)
- Paola Pellanda
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Virginia Castillo Cano
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain
| | | | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Mapelli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
27
|
Gene Transactivation and Transrepression in MYC-Driven Cancers. Int J Mol Sci 2021; 22:ijms22073458. [PMID: 33801599 PMCID: PMC8037706 DOI: 10.3390/ijms22073458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.
Collapse
|
28
|
Abstract
More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of supporting factors.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
30
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
31
|
Bywater MJ, Burkhart DL, Straube J, Sabò A, Pendino V, Hudson JE, Quaife-Ryan GA, Porrello ER, Rae J, Parton RG, Kress TR, Amati B, Littlewood TD, Evan GI, Wilson CH. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat Commun 2020; 11:1827. [PMID: 32286286 PMCID: PMC7156407 DOI: 10.1038/s41467-020-15552-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.
Collapse
Affiliation(s)
- Megan J Bywater
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Arianna Sabò
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Pharmacology, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
32
|
Llabata P, Mitsuishi Y, Choi PS, Cai D, Francis JM, Torres-Diz M, Udeshi ND, Golomb L, Wu Z, Zhou J, Svinkina T, Aguilera-Jimenez E, Liu Y, Carr SA, Sanchez-Cespedes M, Meyerson M, Zhang X. Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma. Mol Cancer Res 2020; 18:574-584. [PMID: 31862696 PMCID: PMC7219472 DOI: 10.1158/1541-7786.mcr-19-0657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
Genomic analysis of lung adenocarcinomas has revealed that the MGA gene, which encodes a heterodimeric partner of the MYC-interacting protein MAX, is significantly mutated or deleted in lung adenocarcinomas. Most of the mutations are loss of function for MGA, suggesting that MGA may act as a tumor suppressor. Here, we characterize both the molecular and cellular role of MGA in lung adenocarcinomas and illustrate its functional relevance in the MYC pathway. Although MGA and MYC interact with the same binding partner, MAX, and recognize the same E-box DNA motif, we show that the molecular function of MGA appears to be antagonistic to that of MYC. Using mass spectrometry-based affinity proteomics, we demonstrate that MGA interacts with a noncanonical PCGF6-PRC1 complex containing MAX and E2F6 that is involved in gene repression, while MYC is not part of this MGA complex, in agreement with previous studies describing the interactomes of E2F6 and PCGF6. Chromatin immunoprecipitation-sequencing and RNA sequencing assays show that MGA binds to and represses genes that are bound and activated by MYC. In addition, we show that, as opposed to the MYC oncoprotein, MGA acts as a negative regulator for cancer cell proliferation. Our study defines a novel MYC/MAX/MGA pathway, in which MYC and MGA play opposite roles in protein interaction, transcriptional regulation, and cellular proliferation. IMPLICATIONS: This study expands the range of key cancer-associated genes whose dysregulation is functionally equivalent to MYC activation and places MYC within a linear pathway analogous to cell-cycle or receptor tyrosine kinase/RAS/RAF pathways in lung adenocarcinomas.
Collapse
Affiliation(s)
- Paula Llabata
- Cancer Epigenetics and Biology Program-PEBC (IDIBELL), Barcelona, Spain
| | - Yoichiro Mitsuishi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Peter S Choi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Diana Cai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Joshua M Francis
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Manuel Torres-Diz
- Cancer Epigenetics and Biology Program-PEBC (IDIBELL), Barcelona, Spain
| | - Namrata D Udeshi
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Lior Golomb
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Zhong Wu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jin Zhou
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Tanya Svinkina
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Estrella Aguilera-Jimenez
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Yanli Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Steven A Carr
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
33
|
Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 2020; 21:255-267. [PMID: 32071436 DOI: 10.1038/s41580-020-0215-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
34
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
35
|
ZFP281 Recruits MYC to Active Promoters in Regulating Transcriptional Initiation and Elongation. Mol Cell Biol 2019; 39:MCB.00329-19. [PMID: 31570506 DOI: 10.1128/mcb.00329-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023] Open
Abstract
The roles of the MYC transcription factor in transcriptional regulation have been studied intensively. However, the general mechanism underlying the recruitment of MYC to chromatin is less clear. Here, we found that the Krüppel-like transcription factor ZFP281 plays important roles in recruiting MYC to active promoters in mouse embryonic stem cells. At the genome scale, ZFP281 is broadly associated with MYC, and the depletion of ZFP281 significantly reduces the levels of MYC and RNA polymerase II at the ZFP281- and MYC-cobound genes. Specially, we found that recruitment is required for the regulation of the Lin28a oncogene and pri-let-7 transcription. Our results therefore suggest a major role of ZFP281 in recruiting MYC to chromatin and the integration of ZFP281 and the MYC/LIN28A/Let-7 loop into a multilevel circuit.
