1
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
2
|
Albright JM, Sydor MJ, Shannahan J, Ferreira CR, Holian A. Imipramine Treatment Alters Sphingomyelin, Cholesterol, and Glycerophospholipid Metabolism in Isolated Macrophage Lysosomes. Biomolecules 2023; 13:1732. [PMID: 38136603 PMCID: PMC10742328 DOI: 10.3390/biom13121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.
Collapse
Affiliation(s)
- Jacob M. Albright
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| | - Matthew J. Sydor
- Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Christina R. Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Vitamin D as a Shield against Aging. Int J Mol Sci 2023; 24:ijms24054546. [PMID: 36901976 PMCID: PMC10002864 DOI: 10.3390/ijms24054546] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Aging can be seen as a physiological progression of biomolecular damage and the accumulation of defective cellular components, which trigger and amplify the process, toward whole-body function weakening. Senescence initiates at the cellular level and consists in an inability to maintain homeostasis, characterized by the overexpression/aberrant expression of inflammatory/immune/stress responses. Aging is associated with significant modifications in immune system cells, toward a decline in immunosurveillance, which, in turn, leads to chronic elevation of inflammation/oxidative stress, increasing the risk of (co)morbidities. Albeit aging is a natural and unavoidable process, it can be regulated by some factors, like lifestyle and diet. Nutrition, indeed, tackles the mechanisms underlying molecular/cellular aging. Many micronutrients, i.e., vitamins and elements, can impact cell function. This review focuses on the role exerted by vitamin D in geroprotection, based on its ability to shape cellular/intracellular processes and drive the immune response toward immune protection against infections and age-related diseases. To this aim, the main biomolecular paths underlying immunosenescence and inflammaging are identified as biotargets of vitamin D. Topics such as heart and skeletal muscle cell function/dysfunction, depending on vitamin D status, are addressed, with comments on hypovitaminosis D correction by food and supplementation. Albeit research has progressed, still limitations exist in translating knowledge into clinical practice, making it necessary to focus attention on the role of vitamin D in aging, especially considering the growing number of older individuals.
Collapse
|
4
|
Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110576. [PMID: 35588939 DOI: 10.1016/j.pnpbp.2022.110576] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunosenescence is a term used to describe the age-related changes in the immune system. Immunosenescence is associated with complex alterations and dysregulation of immune function and inflammatory processes. Age-related changes in innate immune responses including alterations in chemotactic, phagocytic, and natural killing functions, impaired antigen presenting capacity, and dysregulated inflammatory response have been described. The most striking and best characterized feature of immunosenescence is the decline in both number and function of T cells. With age there is decreased proliferation, decreased number of antigen-naïve T cells, and increased number of antigen-experienced memory T cells. This decline in naïve T cell population is associated with impaired immunity and reduced response to new or mutated pathogens. While the absolute number of peripheral B cells appears constant with age, changes in B cell functions including reduced antibody production and response and cell memory have been described. However, the main alteration in cell-mediated function that has been reported across all species with aging is those observed in in T cell. These T cell mediated changes have been shown to contribute to increased susceptibility to infection and cancer in older adults. In addition to functional and phenotype alterations in immune cells, studies demonstrate that circulating concentrations of inflammatory mediators in older adults are higher than those of young. This low grade, chronic inflammatory state that occurs in the context of aging has been termed "inflammaging". This review will focus on age-related changes in the immune system including immunosenescence and inflammation as well as the functional consequences of these age-related alterations for the aged.
Collapse
Affiliation(s)
- Erin Diane Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America.
| |
Collapse
|
5
|
Li J, Hu X, Zhang H, Peng Y, Li S, Xiong Y, Jiang W, Wang Z. N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression. J Med Chem 2022; 65:10481-10505. [PMID: 35868003 DOI: 10.1021/acs.jmedchem.2c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the close association between inflammation and cancer, combining anti-inflammation therapy is prominent to improve the anticancer effect. Based on I-1, a series of agents targeting COX-2 and Topo I were designed by combining fenamates and phenols. The optimal compound 1H-30 displayed an enhanced inhibitory effect on COX-2 compared to tolfenamic acid and I-1 and showed better inhibition of Topo I than I-1. Importantly, 1H-30 showed potential anticancer effects and suppressed the activation of the NF-κB pathway in cancer cells. 1H-30 inhibited the nuclear translocation of NF-κB and suppressed the production of NO, COX-2, and IL-1β in RAW264.7. In vivo, 1H-30 showed acceptable pharmacokinetic parameters, decreased the tumor growth without affecting the body weight, down-regulated COX-2 and MMP-9, and induced apoptosis in the CT26.WT tumor-bearing mice. Accordingly, 1H-30 as a potential Topo I/COX-2 inhibitor which possessed anti-inflammatory and anticancer effects, with inhibition of the NF-κB pathway, is promising for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
7
|
Yakah W, Ramiro-Cortijo D, Singh P, Brown J, Stoll B, Kulkarni M, Oosterloo BC, Burrin D, Maddipati KR, Fichorova RN, Freedman SD, Martin CR. Parenteral Fish-Oil Containing Lipid Emulsions Limit Initial Lipopolysaccharide-Induced Host Immune Responses in Preterm Pigs. Nutrients 2021; 13:205. [PMID: 33445698 PMCID: PMC7828127 DOI: 10.3390/nu13010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Multicomponent lipid emulsions are available for critical care of preterm infants. We sought to determine the impact of different lipid emulsions on early priming of the host and its response to an acute stimulus. Pigs delivered 7d preterm (n = 59) were randomized to receive different lipid emulsions for 11 days: 100% soybean oil (SO), mixed oil emulsion (SO, medium chain olive oil and fish oil) including 15% fish oil (MO15), or 100% fish oil (FO100). On day 11, pigs received an 8-h continuous intravenous infusion of either lipopolysaccharide (LPS-lyophilized Escherichia coli) or saline. Plasma was collected for fatty acid, oxylipin, metabolomic, and cytokine analyses. At day 11, plasma omega-3 fatty acid levels in the FO100 groups showed the highest increase in eicosapentaenoic acid, EPA (0.1 ± 0.0 to 9.7 ± 1.9, p < 0.001), docosahexaenoic acid, DHA (day 0 = 2.5 ± 0.7 to 13.6 ± 2.9, p < 0.001), EPA and DHA-derived oxylipins, and sphingomyelin metabolites. In the SO group, levels of cytokine IL1β increased at the first hour of LPS infusion (296.6 ± 308 pg/mL) but was undetectable in MO15, FO100, or in the animals receiving saline instead of LPS. Pigs in the SO group showed a significant increase in arachidonic acid (AA)-derived prostaglandins and thromboxanes in the first hour (p < 0.05). No significant changes in oxylipins were observed with either fish-oil containing group during LPS infusion. Host priming with soybean oil in the early postnatal period preserves a higher AA:DHA ratio and the ability to acutely respond to an external stimulus. In contrast, fish-oil containing lipid emulsions increase DHA, exacerbate a deficit in AA, and limit the initial LPS-induced inflammatory responses in preterm pigs.
