1
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
3
|
Margolin E, Oh YJ, Verbeek M, Naude J, Ponndorf D, Meshcheriakova YA, Peyret H, van Diepen MT, Chapman R, Meyers AE, Lomonossoff GP, Matoba N, Williamson A, Rybicki EP. Co-expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2109-2117. [PMID: 32096288 PMCID: PMC7540014 DOI: 10.1111/pbi.13369] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 05/19/2023]
Abstract
Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Trust Centre for Infectious Disease Research in AfricaUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Youngjun J. Oh
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Matthew Verbeek
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Jason Naude
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | | | - Hadrien Peyret
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Michiel T. van Diepen
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ros Chapman
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ann E. Meyers
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | | | - Nobuyuki Matoba
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Anna‐Lise Williamson
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Trust Centre for Infectious Disease Research in AfricaUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Edward P. Rybicki
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Gómez-Fernández P, Urtasun A, Astobiza I, Mena J, Alloza I, Vandenbroeck K. Pharmacological Targeting of the ER-Resident Chaperones GRP94 or Cyclophilin B Induces Secretion of IL-22 Binding Protein Isoform-1 (IL-22BPi1). Int J Mol Sci 2019; 20:ijms20102440. [PMID: 31108847 PMCID: PMC6566634 DOI: 10.3390/ijms20102440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Ianire Astobiza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
5
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
6
|
Li P, Zhang M, Zou Y, Sun Z, Sun C, Geng Z, Xu W, Wang D. Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes. Int J Biol Macromol 2018; 106:1250-1257. [DOI: 10.1016/j.ijbiomac.2017.08.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
|
7
|
Chien CY, Hung YJ, Shieh YS, Hsieh CH, Lu CH, Lin FH, Su SC, Lee CH. A novel potential biomarker for metabolic syndrome in Chinese adults: Circulating protein disulfide isomerase family A, member 4. PLoS One 2017. [PMID: 28650993 PMCID: PMC5484513 DOI: 10.1371/journal.pone.0179963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/OBJECTIVES Protein disulfide isomerase (PDI) family members are specific endoplasmic reticulum proteins that are involved in the pathogenesis of numerous diseases including neurodegenerative diseases, cancer and obesity. However, the metabolic effects of PDIA4 remain unclear in humans. The aims of this study were to investigate the associations of serum PDIA4 with the metabolic syndrome (MetS) and its components in Chinese adults. SUBJECTS/METHODS A total of 669 adults (399 men and 270 women) were recruited. Serum PDIA4 concentrations and biochemical variables were recorded. Insulin sensitivity and β-cell function were examined by homeostasis model assessment. MetS was defined based on the modified National Cholesterol Education Program Adult Treatment Panel III criteria for Asia Pacific. RESULTS The participants with MetS had significantly higher serum PDIA4 levels than those without MetS (P<0.001). After adjustments, the individuals with the highest PDIA4 tertile were associated with a higher risk of MetS than those with the lowest tertile (OR = 4.83, 95% CI: 2.71-8.60). The concentration of PDIA4 showed a stepwise increase with the components of MetS (P<0.001 for trend). The individuals with the highest PDIA4 tertile were significantly associated with waist circumference (OR = 2.41, 95% CI 1.34-4.32), blood pressure (OR = 2.71, 95% CI 1.57-4.67), fasting glucose concentration (OR = 3.17, 95% CI 1.80-5.57), and serum triglycerides (OR = 4.12, 95% CI 2.30-7.37) than those with the lowest tertile. At cutoff point of 15.24 ng/ml, the diagnostic sensitivity and specificity of PDIA4 for the metabolic syndrome were 67 and 72%, respectively, in male patients and 60 and 78%, respectively, in female patients. Finally, the result showed that PDIA4 had a significantly higher area under the curve compared with blood pressure to detect MetS using receiver operating characteristic analysis. CONCLUSIONS Serum PDIA4 concentrations are closely associated to MetS and its components in Chinese adults.
Collapse
Affiliation(s)
- Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Sheng-Chiang Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chien-Hsing Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
8
|
Hong F, Mohammad Rachidi S, Lundgren D, Han D, Huang X, Zhao H, Kimura Y, Hirano H, Ohara O, Udono H, Meng S, Liu B, Li Z. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90. PLoS One 2017; 12:e0169260. [PMID: 28056051 PMCID: PMC5215799 DOI: 10.1371/journal.pone.0169260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90) for folding. However, the interactors of its endoplasmic reticulum (ER) paralogue (gp96, Grp94 and HSP90b1) has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs) and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.