Collapse
|
36
|
Krasnopolsky S, Marom L, Victor RA, Kuzmina A, Schwartz JC, Fujinaga K, Taube R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology 2019; 16:16. [PMID: 31238957 PMCID: PMC6593535 DOI: 10.1186/s12977-019-0478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. Results In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. Conclusions Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state. Electronic supplementary material The online version of this article (10.1186/s12977-019-0478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Lital Marom
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel A Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
37
|
Li S, Zhang S, Chen J. c-Myc induced upregulation of long non-coding RNA SNHG16 enhances progression and carcinogenesis in oral squamous cell carcinoma. Cancer Gene Ther 2019; 26:400-410. [DOI: 10.1038/s41417-018-0072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 12/18/2022]
|
38
|
Kalkat M, Resetca D, Lourenco C, Chan PK, Wei Y, Shiah YJ, Vitkin N, Tong Y, Sunnerhagen M, Done SJ, Boutros PC, Raught B, Penn LZ. MYC Protein Interactome Profiling Reveals Functionally Distinct Regions that Cooperate to Drive Tumorigenesis. Mol Cell 2018; 72:836-848.e7. [PMID: 30415952 DOI: 10.1016/j.molcel.2018.09.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/09/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Transforming members of the MYC family (MYC, MYCL1, and MYCN) encode transcription factors containing six highly conserved regions, termed MYC homology boxes (MBs). By conducting proteomic profiling of the MB interactomes, we demonstrate that half of the MYC interactors require one or more MBs for binding. Comprehensive phenotypic analyses reveal that two MBs, MB0 and MBII, are universally required for transformation. MBII mediates interactions with acetyltransferase-containing complexes, enabling histone acetylation, and is essential for MYC-dependent tumor initiation. By contrast, MB0 mediates interactions with transcription elongation factors via direct binding to the general transcription factor TFIIF. MB0 is dispensable for tumor initiation but is a major accelerator of tumor growth. Notably, the full transforming activity of MYC can be restored by co-expression of the non-transforming MB0 and MBII deletion proteins, indicating that these two regions confer separate molecular functions, both of which are required for oncogenic MYC activity.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Diana Resetca
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Pak-Kei Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, Toronto, ON M5G 1L7, Canada
| | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Natasha Vitkin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5A 1A8, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Susan J Done
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
39
|
Abstract
Cyclin-dependent kinase 9 (CDK9) is critical for RNA Polymerase II (Pol II) transcription initiation, elongation, and termination in several key biological processes including development, differentiation, and cell fate responses. A broad range of diseases are characterized by CDK9 malfunction, illustrating its importance in maintaining transcriptional homeostasis in basal- and signal-regulated conditions. Here we provide a historical recount of CDK9 discovery and the current models suggesting CDK9 is a central hub necessary for proper execution of different steps in the transcription cycle. Finally, we discuss the current therapeutic strategies to treat CDK9 malfunction in several disease states. Abbreviations: CDK: Cyclin-dependent kinase; Pol II: RNA Polymerase II; PIC: Pre-initiation Complex; TFIIH: Transcription Factor-II H; snoRNA: small nucleolar RNA; CycT: CyclinT1/T2; P-TEFb: Positive Transcription Elongation Factor Complex; snRNP: small nuclear ribonucleo-protein; HEXIM: Hexamethylene Bis-acetamide-inducible Protein 1/2; LARP7: La-related Protein 7; MePCE: Methylphosphate Capping Enzyme; HIV: human immunodeficiency virus; TAT: trans-activator of transcription; TAR: Trans-activation response element; Hsp70: Heat Shock Protein 70; Hsp90/Cdc37: Hsp90- Hsp90 co-chaperone Cdc37; DSIF: DRB Sensitivity Inducing Factor; NELF: Negative Elongation Factor; CPSF: cleavage and polyadenylation-specific factor; CSTF: cleavage-stimulatory factor; eRNA: enhancer RNA; BRD4: Bromodomain-containing protein 4; JMJD6: Jumonji C-domain-containing protein 6; SEC: Super Elongation Complex; ELL: eleven-nineteen Lys-rich leukemia; ENL: eleven-nineteen leukemia; MLL: mixed lineage leukemia; BEC: BRD4-containing Elongation Complex; SEC-L2/L3: SEC-like complexes; KAP1: Kruppel-associated box-protein 1; KEC: KAP1-7SK Elongation Complex; DRB: Dichloro-1-ß-D-Ribofuranosylbenzimidazole; H2Bub1: H2B mono-ubiquitination; KM: KM05382; PP1: Protein Phosphatase 1; CDK9i: CDK9 inhibitor; SHAPE: Selective 2'-hydroxyl acylation analyzed by primer extension; TE: Typical enhancer; SE : Super enhancer.