Collapse
Affiliation(s)
- William Yakah
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - David Ramiro-Cortijo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Joanne Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Barbara Stoll
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Madhulika Kulkarni
- Section Neonatology, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Berthe C Oosterloo
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Doug Burrin
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, 42 W Warren Avenue, Detroit, MI 48202, USA
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Steven D Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
8
|
Effect of Rosa laevigata on PM10-Induced Inflammatory Response of Human Lung Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2893609. [PMID: 32963561 PMCID: PMC7492937 DOI: 10.1155/2020/2893609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023]
Abstract
Particulate matter 10 (PM10) with a diameter of less than 10 mm causes inflammation and allergic reactions in the airways and lungs, which adversely affects asthmatic patients. In this study, we examined the anti-inflammatory effects of Rosa laevigata (RL), which has been previously investigated medicinally in Korea and China for the discovery of plant-derived anti-inflammatory agents with low side effects, using a PM10-induced lung inflammatory disease model. Using MTT assay, we confirmed that in A549 cells pretreated with RL, cytotoxicity induced by PM10 (100 μg/mL) exposure was attenuated. In addition, western blotting revealed that RL suppressed the expression level of MAPK/NF-κB pathways and its downstream signal, COX-2 in PM10-induced A549 cells. Moreover, real-time PCR demonstrated that RL downregulated the mRNA expression level of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-13, and IL-17) in PM10-induced A549 cells. Based on the results of this study, RL has been shown to relieve inflammation in the lungs due to PM10 exposure. Therefore, RL may be developed as a natural remedy for respiratory diseases caused by PM10 exposure.
Collapse
|
9
|
Cao Y, Wang S, Liu S, Wang Y, Jin H, Ma H, Luo X, Cao Y, Lian Z. Effects of Long-Chain Fatty Acyl-CoA Synthetase 1 on Diglyceride Synthesis and Arachidonic Acid Metabolism in Sheep Adipocytes. Int J Mol Sci 2020; 21:E2044. [PMID: 32192050 PMCID: PMC7139739 DOI: 10.3390/ijms21062044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/25/2022] Open
Abstract
Long-chain fatty acyl-CoA synthetase (ACSLs) is an essential enzyme for the synthesis of fatty acyl-CoA. ACSL1 plays a key role in the synthesis of triglycerides, phospholipids, and cholesterol esters. BACKGROUND In the current study, triglyceride content did not increase after overexpression of the ACSL1 gene. METHODS RNA-seq and lipid metabolome profiling were performed to determine why triglyceride levels did not change with ACSL1 overexpression. RESULTS Fatty acyl-CoA produced by ACSL1 was determined to be involved in the diglyceride synthesis pathway, and diglyceride content significantly increased when ACSL1 was overexpressed. Moreover, the arachidonic acid (AA) content in sheep adipocytes significantly increased, and the level of cyclooxygenase 2 (COX2) expression, the downstream metabolic gene, was significantly downregulated. Knocking down the ACSL1 gene was associated with an increase in COX2 mRNA expression, as well as an increase in prostaglandin content, which is the downstream metabolite of AA. CONCLUSIONS The overexpression of the ACSL1 gene promotes the production of AA via downregulation of COX2 gene expression.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Shunqi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| | - Yanli Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Huihai Ma
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| |
Collapse
|
10
|
Rosas-Martínez M, Gutiérrez-Venegas G. Myricetin Inhibition of Peptidoglycan-Induced COX-2 Expression in H9c2 Cardiomyocytes. Prev Nutr Food Sci 2019; 24:202-209. [PMID: 31328126 PMCID: PMC6615347 DOI: 10.3746/pnf.2019.24.2.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan (PGN) is a cell wall constituent in dental plaque bacteria that triggers inflammatory responses. PGN binds Toll-like receptors, leading to increases in prostaglandin E2 and interleukin-1β, which play crucial roles in the inflammatory response and tissue destruction. Dental surgery can give plaque bacteria access to blood circulation, thereby creating a risk of septic inflammation of the endocardium. Plant-derived flavonoids have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we investigated the effects of flavonoid myricetin on expression of cyclooxygenase 2 (COX-2) in the H9c2 cells treated with PGN from Streptococcus sanguinis, a bacterial constituent of dental plaque associated with infective endocarditis. Myricetin exposure resulted in dose-dependent suppression of PGN-induced COX-2 expression, diminished phosphorylation of p38, extracellular signal regulated kinase 1/2, and c-Jun N-terminal kinase, and reduced IκB-α degradation, consistent with decreased COX-2 activity. In conclusion, the aforementioned results suggest that myricetin is useful for moderating the inflammatory response in infective endocarditis.
Collapse
Affiliation(s)
- Marisol Rosas-Martínez
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 04510, Mexico
| | - Gloria Gutiérrez-Venegas
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 04510, Mexico
| |
Collapse
|
11
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
12
|
Bekpen C, Xie C, Nebel A, Tautz D. Involvement of SPATA31 copy number variable genes in human lifespan. Aging (Albany NY) 2018; 10:674-688. [PMID: 29676996 PMCID: PMC5940121 DOI: 10.18632/aging.101421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/22/2022]
Abstract
The SPATA31 (alias FAM75A) gene family belongs to the core duplicon families that are thought to have contributed significantly to hominoid evolution. It is also among the gene families with the strongest signal of positive selection in hominoids. It has acquired new protein domains in the primate lineage and a previous study has suggested that the gene family has expanded its function into UV response and DNA repair. Here we show that over-expression of SPATA31A1 in fibroblast cells leads to premature senescence due to interference with aging-related transcription pathways. We show that there are considerable copy number differences for this gene family in human populations and we ask whether this could influence mutation rates and longevity in humans. We find no evidence for an influence on germline mutation rates, but an analysis of long-lived individuals (> 96 years) shows that they carry significantly fewer SPATA31 copies in their genomes than younger individuals in a control group. We propose that the evolution of SPATA31 copy number is an example for antagonistic pleiotropy by providing a fitness benefit during the reproductive phase of life, but negatively influencing the overall life span.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
13
|
Gallic Acid-L-Leucine Conjugate Protects Mice against LPS-Induced Inflammation and Sepsis via Correcting Proinflammatory Lipid Mediator Profiles and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1081287. [PMID: 29765489 PMCID: PMC5889890 DOI: 10.1155/2018/1081287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
The pathology of endotoxin LPS-induced sepsis is hallmarked by aberrant production of proinflammatory lipid mediators and nitric oxide (NO). The aim of the present study was to determine whether the new product gallic acid-L-leucine (GAL) conjugate could ameliorate the LPS-induced dysregulation of arachidonic acid metabolism and NO production. We first investigated the effects of GAL conjugate on the expression of proinflammatory enzymes and the production of proinflammatory NO and lipid mediators in mouse macrophage cell line RAW264.7, primary peritoneal macrophages, and mouse model. Western blot analyses revealed that GAL attenuated LPS-induced expression of iNOS, COX-2, and 5-LOX in a concentration-dependent manner. Consistently, probing NO-mediated fluorescence revealed that GAL antagonized the stimulatory effect of LPS on iNOS activity. By profiling of lipid mediators with ESI-MS-based lipidomics, we found that GAL suppressed LPS-induced overproduction of prostaglandin E2, prostaglandin F2, leukotriene B4, and thromboxane B2. We further discovered that GAL might exhibit anti-inflammatory activities by the following mechanisms: (1) suppressing LPS-induced activation of MAP kinases (i.e., ERK1/2, JNK, and p38); (2) reducing the production of reactive oxygen species (ROS); and (3) preventing LPS-induced nuclear translocation of transcription factors NF-κB and AP-1. Consequently, GAL significantly decreased the levels of COX-2 and iNOS expression and the plasma levels of proinflammatory lipid mediators in LPS-treated mice. GAL pretreatment enhanced the survival of mice against LPS-induced endotoxic shock. Taken together, our results suggest that GAL may be a potential anti-inflammatory drug for the treatment of endotoxemia and sepsis.