Collapse
Affiliation(s)
- Feng Hong
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Saleh Mohammad Rachidi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Debbie Lundgren
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David Han
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Xiu Huang
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Yayoi Kimura
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hisashi Hirano
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Osamu Ohara
- Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Heichiiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bei Liu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| | - Zihai Li
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| |
Collapse
|
9
|
Needham D, Arslanagic A, Glud K, Hervella P, Karimi L, Høeilund-Carlsen PF, Kinoshita K, Mollenhauer J, Parra E, Utoft A, Walke P. Bottom up design of nanoparticles for anti-cancer diapeutics: “put the drug in the cancer’s food”. J Drug Target 2016; 24:836-856. [DOI: 10.1080/1061186x.2016.1238092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Amina Arslanagic
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Kasper Glud
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Pablo Hervella
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Leena Karimi
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | | | - Koji Kinoshita
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Jan Mollenhauer
- NanoCAN, Institute for Molecular Medicine (IMM), SUND, University of Southern Denmark, Odense, Denmark
| | - Elisa Parra
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Anders Utoft
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Prasad Walke
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015; 41:79-89. [PMID: 25534658 PMCID: PMC4474783 DOI: 10.1016/j.semcdb.2014.12.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022]
Abstract
Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Abla Tannous
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maurizio Molinari
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Ishikawa Y, Boudko S, Bächinger HP. Ziploc-ing the structure: Triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases. Biochim Biophys Acta Gen Subj 2015; 1850:1983-93. [PMID: 25583561 DOI: 10.1016/j.bbagen.2014.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Protein folding is crucial for proteins' specific functions and is facilitated by various types of enzymes and molecular chaperones. The peptidyl prolyl cis/trans isomerases (PPIase) are one of these families of enzymes. They ubiquitously exist inside the cell and there are eight PPIases in the rough endoplasmic reticulum (rER), a compartment where the folding of most secreted proteins occurs. SCOPE OF REVIEW We review the functional and structural aspects of individual rER resident PPIases. Furthermore, we specifically discuss the role of these PPIases during collagen biosynthesis, since collagen is the most abundant protein in humans, is synthesized in the rER, and contains a proportionally high number of proline residues. MAJOR CONCLUSIONS The rER resident PPIases recognize different sets of substrates and facilitate their folding. Although they are clearly catalysts for protein folding, they also have more broad and multifaceted functions. We propose that PPIases coordinate collagen biosynthesis in the rER. GENERAL SIGNIFICANCE This review expands our understanding of collagen biosynthesis by explaining the influence of novel indirect mechanisms of regulating folding and this is also explored for PPIases. We also suggest future directions of research to obtain a better understanding of collagen biosynthesis and functions of PPIases in the rER. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Sergei Boudko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Sweeney ZK, Fu J, Wiedmann B. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 2014; 57:7145-59. [PMID: 24831536 DOI: 10.1021/jm500223x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cyclophilins are widely expressed enzymes that catalyze the interconversion of the cis and trans peptide bonds of prolines. The immunosuppressive natural products cyclosporine A and sanglifehrin A inhibit the enzymatic activity of the cyclophilins. Chemical modification of both the cyclosporine and sanglifehrin scaffolds has produced many analogues that inhibit cyclophilins in vitro but have reduced immunosuppressive properties. Three nonimmunosuppressive cyclophilin inhibitors (alisporivir, SCY-635, and NIM811) have demonstrated clinical efficacy for the treatment of hepatitis C infection. Additional candidates are in various stages of preclinical development for the treatment of hepatitis C or myocardial reperfusion injury. Recent publications suggest that cyclophilin inhibitors may have utility for the treatment of diverse viral infections, inflammatory indications, and cancer. In this review, we document the structure-activity relationships of the nonimmunosuppressive cyclosporins and sanglifehrins in clinical and preclinical development. Aspects of the pharmacokinetic behavior and chemical biology of these drug candidates are also described.