Collapse
Affiliation(s)
- Curtis W Bacon
- a Biological Chemistry Graduate Program , The University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Iván D'Orso
- b Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
40
|
Faust TB, Li Y, Bacon CW, Jang GM, Weiss A, Jayaraman B, Newton BW, Krogan NJ, D'Orso I, Frankel AD. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. eLife 2018; 7:31879. [PMID: 29845934 PMCID: PMC5999396 DOI: 10.7554/elife.31879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/26/2018] [Indexed: 12/12/2022] Open
Abstract
The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Curtis W Bacon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Amit Weiss
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Lombardi O, Varshney D, Phillips NM, Cowling VH. c-Myc deregulation induces mRNA capping enzyme dependency. Oncotarget 2018; 7:82273-82288. [PMID: 27756891 PMCID: PMC5347691 DOI: 10.18632/oncotarget.12701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a potent driver of many human cancers. Since strategies for directly targeting c-Myc protein have had limited success, upstream regulators and downstream effectors of c-Myc are being investigated as alternatives for therapeutic intervention. c-Myc regulates transcription and formation of the mRNA cap, which is important for transcript maturation and translation. However, the direct mechanism by which c-Myc upregulates mRNA capping is unclear. mRNA cap formation initiates with the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide, catalysed by mRNA capping enzyme (CE/RNGTT). Here we report that c-Myc increases the recruitment of catalytically active CE to RNA polymerase II and to its target genes. c-Myc-induced target gene expression, cell proliferation and cell transformation is highly dependent on CE, but only when c-Myc is deregulated. Cells retaining normal control of c-Myc expression are insensitive to repression of CE. c-Myc expression is also dependent on CE. Therefore, inhibiting CE provides an attractive route for selective therapeutic targeting of cancer cells which have acquired deregulated c-Myc.
Collapse
Affiliation(s)
- Olivia Lombardi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dhaval Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola M Phillips
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,School of Science and the Environment, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
42
|
Scruggs BS, Adelman K. The Importance of Controlling Transcription Elongation at Coding and Noncoding RNA Loci. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 80:33-44. [PMID: 27325707 DOI: 10.1101/sqb.2015.80.027235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we discuss current paradigms for how transcription initiation and elongation control are achieved in mammalian cells, and how they differ at protein-coding mRNA genes versus noncoding RNA (ncRNA) loci. We present a model for the function of ncRNAs wherein the act of transcription is regulatory, rather than the ncRNA products themselves. We further describe how the establishment of transcriptionally engaged, but paused, RNA polymerase II impacts chromatin structure around divergent transcription start sites, and how this can influence transcription factor binding and mRNA gene activity in the region.
Collapse
Affiliation(s)
- Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
43
|
|
44
|
PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Proc Natl Acad Sci U S A 2017; 114:E9224-E9232. [PMID: 29078288 DOI: 10.1073/pnas.1705816114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Myc oncogene is a transcription factor with a powerful grip on cellular growth and proliferation. The physical interaction of Myc with the E-box DNA motif has been extensively characterized, but it is less clear whether this sequence-specific interaction is sufficient for Myc's binding to its transcriptional targets. Here we identify the PAF1 complex, and specifically its component Leo1, as a factor that helps recruit Myc to target genes. Since the PAF1 complex is typically associated with active genes, this interaction with Leo1 contributes to Myc targeting to open promoters.
Collapse
|
45
|
Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res 2017; 27:1658-1664. [PMID: 28904013 PMCID: PMC5630029 DOI: 10.1101/gr.226035.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
Abstract
Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.
Collapse
|
46
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
47
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
48
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
49
|
Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ. MYC Deregulation in Primary Human Cancers. Genes (Basel) 2017; 8:genes8060151. [PMID: 28587062 PMCID: PMC5485515 DOI: 10.3390/genes8060151] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Katherine Ashley Hickman
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Cornelia Redel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Diana Resetca
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Aaliya Tamachi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - William B Tu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
50
|
Zhou J, Gao G, Hou P, Li CM, Guo D. Regulation of the Alternative Splicing and Function of Cyclin T1 by the Serine-Arginine-Rich Protein ASF/SF2. J Cell Biochem 2017; 118:4020-4032. [PMID: 28422315 DOI: 10.1002/jcb.26058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Positive transcription elongation factor-b (P-TEFb) is required for the release of RNA polymerase II (RNAPII) from its pause near the gene promoters and thus for efficient proceeding to the transcription elongation. It consists of two core subunits-CDK9 and one of T-typed or K-typed cyclin, of which, cyclin T1/CDK9 is the major and most studied combination. We have previously identified a novel splice variant of cyclin T1, cyclin T1b, which negatively regulates the transcription elongation of HIV-1 genes as well as several host genes. In this study, we revealed the serine-arginine-rich protein, ASF/SF2, as a regulatory factor of the alternative splicing of cyclin T1 gene. ASF/SF2 promotes the production of cyclin T1b versus cyclin T1a and regulates the expression of cyclin T1-depedent genes at the transcription level. We further found that a cis-element on exon 8 is responsible for the skipping of exon 7 mediated by ASF/SF2. Collectively, ASF/SF2 is identified as a splicing regulator of cyclin T1, which contributes to the control of the subsequent transcription events. J. Cell. Biochem. 118: 4020-4032, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jieqiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guozhen Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Panpan Hou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chun-Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|