Collapse
|
14
|
Zhang H, Li J, Li L, Liu P, Wei Y, Qian Z. Ceramide enhances COX-2 expression and VSMC contractile hyperreactivity via ER stress signal activation. Vascul Pharmacol 2017; 96-98:26-32. [PMID: 28797762 DOI: 10.1016/j.vph.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Ceramide accumulation in blood vessels has been attributed to vascular dysfunction in progressive vascular complications in metabolic diseases. The present study showed that ceramide pretreatment promoted PE-induced vasoconstriction in rat endothelium-denuded vascular rings in a time- and dose-dependent manner. Endoplasmic reticulum (ER) stress inhibitors, 4-PBA and TUDCA, COX-2 inhibitors, Celecoxib and NS398, as well as PGE2 receptor antagonist AH-6809 attenuated ceramide-promoted vascular hyperreactivity. Ceramide promoted the transcriptional and translational expression of COX-2 and BiP in VSMCs, which were blocked by the ER stress inhibitors, 4-PBA and TUDCA. These findings show that ceramide enhances PE-induced vascular smooth muscle constriction by mediation of the ER stress/COX-2/PGE2 pathway. Therapeutic strategies targeted to reducing ER stress and COX-2 activation might be beneficial in attenuating vascular complications. CHEMICAL COMPOUNDS C2-Ceramide (N-acetyl-d-erythro-sphingosine) CID:2662 Tauroursodeoxycholic Acid Sodium (TUDCA) CID:9848818 phenylephrine (PE) CID:6041.
Collapse
Affiliation(s)
- Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China.
| | - Juanfen Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Wei
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Zongjie Qian
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
15
|
Baek HS, Park N, Kwon YJ, Ye DJ, Shin S, Chun YJ. Annexin A5 suppresses cyclooxygenase-2 expression by downregulating the protein kinase C-ζ-nuclear factor-κB signaling pathway in prostate cancer cells. Oncotarget 2017; 8:74263-74275. [PMID: 29088783 PMCID: PMC5650338 DOI: 10.18632/oncotarget.19392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Annexin A5 (ANXA5) is a member of the annexin protein family. Previous studies have shown that ANXA5 is involved in anti-inflammation and cell death. However, the detailed mechanism of the role of ANXA5 in cancer cells is not well understood. In this study, we investigated the inhibitory effect of ANXA5 on cyclooxygenase-2 (COX-2) in prostate cancer cells. Expression of COX-2 induced by TNF-α was inhibited by overexpression of ANXA5 and inhibition of COX-2 expression by auranofin, which could induce ANXA5 expression, was restored by ANXA5 knockdown. In addition, ANXA5 knockdown induces phosphorylation of NF-κB p65 in prostate cancer cells, indicating that ANXA5 causes COX-2 downregulation through inhibition of p65 activation. We also found that protein kinase C (PKC)-ζ protein levels were upregulated by the inhibition of ANXA5, although the mRNA levels were unaffected. We have shown that upregulated COX-2 expression by inhibition of ANXA5 is attenuated by PKC-ζ siRNA. In summary, this study demonstrates that downregulation of PKC-ζ-NF-κB signaling by ANXA5 may inhibit COX-2 expression in prostate cancer.
Collapse
Affiliation(s)
- Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nahee Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Pae M, Wu D. Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res 2017; 41:14-35. [PMID: 28577789 DOI: 10.1016/j.nutres.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 01/20/2023]
Abstract
The immune system undergoes some adverse alterations during aging, many of which have been implicated in the increased morbidity and mortality associated with infection in the elderly. In addition to intrinsic changes to the immune system with aging, the elderly are more likely to have poor nutritional status, which further impacts the already impaired immune function. Although the elderly often have low zinc serum levels, several manifestations commonly observed during zinc deficiency are similar to the changes in immune function with aging. In the case of vitamin E, although its deficiency is rare, the intake above recommended levels is shown to enhance immune functions in the elderly and to reduce the risk of acquiring upper respiratory infections in nursing home residents. Vitamin D is a critical vitamin in bone metabolism, and its deficiency is far more common, which has been linked to increased risk of infection as demonstrated in a number of observational studies including those in the elderly. In this review, we focus on zinc, vitamin E, and vitamin D, the 3 nutrients which are relatively well documented for their roles in impacting immune function and infection in the elderly, to discuss the findings in this context reported in both the observational studies and interventional clinical trials. A perspective will be provided based on the analysis of information under review.
Collapse
Affiliation(s)
- Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea.
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
17
|
Ma YY, Mou XZ, Ding YH, Zou H, Huang DS. Delivery systems of ceramide in targeted cancer therapy: ceramide alone or in combination with other anti-tumor agents. Expert Opin Drug Deliv 2016; 13:1397-406. [PMID: 27168034 DOI: 10.1080/17425247.2016.1188803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Medical School and Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
18
|
Liu D, Wang D, Xu Z, Gao J, Liu M, Liu Y, Jiang M, Zheng D. Dysregulated expression of miR-101b and miR-26b lead to age-associated increase in LPS-induced COX-2 expression in murine macrophage. AGE (DORDRECHT, NETHERLANDS) 2015; 37:97. [PMID: 26371058 PMCID: PMC5005846 DOI: 10.1007/s11357-015-9836-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Aging is the natural process of decline in physiological structure and function of various molecules, cells, tissues, and organs. Growing evidence indicates that increased immune genetic diversity and dysfunction of immune system cause aging-related pathophysiological process with the growth of age. In the present study, we observed that LPS-induced higher activation of cyclooxygenase (COX)-2 promoter is associated with the upregulated binding activity of nuclear factor kappa B (NF-κB) in peritoneal macrophages of aged mice than young ones. Additionally, COX-2 is a direct target of miR-101b and miR-26b in the macrophages. Significant upregulation of miR-101b and miR-26b effectively prevented LPS-induced excessive expression of COX-2 in the young mice. Because these negative regulatory factors were unresponsive to LPS stimulation, the levels of COX-2 were markedly higher in the macrophages of aged mice. Further study showed that NF-κB activation contributed to the increase in the expression of miR-101b and miR-26b in the LPS-stimulated macrophages of young mice, but not aged ones. Moreover, histone deacetylase (HDAC) inhibitor trichostatin A (TSA) upregulated expression of miR-101b and miR-26b in the aged mouse macrophages only, but not the young cells. This demonstrated that HDAC suppressed the expression of miR-101b and miR-26b in the LPS-treated macrophages of aged mice and contributed to the aging process. TSA-induced increased expression of miR-101b and miR-26b could further suppress COX-2 expression. These findings provide novel evidence on the regulation of immune senescence and miR-101b and miR-26b, which might be promising targets in treating aged-related inflammatory diseases. Epigenetic regulation of the microRNAs (miRNAs) provides an important evidence for the treatment of innate inflammatory disease with HDAC inhibitors in elderly.