Collapse
Affiliation(s)
- Zachary K Sweeney
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608, United States
| | | | | |
Collapse
|
13
|
Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by ER chaperones. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2410-24. [PMID: 23507200 PMCID: PMC3729627 DOI: 10.1016/j.bbamcr.2013.03.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Biology, Drexel University, Drexel University, 418 Papadakis Integrated Science Bldg, 3245 Chestnut Street, Philadelphia, PA 19104
| | | | - Yair Argon
- Division of Cell Pathology, Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA, , Phone: 267-426-5131, Fax: 267-426-5165)
| |
Collapse
|
14
|
Abstract
The underlying causes of nonalcoholic fatty liver disease are unclear, although recent evidence has implicated the endoplasmic reticulum in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of endoplasmic reticulum homeostasis, often termed ER stress, has been observed in liver and adipose tissue of humans with nonalcoholic fatty liver disease and/or obesity. Importantly, the signaling pathway activated by disruption of endoplasmic reticulum homeostasis, the unfolded protein response, has been linked to lipid and membrane biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt endoplasmic reticulum homeostasis in nonalcoholic fatty liver disease and the role of the unfolded protein response in the broader context of chronic, metabolic diseases have become topics of intense investigation. The present review examines the endoplasmic reticulum and the unfolded protein response in the context of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Li CC, Wu TS, Huang CF, Jang LT, Liu YT, You ST, Liou GG, Lee FJS. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One 2012; 7:e43552. [PMID: 22927989 PMCID: PMC3424131 DOI: 10.1371/journal.pone.0043552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022] Open
Abstract
ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.
Collapse
Affiliation(s)
- Chun-Chun Li
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Jang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tsan Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ting You
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Jansen G, Määttänen P, Denisov AY, Scarffe L, Schade B, Balghi H, Dejgaard K, Chen LY, Muller WJ, Gehring K, Thomas DY. An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics 2012; 11:710-23. [PMID: 22665516 DOI: 10.1074/mcp.m111.016550] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chaperones and foldases in the endoplasmic reticulum (ER) ensure correct protein folding. Extensive protein-protein interaction maps have defined the organization and function of many cellular complexes, but ER complexes are under-represented. Consequently, chaperone and foldase networks in the ER are largely uncharacterized. Using complementary ER-specific methods, we have mapped interactions between ER-lumenal chaperones and foldases and describe their organization in multiprotein complexes. We identify new functional chaperone modules, including interactions between protein-disulfide isomerases and peptidyl-prolyl cis-trans-isomerases. We have examined in detail a novel ERp72-cyclophilin B complex that enhances the rate of folding of immunoglobulin G. Deletion analysis and NMR reveal a conserved surface of cyclophilin B that interacts with polyacidic stretches of ERp72 and GRp94. Mutagenesis within this highly charged surface region abrogates interactions with its chaperone partners and reveals a new mechanism of ER protein-protein interaction. This ability of cyclophilin B to interact with different partners using the same molecular surface suggests that ER-chaperone/foldase partnerships may switch depending on the needs of different substrates, illustrating the flexibility of multichaperone complexes of the ER folding machinery.
Collapse
Affiliation(s)
- Gregor Jansen
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Glembotski CC, Thuerauf DJ, Huang C, Vekich JA, Gottlieb RA, Doroudgar S. Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J Biol Chem 2012; 287:25893-904. [PMID: 22637475 DOI: 10.1074/jbc.m112.356345] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is secreted are not known. Accordingly, we examined the mechanism of MANF release from cultured ventricular myocytes and HeLa cells, both of which secrete proteins via the constitutive pathway. Although the secretion of proteins via the constitutive pathway is not known to increase upon changes in intracellular calcium, MANF secretion was increased within 30 min of treating cells with compounds that deplete sarcoplasmic reticulum (SR)/ER calcium. In contrast, secretion of atrial natriuretic factor from ventricular myocytes was not increased by SR/ER calcium depletion, suggesting that not all secreted proteins exhibit the same characteristics as MANF. We postulated that SR/ER calcium depletion triggered MANF secretion by decreasing its retention. Consistent with this were co-immunoprecipitation and live cell, zero distance, photo affinity cross-linking, demonstrating that, in part, MANF was retained in the SR/ER via its calcium-dependent interaction with the SR/ER-resident protein, GRP78 (glucose-regulated protein 78 kDa). This unusual mechanism of regulating secretion from the constitutive secretory pathway provides a potentially missing link in the mechanism by which extracellular MANF protects cells from stresses that deplete SR/ER calcium. Consistent with this was our finding that administration of recombinant MANF to mice decreased tissue damage in an in vivo model of myocardial infarction, a condition during which ER calcium is known to be dysregulated, and MANF expression is induced.
Collapse
Affiliation(s)
- Christopher C Glembotski
- San Diego State University Heart Institute, and Department of Biology, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Chen CY, Hsu HC, Lee AS, Tang D, Chow LP, Yang CY, Chen H, Lee YT, Chen CH. The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. J Vasc Res 2012; 49:329-41. [PMID: 22627396 DOI: 10.1159/000337463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS L5, the most negatively charged species of low-density lipoprotein (LDL), has been implicated in atherogenesis by inducing apoptosis of endothelial cells (ECs) and inhibiting the differentiation of endothelial progenitor cells. In this study, we compared the effects of LDL charge on cellular stress pathways leading to atherogenesis. METHODS We isolated L5 and L1 (the least negatively charged LDL) from the plasma of patients with familial hypercholesterolemia and used JC-1 staining to examine the effects of L5 and L1 on the mitochondrial membrane potential (DCm) in human umbilical vein ECs (HUVECs). Additionally, we characterized the gene expression profiles of 7 proteins involved in various types of cellular stress. RESULTS The DCm was severely compromised in HUVECs treated with L5. Furthermore, compared with L1, L5 induced a decrease in mRNA and protein expression of the endoplasmic reticulum (ER) chaperone proteins ORP150, Grp94, and Grp58, mitochondrial proteins Prdx3 and ATP synthase, and an increase in the expression of the pro-inflammatory protein hnRNP C1/C2. CONCLUSIONS Our work suggests that L5, but not L1, may promote the destruction of ECs that occurs during atherogenesis by causing mitochondrial dysfunction and modulating the expression of key proteins to promote inflammation, ER dysfunction, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Animal Science and Technology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ishikawa Y, Vranka JA, Boudko SP, Pokidysheva E, Mizuno K, Zientek K, Keene DR, Rashmir-Raven AM, Nagata K, Winand NJ, Bächinger HP. Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding. J Biol Chem 2012; 287:22253-65. [PMID: 22556420 DOI: 10.1074/jbc.m111.333336] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weinberg RB, Gallagher JW, Fabritius MA, Shelness GS. ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins. J Lipid Res 2012; 53:736-43. [PMID: 22257482 DOI: 10.1194/jlr.m019992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ∼40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ∼55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.
Collapse
Affiliation(s)
- Richard B Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
21
|
Grubb S, Guo L, Fisher EA, Brodsky JL. Protein disulfide isomerases contribute differentially to the endoplasmic reticulum-associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 2011; 23:520-32. [PMID: 22190736 PMCID: PMC3279382 DOI: 10.1091/mbc.e11-08-0704] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.
Collapse
Affiliation(s)
- Sarah Grubb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
22
|
Cyclosporine A suppresses immunoglobulin G biosynthesis via inhibition of cyclophilin B in murine hybridomas and B cells. Int Immunopharmacol 2011; 12:42-9. [PMID: 22032839 DOI: 10.1016/j.intimp.2011.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
Immunoglubulin G (IgG) is a major isotype of antibody, which is predominantly involved in immune response. The complete tetramer is needed to fold and assemble in endoplasmic reticulum (ER) prior to secretion from cells. Protein quality control guided by ER chaperons is most essential for full biological activity. Cyclophilin B (CypB) was initially identified as a high-affinity binding protein for the immunosuppressive drug Cyclosporine A (CsA). CsA suppresses organ rejection by halting productions of pro-inflammatory molecules in T cell and abolishes the enzymatic property of CypB that accelerates the folding of proteins by catalysing the isomerization of peptidyl-proline bonds in ER. Here, we reported that CsA significantly inhibited IgG biosynthesis at posttranslational level in antibody secreting cells. Moreover, CsA stimulated the extracellular secretion of CypB and induced ROS generation, leading to expressions of ER stress markers. In addition, the absence of intracellular CypB impaired the formation of ER multiprotein complex, which is most important for resisting ER stress. Interestingly, CsA interrupted IgG folding via occupying the PPIase domain of CypB in ER. Eventually, unfolded IgG is degraded via Herp-dependent ERAD pathway. Furthermore, IgG biosynthesis was really abrogated by inhibition of CypB in primary B cells. We established for the first time the immunosuppressive effect of CsA on B cells. Conclusively, the combined results of the current study suggest that CypB is a pivotal molecule for IgG biosynthesis in ER quality control.