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Dongsheng Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenbiao Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Jing Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Min Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Yanxin Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Minghong Jiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Dexian Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| |
Collapse
|
19
|
Surowiak P, Gansukh T, Donizy P, Halon A, Rybak Z. Increase in cyclooxygenase-2 (COX-2) expression in keratinocytes and dermal fibroblasts in photoaged skin. J Cosmet Dermatol 2015; 13:195-201. [PMID: 25196686 DOI: 10.1111/jocd.12103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Interleukins and NFκ-B are involved in the development of inflammatory reactions. It has been suggested that these proteins are important contributing factors in the process of photoaging of skin. Moreover, interleukins and NFκ-B are known to be capable of inducing expression of cyclooxygenase 2 (COX-2). Expression of COX-2 in various populations of skin cells has not been examined in the specific processes of aging. OBJECTIVES The study aimed at evaluating COX-2 expression in skin samples originating from patients with chronologically aged and photoaged skin at various stages of skin aging. METHODS Immunohistochemical analysis of COX-2 reactivity was conducted on samples originating from 52 women undergoing surgery for reasons other than skin pathology. RESULTS Our study demonstrated that COX-2 expression in keratinocytes and fibroblasts was significantly higher in skin samples affected by photoaging than in samples affected by endogenous aging or obtained from younger individuals. CONCLUSIONS The results indicate that COX-2 may be involved in the pathogenesis of the photoaging process. Inhibition of expression or activity of the enzyme may find application in photoaging treatment and/or prophylaxis.
Collapse
Affiliation(s)
- Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, Wrocław, Poland; Polish Association of Aesthetic and Anti-Aging Medicine, PTL, Warsaw, Poland; DermaMed Institute of Aesthetic Medicine, Wrocław, Poland
| | | | | | | | | |
Collapse
|
20
|
Chen WC, Yen CS, Huang WJ, Hsu YF, Ou G, Hsu MJ. WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-inflammatory properties via MKP-1 in LPS-stimulated RAW264.7 macrophages. Br J Pharmacol 2015; 172:1894-908. [PMID: 25521622 DOI: 10.1111/bph.13040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydroxamate derivatives have attracted considerable attention because of their broad pharmacological properties. Recent studies reported their potential use in the treatment of cardiovascular diseases, arthritis and infectious diseases. However, the mechanisms of the anti-inflammatory effects of hydroxamate derivatives remain to be elucidated. In an effort to develop a novel pharmacological agent that could suppress abnormally activated macrophages, we investigated a novel aliphatic hydroxamate derivative, WMJ-S-001, and explored its anti-inflammatory mechanisms. EXPERIMENTAL APPROACH RAW264.7 macrophages were exposed to LPS in the absence or presence of WMJ-S-001. COX-2 expression and signalling molecules activated by LPS were assessed. KEY RESULTS LPS-induced COX-2 expression was suppressed by WMJ-S-001. WMJ-S-001 inhibited p38MAPK, NF-κB subunit p65 and CCAAT/enhancer-binding protein (C/EBP)β phosphorylation in cells exposed to LPS. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced p65 and C/EBPβ phosphorylation and COX-2 expression. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was suppressed in the presence of WMJ-S-001. In addition, WMJ-S-001 suppression of p38MAPK, p65 and C/EBPβ phosphorylation, and subsequent COX-2 expression were restored in cells transfected with a dominant-negative (DN) mutant of MAPK phosphatase-1 (MKP-1). WMJ-S-001 also caused an increase in MKP-1 activity in RAW264.7 macrophages. CONCLUSIONS AND IMPLICATIONS WMJ-S-001 may activate MKP-1, which then dephosphorylates p38MAPK, resulting in a decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated RAW264.7 macrophages. The present study suggests that WMJ-S-001 may be a potential drug candidate for alleviating LPS-associated inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletion-mutant cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1571-80. [PMID: 25195822 DOI: 10.1016/j.bbalip.2014.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/25/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022]
Abstract
Mutants of tumor suppressor p53 not only lose the activity in genome stabilizing and in tumor suppression, but also exhibit oncogenic function in cancer cells. Most efforts in restoring p53 biological activity focus on either altering mutant-protein conformation or introducing an exogenous p53 gene into cells to eliminate p53-mutant cancer cells. Being different from these, we report that ceramide can restore the expression of wild-type p53 and induce p53-dependent apoptosis in deletion-mutant cancer cells. We show that endogenous long-carbon chain ceramide species (C16- to C24-ceramides) and exogenous C6-ceramide, rather than other sphingolipids, restore wild-type mRNA (intact exon-5), phosphorylated protein (Ser15 in exon-5) of p53, and p53-responsive proteins, including p21 and Bax, in ovarian cancer cells, which predominantly express a deleted exon-5 of p53 mutant before treatments. Consequently, the restored p53 sensitizes these p53-mutant cancer cells to DNA damage-induced growth arrest and apoptosis. Furthermore, we elucidate that ceramide activates protein phosphatase-1, and then the dephosphorylated serine/arginine-rich splicing-factor 1 (SRSF1) is translocated to the nucleus, thus promoting pre-mRNA splicing preferentially to wild-type p53 expression. These findings disclose an unrecognized mechanism that pre-mRNA splicing dysfunction can result in p53 deletion-mutants. Ceramide through SRSF1 restores wild-type p53 expression versus deletion-mutant and leads cancer cells to apoptosis. This suggests that heterozygous deletion-mutants of p53 can be restored in posttranscriptional level by using epigenetic approaches.
Collapse
|
22
|
An Asp49 phospholipase A2 from snake venom induces cyclooxygenase-2 expression and prostaglandin E2 production via activation of NF-κB, p38MAPK, and PKC in macrophages. Mediators Inflamm 2014; 2014:105879. [PMID: 24808633 PMCID: PMC3997854 DOI: 10.1155/2014/105879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.