Collapse
|
23
|
Gentile CL, Frye M, Pagliassotti MJ. Endoplasmic reticulum stress and the unfolded protein response in nonalcoholic fatty liver disease. Antioxid Redox Signal 2011; 15:505-21. [PMID: 21128705 PMCID: PMC3118611 DOI: 10.1089/ars.2010.3790] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023]
Abstract
The underlying causes of nonalcoholic fatty liver disease (NAFLD) are unclear, although recent evidence has implicated the endoplasmic reticulum (ER) in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of ER homeostasis, often termed "ER stress," has been observed in liver and adipose tissue of humans with NAFLD and/or obesity. Importantly, the signaling pathway activated by disruption of ER homeostasis, the unfolded protein response, has been linked to lipid biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt ER homeostasis in NAFLD and the role of ER-mediated signaling have become topics of intense investigation. The present review will examine the ER and the unfolded protein response in the context of NAFLD.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Melinda Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Anderson LJ, Lin K, Compton T, Wiedmann B. Inhibition of cyclophilins alters lipid trafficking and blocks hepatitis C virus secretion. Virol J 2011; 8:329. [PMID: 21711559 PMCID: PMC3138436 DOI: 10.1186/1743-422x-8-329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/28/2011] [Indexed: 01/26/2023] Open
Abstract
Host cyclophilin (cyp) inhibitors, such as NIM811, efficiently inhibit replication of hepatitis C virus (HCV) and have shown significant promise in recent clinical trials for the treatment of chronic HCV. It is therefore important to fully understand the mechanism of action of these therapeutic agents. Data obtained from comprehensive systems biology approaches have led to the hypothesis that the antiviral activity of cyclophilin inhibitors is mediated through impairing the cellular machinery on which HCV relies to traffic cofactors necessary for formation of the replication complex. Indeed, our results demonstrate when cyclophilins are inhibited by NIM811, lipid and protein trafficking within the VLDL pathway is impaired. Following treatment of replicon or HCV infected cells with NIM811, intracellular lipid droplets (LD) more than double in size and decrease in number. Changes in the LDs in response to cyclophilin inhibition are dependent upon expression of viral proteins. Additionally, in cells treated with NIM811, apoB accumulates in a crescent or ring shaped structure surrounding the enlarged LDs and is no longer secreted. Silencing of cypA or cyp40 using siRNA had a similar effect on LD size and apoB localization as compound treatment, suggesting these cyclophilins may play an important role in lipid and apoB trafficking. Interestingly, the decrease in apoB secretion correlates with a decrease in release of viral particles in HCV infected cells. Altogether, these results add a new level of complexity to the mechanism of action of cyclophilin inhibition, and suggest the role for cyclophilins in the virus life cycle extends beyond replication to virus release.
Collapse
Affiliation(s)
- Leah J Anderson
- Novartis Institutes for Biomedical Research, Inc Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
25
|
Kambara H, Tani H, Mori Y, Abe T, Katoh H, Fukuhara T, Taguwa S, Moriishi K, Matsuura Y. Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology 2011; 412:211-9. [PMID: 21281954 DOI: 10.1016/j.virol.2011.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/19/2010] [Accepted: 01/07/2011] [Indexed: 01/31/2023]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A.
Collapse
Affiliation(s)
- Hiroto Kambara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site. J Invest Dermatol 2011; 131:1085-94. [PMID: 21270823 PMCID: PMC3182837 DOI: 10.1038/jid.2010.415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.
Collapse
|
27
|
|
28
|
Abstract
Cyclophilins (Cyps) belong to a group of proteins that have peptidyl-prolyl cis–trans isomerase (PPIase) and molecular chaperone activities. Originally, Cyps were identified as the intracellular receptors for the immunosuppressive drug cyclosporin A. Cyps are found in all prokaryotes and eukaryotes, and have been structurally conserved throughout evolution, implying their importance in cellular function. There are seven major Cyp isoforms in humans. CypA is up-regulated in many human cancers, and there is a strong correlation between over-expression of the CYPA gene and malignant transformation in some cancers. Moreover, CypA is directly under the transcriptional control of two critical transcription factors for cancer development: p53 and hypoxia inducible factor-1α. This review discusses the general biological functions of Cyps under a variety of stress conditions, and the importance and diverse roles of over-expression of CYP genes in human cancers, with a particular emphasis on CYPA. These oncogenic properties suggest that CypA is a promising target for cancer therapy.