Collapse
|
23
|
Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. Biochem Pharmacol 2014; 88:372-83. [DOI: 10.1016/j.bcp.2014.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
|
24
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 767] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
25
|
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
26
|
Wu D, Ren Z, Pae M, Han SN, Meydani SN. Diet-induced obesity has a differential effect on adipose tissue and macrophage inflammatory responses of young and old mice. Biofactors 2013; 39:326-33. [PMID: 23345024 DOI: 10.1002/biof.1075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023]
Abstract
Obesity and aging are both associated with increased inflammation in adipose tissue. In this study, we investigated effect of diet-induced obesity on inflammatory status in young and old mice. Young (2 months) and old (19 months) C57BL/6 mice were fed a low-fat (10%, LF) or high-fat (60%, HF) diet for 4.5 months. Adipose tissue from old/LF mice expressed higher levels of IL-1β, IL-6, TNFα, and cyclooxygenase-2 mRNA compared with young/LF mice. HF diet upregulated expression of all these inflammatory markers in young mice to the levels seen in the aged. Adipocytes, but not stromal vascular cells, from old/LF mice produced more IL-6, TNFα, and prostaglandin (PG)E2 than those from young/LF mice. HF diet resulted in an increase of all these markers produced by adipocytes in young, but only TNFα in old mice. PGE2 produced by peritoneal macrophages (Mϕ's) was upregulated with aging, and HF diet induced more IL-6, TNFα, and PGE2 production in young but not in old mice. Thus, HF diet/obesity induces an inflammatory state in both visceral fat cells and peritoneal Mϕ's of young mice, but not so in old mice. Together, these results suggest that HF diet-induced obesity may speed up the aging process as characterized by inflammatory status. This study also indicates that animals have a differential response, depending on their ages, to HF diet-induced obesity and inflammation. This age-related difference in response to HF diet should be considered when using inflammation status as a marker in investigating adverse health impacts of HF diet and obesity.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
27
|
The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PLoS One 2013; 8:e61440. [PMID: 23596524 PMCID: PMC3626588 DOI: 10.1371/journal.pone.0061440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Human parvovirus B19 (B19V) is the causative agent of erythema infectiosum in humans. B19 infection also causes severe disease manifestations, such as chronic anemia in immunocompromised patients, aplastic crisis in patients with a high turnover rate of red blood cells, and hydrops fetalis in pregnant women. Although a secreted phospholipase A2 (PLA2) motif has been identified in the unique region of the B19V minor capsid protein VP1(VP1u), the determinants for its enzyme activity and its influences on host cells are not well understood. The purpose of this study was to investigate the contribution of the PLA2 motif and other regions of the VP1u to the PLA2 activity, to determine the cellular localization of the VP1u protein, and to examine the effects of VP1u on cellular cytokines. We found that in addition to the critical conserved and non-conserved amino acids within the VP1u PLA2 motif, amino acid residues outside the VP1u PLA2 motif are also important for the PLA2 activity. VP1u and various mutants all revealed a nucleo-cytoplasmic distribution. UT7-Epo cells treated with prokaryotic expressed VP1u or mutant proteins with PLA2 activity released a large amount of free fatty acid (FFA), and the cell morphological change occurred dramatically. However, neither free fatty acid nor cell morphology change occurred for cells treated with the mutants without PLA2 activity. The wild type and the VP1u mutants with the PLA2 activity also activated TNF-α promoter and upregulated the transcription activity of NF-κB in transfected cells. In addition, we found that the amino acids outside the PLA2 domain are critical for the viral PLA2 activity, and that these tested VP1u mutants did not affect the localization of the VP1u protein.
Collapse
|
28
|
Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des 2013; 19:1680-98. [PMID: 23061726 PMCID: PMC3749774 DOI: 10.2174/138161213805219711] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
29
|
Carrero I, Gonzalo M, Martin B, Sanz-Anquela J, Arévalo-Serrano J, Gonzalo-Ruiz A. Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol 2012; 236:215-27. [DOI: 10.1016/j.expneurol.2012.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/22/2012] [Accepted: 05/05/2012] [Indexed: 11/25/2022]
|
30
|
Jazwinski SM, Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 2012; 3:139. [PMID: 22629248 PMCID: PMC3354551 DOI: 10.3389/fphys.2012.00139] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFκB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFκB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Medicine, Tulane Center for Aging, Tulane University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
31
|
Lutein or Zeaxanthin Supplementation Suppresses Inflammatory Responses in Retinal Pigment Epithelial Cells and Macrophages. RETINAL DEGENERATIVE DISEASES 2012; 723:43-50. [DOI: 10.1007/978-1-4614-0631-0_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol 2011; 301:H1205-19. [PMID: 21841020 PMCID: PMC3197347 DOI: 10.1152/ajpheart.00685.2011] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Research has shown that the majority of the cardiometabolic alterations associated with an increased risk of CVD (e.g., insulin resistance/type 2 diabetes, abdominal obesity, dyslipidemia, hypertension, and inflammation) can be prevented, and even reversed, with the implementation of healthier diets and regular exercise. Data from animal and human studies indicate that more drastic interventions, i.e., calorie restriction with adequate nutrition (CR), may have additional beneficial effects on several metabolic and molecular factors that are modulating cardiovascular aging itself (e.g., cardiac and arterial stiffness and heart rate variability). The purpose of this article is to review the current knowledge on the effects of CR on the aging of the cardiovascular system and CVD risk in rodents, monkeys, and humans. Taken together, research shows that CR has numerous beneficial effects on the aging cardiovascular system, some of which are likely related to reductions in inflammation and oxidative stress. In the vasculature, CR appears to protect against endothelial dysfunction and arterial stiffness and attenuates atherogenesis by improving several cardiometabolic risk factors. In the heart, CR attenuates age-related changes in the myocardium (i.e., CR protects against fibrosis, reduces cardiomyocyte apoptosis, prevents myosin isoform shifts, etc.) and preserves or improves left ventricular diastolic function. These effects, in combination with other benefits of CR, such as protection against obesity, diabetes, hypertension, and cancer, suggest that CR may have a major beneficial effect on health span, life span, and quality of life in humans.
Collapse
Affiliation(s)
- Edward P Weiss
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, Missouri 63104, USA.
| | | |
Collapse
|
33
|
Cryptotanshinone inhibits LPS-induced proinflammatory mediators via TLR4 and TAK1 signaling pathway. Int Immunopharmacol 2011; 11:1871-6. [PMID: 21835267 DOI: 10.1016/j.intimp.2011.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 12/28/2022]
Abstract
Cryptotanshinone (CTN), one of the major constituents of tanshinones, was investigated for anti-inflammatory activity in the murine macrophage cell line RAW 264.7. CTN inhibited the production of nitric oxide (NO) production, as well as expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated macrophages. Since CTN was considered as inhibiting LPS-triggered phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation, we consequently evaluated the expression of toll-like receptor 4 (TLR4) and CD14, as well as phosphorylation of TGF-β-activated kinase 1 (TAK1). CTN reduced the expression of CD14 and TLR4, and suppressed LPS-induced phosphorylation of TAK1. Furthermore, CTN significantly increased the survival rate against LPS challenge in D-galactosamine-sensitized mice, which was in line with in vitro results. These results suggested that CD14/TLR4 and TAK1 might be the potential molecular targets for addressing the protective effects of CTN on LPS-induced inflammatory effects in macrophages.
Collapse
|
34
|
Abstract
Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed "immune senescence," manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551-1585.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA
| | | |
Collapse
|
35
|
Benderro GF, Lamanna JC. Hypoxia-induced angiogenesis is delayed in aging mouse brain. Brain Res 2011; 1389:50-60. [PMID: 21402058 DOI: 10.1016/j.brainres.2011.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/18/2011] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
Chronic moderate hypoxia results in systemic and central nervous system adaptations that allow acclimatization. Long-term responses to hypoxia involve systemic physiological changes, metabolic regulation, and vascular remodeling. To investigate whether aging affects systemic and cerebral angiogenic adaptational changes in response to prolonged hypoxia, the present study assessed the responses of 4month old ("young") C57BL/6 mice and 24month old ("aged") C57BL/6 mice to chronic hypobaric hypoxia of 0.4atm (290torr). Compared to young mice, delayed body weight-loss recovery and a lag in polycythemic response were observed in aged mice. As previously shown, hypoxia inducible factor-1α (HIF-1α) accumulation was attenuated and vascular endothelial growth factor (VEGF) expression was decreased in the cerebral cortex of aged mice. Conversely, cyclooxygenase-2 (COX-2), angiopoietin-2 (Ang-2), and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) protein upregulation were not affected in the aged mice. Despite an initial delay in cerebral angiogenic response in aged mice in the first week of hypoxia, no significant differences were observed in microvascular density between young and aged mice in normoxia and at 2 and 3weeks of hypoxia. Taken together, these observations indicate that, even though the HIF-1 response to hypoxia is greatly attenuated, HIF-1 independent compensatory pathways are eventually able to maintain baseline and cerebral angiogenic adaptational changes to chronic hypoxia in aged mice. The delayed adaptive response, however, may result in decreased survival in the aged cohort.
Collapse
Affiliation(s)
- Girriso F Benderro
- Department of Anatomy, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
36
|
Guo W, Nie L, Wu D, Wise ML, Collins FW, Meydani SN, Meydani M. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer 2011; 62:1007-16. [PMID: 21058188 DOI: 10.1080/01635581.2010.492090] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A high intake of whole grain foods is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Chronic inflammation and associated cyclooxygenase-2 (COX-2) expression in the colon epithelium are causally related to epithelial carcinogenesis, proliferation, and tumor growth. We examined the effect of avenanthramides (Avns), unique polyphenols from oats with anti-inflammatory properties, on COX-2 expression in macrophages, colon cancer cell lines, and on proliferation of human colon cancer cell lines. We found that Avns-enriched extract of oats (AvExO) had no effect on COX-2 expression, but it did inhibit COX enzyme activity and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide-stimulated mouse peritoneal macrophages. Avns (AvExO, Avn-C, and the methylated form of Avn-C (CH3-Avn-C)) significantly inhibited cell proliferation of both COX-2-positive HT29, Caco-2, and LS174T, and COX-2-negative HCT116 human colon cancer cell lines, CH3-Avn-C being the most potent. However, Avns had no effect on COX-2 expression and PGE(2) production in Caco-2 and HT29 colon cancer cells. These results indicate that the inhibitory effect of Avns on colon cancer cell proliferation may be independent of COX-2 expression and PGE(2) production. Thus, Avns might reduce colon cancer risk through inhibition of macrophage PGE(2) production and non-COX-related antiproliferative effects in colon cancer cells. Interestingly, Avns had no effect on cell viability of confluence-induced differentiated Caco-2 cells, which display the characteristics of normal colonic epithelial cells. Our results suggest that the consumption of oats and oat bran may reduce the risk of colon cancer not only because of their high fiber content but also due to Avns, which attenuate proliferation of colonic cancer cells.
Collapse
Affiliation(s)
- Weimin Guo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jeng W, Ramkissoon A, Wells PG. Reduced DNA oxidation in aged prostaglandin H synthase-1 knockout mice. Free Radic Biol Med 2011; 50:550-6. [PMID: 21094252 DOI: 10.1016/j.freeradbiomed.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
Abstract
Prostaglandin H synthase (PHS)-2 (COX-2) is implicated in the neurodegeneration of Alzheimer and Parkinson diseases. Multiple mechanisms may be involved, including PHS-catalyzed bioactivation of neurotransmitters, precursors, and metabolites to neurotoxic free radical intermediates. Herein, in vitro studies with the purified PHS-1 (COX-1) isoform and in vivo studies of aging PHS-1 knockout mice were used to evaluate the potential neurodegenerative role of PHS-1-catalyzed bioactivation of endogenous neurotransmitters to free radical intermediates that enhance reactive oxygen species formation and oxidative DNA damage. The brains of 2-year-old wild-type (+/+) PHS-1 normal and heterozygous (+/-) and homozygous (-/-) PHS-1 knockout mice were analyzed for 8-oxo-2'-deoxyguanosine formation, characterized by high-performance liquid chromatography with electrochemical detection and by immunohistochemistry. Compared to aging PHS-1(+/+) normal mice, aging PHS-1(-/-) knockout mice had less oxidative DNA damage in the cortex, hippocampus, cerebellum, and brain stem. This PHS-1-dependent oxidative damage was not observed in young mice. In vitro incubation of purified PHS-1 and 2'-deoxyguanosine with dopamine, L-DOPA, and epinephrine, but not glutamate or norepinephrine, enhanced oxidative DNA damage. These results suggest that PHS-1-dependent accumulation of oxidatively damaged macromolecules including DNA may contribute to the mechanisms and risk factors of aging-related neurodegeneration.
Collapse
Affiliation(s)
- Winnie Jeng
- Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | | | | |
Collapse
|
38
|
Abstract
The relationship between advanced age and immunologic deficits is becoming an area of rapidly advancing research. Many of the clinical hurdles in the elderly population result from dysregulation of the immune system leading to the inability of the elderly to swiftly combat infection and to the increased incidence of chronic disease states and autoimmune conditions. Herein, we address the crucial alterations in the innate immune system that occur with advancing age. Specifically, we discuss how the effects of advanced age may lead to functional changes in the neutrophil, macrophage, dendritic cell, natural killer cell, and natural killer T cell populations in human and murine models that translate into aberrant innate immune responses. Furthermore, we elucidate how these changes may contribute to documented deficits in adaptive immunity as well as the pathological conditions and the increased morbidity and mortality seen in the elderly population.
Collapse
Affiliation(s)
- Shegufta Mahbub
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|
39
|
Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH. Enhanced aortic macrophage lipid accumulation and inflammatory response in LDL receptor null mice fed an atherogenic diet. Lipids 2010; 45:701-11. [PMID: 20686867 DOI: 10.1007/s11745-010-3454-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
The effect of an atherogenic diet on inflammatory response and elicited peritoneal macrophage (Mphi) cholesterol accumulation in relation to aortic lesion formation was assessed in LDL receptor null (LDLr-/-) mice. Mice were fed an atherogenic or control diet for 32 weeks. The atherogenic relative to control diet resulted in significantly higher plasma monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) concentrations, more aortic wall Mphi deposition, higher serum non HDL-cholesterol concentrations and total cholesterol to HDL-cholesterol ratios, and greater accumulation of both aortic free and esterified cholesterol. Elicited peritoneal Mphi selectively accumulated longer chain unsaturated fatty acids in their membrane, independent of the dietary fatty acid profile. Elicited peritoneal Mphi isolated from mice fed the atherogenic relative to control diet had significantly less arachidonic acid levels, accumulated significantly higher esterified cholesterol, had significantly higher mRNA levels and secretion of MCP-1, and mRNA and protein levels of ATP-binding cassette A1. Diet treatment had no significant effect in elicited peritoneal Mphi on TNFalpha and IL-6 mRNA levels and secretion. These data suggest that the atherogenic relative to control diet resulted in higher plasma inflammatory factor concentrations, less favorable lipoprotein profile, higher elicited peritoneal Mphi cholesterol accumulation and inflammatory factor secretion, and more aortic wall Mphi deposition, which in turn were associated with greater aortic cholesterol accumulation.