Collapse
Affiliation(s)
- J Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, Republic of Korea
| | - SS Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Centre for Bioreaction to Reactive Oxygen Species (BK-21) and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Sharma P, Ignatchenko V, Grace K, Ursprung C, Kislinger T, Gramolini AO. Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention? PLoS One 2010; 5:e11496. [PMID: 20634894 PMCID: PMC2901339 DOI: 10.1371/journal.pone.0011496] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/16/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase, which transports Ca(2+) into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation. METHODOLOGY/PRINCIPAL FINDING Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO) annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins. CONCLUSION We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.
Collapse
Affiliation(s)
- Parveen Sharma
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Grace
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Ursprung
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Research Institute, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Pemberton TJ, Kay JE. Identification and comparative analysis of the peptidyl-prolyl cis/trans isomerase repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe. Comp Funct Genomics 2010; 6:277-300. [PMID: 18629211 PMCID: PMC2447506 DOI: 10.1002/cfg.482] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/01/2005] [Accepted: 05/26/2005] [Indexed: 11/11/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three
member families that are found throughout nature and are present in all the major
compartments of the cell. Their numbers appear to be linked to the number of genes in
their respective genomes, although we have found the human repertoire to be smaller
than expected due to a reduced cyclophilin repertoire. We show here that whilst the
members of the cyclophilin family (which are predominantly found in the nucleus
and cytoplasm) and the parvulin family (which are predominantly nuclear) are
largely conserved between different repertoires, the FKBPs (which are predominantly
found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears
that the cyclophilins and parvulins have evolved to perform conserved functions,
while the FKBPs have evolved to fill ever-changing niches within the constantly
evolving organisms. Many orthologous subgroups within the different PPIase families
appear to have evolved from a distinct common ancestor, whereas others, such as the
mitochondrial cyclophilins, appear to have evolved independently of one another. We
have also identified a novel parvulin within Drosophila melanogaster that is unique to
the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast
repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases
solely with the budding yeast but it does share a majority with the higher eukaryotes
in this study, unlike the budding yeast. It therefore appears that, in comparison with
Schizosaccharomyces pombe, Saccharomyces cerevisiae is a poor representation of the
higher eukaryotes for the study of PPIases.
Collapse
Affiliation(s)
- Trevor J Pemberton
- The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton ,East Sussex BN1 9PX, United Kingdom.
| | | |
Collapse
|
31
|
Wong DM, Webb JP, Malinowski PM, Xu E, Macri J, Adeli K. Proteomic profiling of intestinal prechylomicron transport vesicle (PCTV)-associated proteins in an animal model of insulin resistance (94 char). J Proteomics 2010; 73:1291-305. [DOI: 10.1016/j.jprot.2010.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/05/2010] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
32
|
Gaither LA, Borawski J, Anderson LJ, Balabanis KA, Devay P, Joberty G, Rau C, Schirle M, Bouwmeester T, Mickanin C, Zhao S, Vickers C, Lee L, Deng G, Baryza J, Fujimoto RA, Lin K, Compton T, Wiedmann B. Multiple cyclophilins involved in different cellular pathways mediate HCV replication. Virology 2009; 397:43-55. [PMID: 19932913 DOI: 10.1016/j.virol.2009.10.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/25/2009] [Accepted: 10/28/2009] [Indexed: 02/08/2023]
Abstract
Three cyclophilin inhibitors (DEBIO-025, SCY635, and NIM811) are currently in clinical trials for hepatitis C therapy. The mechanism of action of these, however, is not completely understood. There are at least 16 cyclophilins expressed in human cells which are involved in a diverse set of cellular processes. Large-scale siRNA experiments, chemoproteomic assays with cyclophilin binding compounds, and mRNA profiling of HCV replicon containing cells were used to identify the cyclophilins that are instrumental to HCV replication. The previously reported cyclophilin A was confirmed and additional cyclophilin containing pathways were identified. Together, the experiments provide strong evidence that NIM811 reduces viral replication by inhibition of multiple cyclophilins and pathways with protein trafficking as the most strongly and persistently affected pathway.