Collapse
Affiliation(s)
- Shu Wang
- Cardiovascular Nutrition Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
40
|
Zhang J, Lei T, Chen X, Peng Y, Long H, Zhou L, Huang J, Chen Z, Long Q, Yang Z. Resistin up-regulates COX-2 expression via TAK1-IKK-NF-kappaB signaling pathway. Inflammation 2010; 33:25-33. [PMID: 19774455 DOI: 10.1007/s10753-009-9155-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hormone resistin, which was originally shown to induce insulin resistance, has been implicated in the regulation of inflammatory processes, but the molecular mechanism underlying such regulation has not been clearly defined. The goal of our study was to determine whether the expression of COX-2 can be induced by resistin and what the potential signaling pathway involved in this process is. Compared with controls, resistin significantly upregulated COX-2 expression in RAW264.7 macrophage cells. Administration of anti-resistin antibody could significantly reduce this effect. Induction of COX-2 by resistin was also markedly reduced in the presence of either dominant negative mutant IkappaBalpha or PDTC, a pharmacological inhibitor of NF-kappaB. On the other hand, NF-kappaB subunit p65 was upregulated by resistin. Moreover, we found that transforming growth factor-beta-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase (MAPKKK), could be activated in response to resistin. These results suggest that resistin enhances COX-2 expression in mouse macrophage cells in a TAK1-IKK-NF-kappaB-dependent manner and therefore plays a critical role in inflammatory processes.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, HuaZhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Husvik C, Bryne M, Halstensen TS. Epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines is mediated through extracellular signal-regulated kinase 1/2 and p38 but is Src and nuclear factor-kappa B independent. Eur J Oral Sci 2009; 117:528-35. [PMID: 19758248 DOI: 10.1111/j.1600-0722.2009.00669.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular signalling cascade(s) mediating epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression is poorly defined in oral carcinomas. Investigation of two different oral squamous cell carcinoma (OSCC) cell lines with high EGF-induced COX-2 expression revealed, however, that this expression was dependent on two mitogen-activated protein kinase (MAPK) pathways [extracellular signal-regulated kinase 1/2 (ERK1/2) and p38] because combined inhibition of these pathways was needed to abolish EGF-induced COX-2 expression. Surprisingly, inhibition of phosphoinositide-3 kinase (PI3K) increased EGF-induced COX-2 expression in the basaloid OSCC cell line (C12), suggesting a PI3K-controlled, inhibitory COX-2-regulating pathway. Neither the transcription factor nuclear factor-kappaB (NF-kappaB), nor Src, was involved in EGF-induced COX-2 expression. The results suggest that EGF-induced COX-2 expression is regulated by several pathways, and emphasizes that individual tumors use different strategies for intracellular signalling.
Collapse
Affiliation(s)
- Camilla Husvik
- Laboratory for mucosal immunology (LMI), Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
42
|
de Mello VDF, Lankinen M, Schwab U, Kolehmainen M, Lehto S, Seppänen-Laakso T, Oresic M, Pulkkinen L, Uusitupa M, Erkkilä AT. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 2009; 52:2612-5. [PMID: 19669729 DOI: 10.1007/s00125-009-1482-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Ceramides and IL-6 have a role in immune-inflammatory responses and cardiovascular diseases, and are suggested to be involved in insulin and glucose metabolism. We sought to assess the associations of circulating levels of IL-6, TNF-alpha and high-sensitivity C reactive protein (hsCRP), which are inflammatory markers related to insulin resistance (IR), with the plasma lipid metabolites ceramides and diacylglycerols (DAG) in patients with CHD. METHODS Cross-sectional analyses were carried out on data from 33 patients with CHD. Serum levels of the inflammatory markers and plasma lipid metabolites (lipidomics approach performed by ultra-performance liquid chromatography coupled to electrospray ionisation MS) were measured at the same time point as insulin resistance (IR) (HOMA-IR index). RESULTS Serum circulating levels of IL-6 were strongly correlated with plasma ceramide concentrations (r = 0.59, p < 0.001). Adjustments for serum TNF-alpha or hsCRP levels, smoking, BMI, age, sex or HOMA-IR did not change the results (p < 0.001). After adjustments for the effect of serum inflammatory markers (TNF-alpha or hsCRP), HOMA-IR and BMI the correlation between plasma DAG and serum IL-6 (r = 0.33) was also significant (p < 0.03). In a linear regression model, circulating levels of both ceramides and TNF-alpha had a significant independent influence on circulating levels of IL-6, altogether accounting for 41% of its variation (p < 0.001). CONCLUSIONS/INTERPRETATION Our results strongly suggest that the link between ceramides, IR and inflammation is related to the inflammatory marker IL-6. Ceramides may contribute to the induction of inflammation involved in IR states that frequently coexist with CHD.
Collapse
Affiliation(s)
- V D F de Mello
- Department of Clinical Nutrition/Food and Health Research Centre, School of Public Health and Clinical Nutrition, University of Kuopio, P.O. Box 1627, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang C, Wang S, Qin J, Lv Y, Ma X, Liu C. Ethanol upregulates iNOS expression in colon through activation of nuclear factor-kappa B in rats. Alcohol Clin Exp Res 2009; 34:57-63. [PMID: 19860806 DOI: 10.1111/j.1530-0277.2009.01066.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcohol inhibits colonic motility but the mechanism is unknown. The goal of this study was to test the possibility that nuclear factor-kappa B (NF-kappaB) is involved in the upregulation of inducible nitric oxide synthase (iNOS) expression induced by ethanol in colon. METHODS The isometric contraction of longitudinal muscle strips of proximal colon (LP) was monitored by polygraph. Western blot analysis was used to measure the amount of iNOS and I-kappaB in the cytoplasm and P65 in the nucleus. Immunohistochemistry was applied to locate iNOS in colon. RESULTS Ethanol (87mM) inhibited the contraction of LP. Pretreatment of S-methylisothioure (SMT) (1 mM), a specific iNOS inhibitor, Pyrrolidine dithiocarbamate (PDTC) (10 mM) and BAY11-7082(10 mM), specific inhibitors of NF-kappaB significantly reversed the inhibitory effect of ethanol on LP contraction. Ethanol increased the amount of iNOS and content of NO in colon, and these effects were attenuated by pretreatment of PDTC. Following ethanol administration, the amount of I-kappaB in the cytoplasm decreased, but that of P65, the subunit of NF-kappaB in the nucleus, increased. The iNOS was located in the cell body of myenteric plexus in colon. CONCLUSION Ethanol inhibited the contraction of LP in colon mainly through activation of NF-kappaB, the subsequent upregulation of iNOS expression and increase of NO release in myenteric plexus.
Collapse
Affiliation(s)
- Chao Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
44
|
Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 2009; 130:564-87. [PMID: 19632262 DOI: 10.1016/j.mad.2009.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Deregulation of reactive oxygen intermediates (ROI) resulting in either too high or too low concentrations are commonly recognized to be at least in part responsible for many changes associated with aging. This article reviews ROI-dependent mechanisms critically contributing to the decline of immune function during physiologic - or premature - aging. While ROI serve important effector functions in cellular metabolism, signalling and host defence, their fine-tuned generation declines over time, and ROI-mediated damage to several cellular components and/or signalling deviations become increasingly prevalent. Although distinct ROI-associated pathomechanisms contribute to immunosenescence of the innate and adaptive immune system, mutual amplification of dysfunctions may often result in hyporesponsiveness and immunodeficiency, or in chronic inflammation with hyperresponsiveness/deregulation, or both. In this context, we point out how imbalanced ROI contribute ambiguously to driving immunosenescence, chronic inflammation and autoimmunity. Although ROI may offer a distinct potential for therapeutic targeting along with the charming opportunity to rescue from deleterious processes of aging and chronic inflammatory diseases, such modifications, owing to the complexity of metabolic interactions, may carry a marked risk of unforeseen side effects.
Collapse
|
45
|
Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158:982-93. [PMID: 19563535 DOI: 10.1111/j.1476-5381.2009.00281.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sphingolipids are formed via the metabolism of sphingomyelin, a constituent of the plasma membrane, or by de novo synthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in inflammation. This can involve, for example, activation of pro-inflammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-inflammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-affinity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on inflammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in inflammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and inflammatory bowel disease, which involve important inflammatory components. A significant body of research now indicates that sphingolipids are intimately involved in the inflammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological inflammation.