Collapse
Affiliation(s)
- L Alex Gaither
- Novartis Institutes of Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wong DM, Webb JP, Malinowski PM, Macri J, Adeli K. Proteomic profiling of the prechylomicron transport vesicle involved in the assembly and secretion of apoB-48-containing chylomicrons in the intestinal enterocytes. Proteomics 2009; 9:3698-711. [PMID: 19639588 DOI: 10.1002/pmic.200800914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular assembly of chylomicrons (CM) occurs in intestinal enterocytes through a series of complex vesicular interactions. CM are transported from the ER to the Golgi using a specialized vesicular compartment called the prechylomicron transport vesicle (PCTV). In this study, PCTVs were isolated from the enteric ER of the Syrian Golden hamster, and characterized using 2-DE and MS. Proteomic profiles of PCTV-associated proteins were developed with the intention of identifying proteins involved in the formation, transport, lipidation, and assembly of CM particles. Positively identified proteins included those involved in lipoprotein assembly, namely microsomal triglyceride transfer protein and apolipoprotein B-48, as well as proteins involved in vesicular transport, such as Sar1 and vesicle-associated membrane protein 7. Other groups of proteins found were chaperones, intracellular vesicular trafficking proteins, fatty acid-binding proteins, and lipid-related proteins. These findings have increased our understanding of the transport vesicle involved in the intracellular assembly and transport of CM and can provide insight into potential cellular factors responsible for dysregulation of intestinal CM production.
Collapse
Affiliation(s)
- Diana M Wong
- Molecular Structure and Function, Division of Clinical Biochemistry, Department of Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
34
|
Qiu W, Su Q, Rutledge AC, Zhang J, Adeli K. Glucosamine-induced endoplasmic reticulum stress attenuates apolipoprotein B100 synthesis via PERK signaling. J Lipid Res 2009; 50:1814-23. [PMID: 19383982 DOI: 10.1194/jlr.m800343-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucosamine impairs hepatic apolipoprotein B100 (apoB100) production by inducing endoplasmic reticulum (ER) stress and enhancing cotranslational and posttranslational apoB100 degradation (Qiu, W., R. K. Avramoglu, A. C. Rutledge, J. Tsai, and K. Adeli. Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins. J. Lipid Res. 2006. 47: 1749-1761). Here, we report that glucosamine also regulates apoB100 protein synthesis via ER-stress-induced PERK activation. Short-term (4 h) glucosamine treatment of HepG2 cells reduced both cellular (by 62%) and secreted apoB100 (by 43%) without altering apoB100 mRNA. Treatment with proteasomal inhibitors only partially prevented the suppressive effects of glucosamine, suggesting that mechanisms other than proteasomal degradation may also be involved. Glucosamine-induced ER stress was associated with a significantly reduced apoB100 synthesis with no significant change in posttranslational decay rates, suggesting that glucosamine exerted its effect early during apoB biosynthesis. The role of PERK and its substrate, alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), in the suppressive effects of glucosamine on apoB synthesis was then investigated. Coexpression of apoB15 (normally resistant to intracellular degradation) with wild-type double stranded (ds) RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) in COS-7 cells resulted in a dramatic reduction in the levels of newly synthesized apoB15. Interestingly, cotransfection with apoB15 and a kinase inactive PERK mutant (K618A) increased apoB15 expression. In addition, short-term glucosamine treatment stimulated an increase in phosphorylation of PERK and eIF2alpha. Taken together, these data suggest that in addition to the induction of ER-associated degradation and other degradative pathways, ER stress is associated with suppression of apoB synthesis via a PERK-dependent mechanism.
Collapse
Affiliation(s)
- Wei Qiu
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
35
|
Association of simian virus 40 vp1 with 70-kilodalton heat shock proteins and viral tumor antigens. J Virol 2008; 83:37-46. [PMID: 18945763 DOI: 10.1128/jvi.00844-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper folding of newly synthesized viral proteins in the cytoplasm is a prerequisite for the formation of infectious virions. The major capsid protein Vp1 of simian virus 40 forms a series of disulfide-linked intermediates during folding and capsid formation. In addition, we report here that Vp1 is associated with cellular chaperones (HSP70) and a cochaperone (Hsp40) which can be coimmunoprecipitated with Vp1. Studies in vitro demonstrated the ATP-dependent interaction of Vp1 and cellular chaperones. Interestingly, viral cochaperones LT and ST were essential for stable interaction of HSP70 with the core Vp1 pentamer Vp1 (22-303). LT and ST also coimmunoprecipitated with Vp1 in vivo. In addition to these identified (co)chaperones, stable, covalently modified forms of Vp1 were identified for a folding-defective double mutant, C49A-C87A, and may represent a "trapped" assembly intermediate. By a truncation of the carboxyl arm of Vp1 to prevent the Vp1 folding from proceeding beyond pentamers, we detected several apparently modified Vp1 species, some of which were absent in cells transfected with the folding-defective mutant DNA. These results suggest that transient covalent interactions with known or unknown cellular and viral proteins are important in the assembly process.