Collapse
Affiliation(s)
- Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
46
|
Marko MG, Pang HJE, Ren Z, Azzi A, Huber BT, Bunnell SC, Meydani SN. Vitamin E reverses impaired linker for activation of T cells activation in T cells from aged C57BL/6 mice. J Nutr 2009; 139:1192-7. [PMID: 19403707 PMCID: PMC2714384 DOI: 10.3945/jn.108.103416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Supplemental vitamin E alleviates age-related defects in interleukin (IL)-2 production, T cell proliferation, and immune synapse formation. Here, we evaluated the effect of in vitro supplementation with 46 mumol/L of vitamin E on T cell receptor-proximal signaling events of CD4(+) T cells from young (4-6 mo) and old (22-26 mo) C57BL mice. Aged murine CD4(+) T cells stimulated via CD3 and CD28, tyrosine 191 of the adaptor protein Linker for Activation of T cells (LAT), was hypo-phosphorylated. Supplementation with vitamin E eliminated this difference in the tyrosine phosphorylation of LAT. By using a flow cytometric assay, the age-related differences in the activation-induced phosphorylation of LAT were observed in both naïve and memory T cell subsets. In addition, supplementation with vitamin E eliminates the age-related differences in LAT phosphorylation in both T cell subsets. Neither age nor vitamin E supplementation altered the fraction of LAT entering the membrane compartment. Furthermore, neither age nor vitamin E influenced the phosphorylation of Lck and Zap70, indicating that associated changes in LAT phosphorylation were not caused by alterations in activation states of the upstream kinases Lck and Zap70.
Collapse
Affiliation(s)
- Melissa G. Marko
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Hoan-Jen E. Pang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Zhihong Ren
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Angelo Azzi
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Brigitte T. Huber
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Stephen C. Bunnell
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
47
|
Meydani SN, Wu D. Nutrition and age-associated inflammation: implications for disease prevention. JPEN J Parenter Enteral Nutr 2009; 32:626-9. [PMID: 18974241 DOI: 10.1177/0148607108325179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests that aging is associated with dysregulated immune and inflammatory responses. Investigation into the cellular and molecular mechanisms underlying this phenomenon suggests that an up-regulated cyclooxygenase (COX)-2 expression, and resulting increase in production of prostaglandin E(2) (PGE(2)), is a critical factor. Macrophages from old mice have significantly higher levels of PGE(2) production compared with those from young mice, a result of increased COX-2 expression and protein levels leading to increased COX enzyme activity. Furthermore, studies suggest that the age-associated increase in macrophage PGE(2) production is due to ceramide-induced up-regulation of nuclear factor-kappa B activation. Such processes may also occur in cell types other than macrophages, lending further insight into potential mechanisms of age-related diseases. Moreover, the excess PGE(2) induces harmful effects in other cell types such as T cells and adipocytes through the negative crosstalk between macrophages with other cells, resulting in further increased susceptibility to diseases. Nutrient/dietary medications, such as antioxidants and certain lipids have suggested a promising route to reduce the age-related increase in COX activity and PGE(2) production that is associated with several disease states.
Collapse
Affiliation(s)
- Simin Nikbin Meydani
- JMUSDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
48
|
p53 and ATF-2 partly mediate the overexpression of COX-2 in H2O2-induced premature senescence of human fibroblasts. Biogerontology 2008; 10:291-8. [DOI: 10.1007/s10522-008-9204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
|
49
|
Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH. Reduction in dietary omega-6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 2008; 204:147-55. [PMID: 18842266 DOI: 10.1016/j.atherosclerosis.2008.08.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/14/2008] [Accepted: 08/10/2008] [Indexed: 11/26/2022]
Abstract
Dietary very long chain omega (omega)-3 polyunsaturated fatty acids (PUFA) have been associated with reduced CVD risk, the mechanisms of which have yet to be fully elucidated. LDL receptor null mice (LDLr-/-) were used to assess the effect of different ratios of dietary omega-6 PUFA to eicosapentaenoic acid plus docosahexaenoic acid (omega-6:EPA+DHA) on atherogenesis and inflammatory response. Mice were fed high saturated fat diets without EPA and DHA (HSF omega-6), or with omega-6:EPA+DHA at ratios of 20:1 (HSF R=20:1), 4:1 (HSF R=4:1), and 1:1 (HSF R=1:1) for 32 weeks. Mice fed the lowest omega-6:EPA+DHA ratio diet had lower circulating concentrations of non-HDL cholesterol (25%, P<0.05) and interleukin-6 (IL-6) (44%, P<0.05) compared to mice fed the HSF omega-6 diet. Aortic and elicited peritoneal macrophage (Mphi) total cholesterol were 24% (P=0.07) and 25% (P<0.05) lower, respectively, in HSF R=1:1 compared to HSF omega-6 fed mice. MCP-1 mRNA levels and secretion were 37% (P<0.05) and 38% (P<0.05) lower, respectively, in elicited peritoneal Mphi isolated from HSF R=1:1 compared to HSF omega-6 fed mice. mRNA and protein levels of ATP-binding cassette A1, and mRNA levels of TNFalpha were significantly lower in elicited peritoneal Mphi isolated from HSF R=1:1 fed mice, whereas there was no significant effect of diets with different omega-6:EPA+DHA ratios on CD36, Mphi scavenger receptor 1, scavenger receptor B1 and IL-6 mRNA or protein levels. These data suggest that lower omega-6:EPA+DHA ratio diets lowered some measures of inflammation and Mphi cholesterol accumulation, which was associated with less aortic lesion formation in LDLr-/- mice.
Collapse
Affiliation(s)
- Shu Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008; 49:469-86. [PMID: 18751923 DOI: 10.1007/978-1-4020-8831-5_18] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is characterized by changes in the organism's immune functions and stress response, which in the elderly leads to increased incidence of complications and mortality following inflammatory stress. Alterations in the neuro-endocrine axes and overall decline in the immune system play an essential role in this process. Overwhelming evidence however suggests that many cellular cytokine signaling pathways are also affected, thus underscoring the idea that both, "cellular" and "systemic" changes contribute to aging. IL-1beta for example, induces more potent cellular responses in hepatocytes isolated from aged animals then in hepatocytes from young rats. This phenomenon is referred to as IL-1b hyperresponsiveness and is linked to abnormal regulation of various acute phase proteins during aging.Evidence has consistently indicated that activation of neutral sphingomyelinase and the resulting accumulation of ceramide mediate cellular responses to LPS, IL-1beta, and TNFalpha in young animals. More recent studies identified the cytokine-inducible neutral sphingomyelinase with nSMase2 (smpd3) that is localized in the plasma membrane and mediates cellular responses to IL-1beta and TNFalpha. Intriguingly, constitutive up-regulation of nSMase2 occurs in aging and it underlies the hepatic IL-1b hyperresponsiveness. The increased activity of nSMases2 in aging is caused by a substantial decline in hepatic GSH content linking thereby oxidative stress to the onset of pro-inflammatory state in liver. nSMase2 apparently follows a pattern of regulation consisting with "developmental-aging" continuum, since in animal models of delayed aging, like calorie-restricted animals, the aging-associated changes in NSMase activity and function are reversed.
Collapse
|