Collapse
|
36
|
Fisher EA, Lapierre LR, Junkins RD, McLeod RS. The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J Lipid Res 2008; 49:2149-60. [DOI: 10.1194/jlr.m800108-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Jiang ZG, Liu Y, Hussain MM, Atkinson D, McKnight CJ. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J Mol Biol 2008; 383:1181-94. [PMID: 18804479 DOI: 10.1016/j.jmb.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/12/2022]
Abstract
The synthesis of apolipoprotein B (apoB) dictates the formation of chylomicrons and very low-density lipoproteins, two major lipoprotein precursors in the human plasma. Despite its biological significance, the mechanism of the assembly of these apoB-containing lipoproteins remains elusive. An essential obstacle is the lack of systems that allow fine dissection of key components during assembly, including nascent apoB peptide, lipids in defined forms, chaperones, and microsomal triglyceride transfer protein (MTP). In this study, we used a prokaryotic cell-free expression system to reconstitute early events in the assembly of apoB-containing lipoprotein that involve the N-terminal domains of apoB. Our study shows that N-terminal domains larger than 20.5% of apoB (B20.5) have an intrinsic ability to remodel vesicular phospholipid bilayers into discrete protein-lipid complexes. The presence of appropriate lipid substrates during apoB translation plays a pivotal role for successful lipid recruitment, and similar lipid recruitment fails to occur if the lipids are added posttranslationally. Cotranslational presence of MTP can dramatically promote the folding of B6.4-20.5 and B6.4-22. Furthermore, apoB translated in the presence of MTP retains its phospholipid recruitment capability posttranslationally. Our data suggest that during the synthesis of apoB, the N-terminal domain has a short window for intrinsic phospholipid recruitment, the time frame of which is predetermined by the environment where apoB synthesis occurs. The presence of MTP prolongs this window of time by acting as a chaperone. The absence of either proper lipid substrate or MTP may result in the improper folding of apoB and, consequently, its degradation.
Collapse
Affiliation(s)
- Z Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
38
|
Brodsky JL, Fisher EA. The many intersecting pathways underlying apolipoprotein B secretion and degradation. Trends Endocrinol Metab 2008; 19:254-9. [PMID: 18691900 PMCID: PMC3216472 DOI: 10.1016/j.tem.2008.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 02/06/2023]
Abstract
Because the levels of secreted apolipoprotein B (apoB) directly correlate with circulating serum cholesterol levels, there is a pressing need to define how the biosynthesis of this protein is regulated. Most commonly, the concentration of a secreted, circulating protein corresponds to transcriptionally and/or translationally regulated events. By contrast, circulating apoB levels are controlled by degradative pathways in the cell that select the protein for disposal. This article summarizes recent findings on two apoB disposal pathways, endoplasmic reticulum (ER)-associated degradation and autophagy, and describes a role for post-ER degradation in the increased circulating lipid levels in insulin-resistant diabetics.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
39
|
Chumpitazi BFF, Bouillet L, Drouet MT, Kuhn L, Garin J, Zarski JP, Drouet C. Biological autoimmunity screening in hepatitis C patients by anti-HepG2 lysate and anti-heat shock protein 70.1 autoantibodies. Eur J Clin Microbiol Infect Dis 2008; 28:137-46. [PMID: 18696130 DOI: 10.1007/s10096-008-0599-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/07/2008] [Indexed: 12/16/2022]
Abstract
Viruses require viral and cellular chaperones during their life cycle and interactions of these molecules with the immune system are probable during the infection. Thus, an anti-chaperone antibody response has been firstly investigated in hepatitis C patients in this paper. A HepG2-lysate antigen (90, 79, 72, 70, 62, 54 and 48 kDa) was assayed in sera from 59 (19F/40M) chronic hepatitis C patients without cirrhosis before therapy. Forty of them were positive for anti-HepG2 lysate antigen antibodies and this test may evaluate biological autoimmunity. Hsp70.1, Hsp90 and calreticulin levels were significantly higher in this antigen than in a control HepG2 antigen. Secondly, Hsp70.1 was identified as Hsp 70 kDa protein-1 by proteomic analysis and studied as a possible antibody target. Fourteen out of 59 patients were positive for anti-Hsp70.1 antibodies that were inversely correlated with alanine aminotransferase levels, the Metavir activity index and viraemia. Finally, for comparative purposes, 50 sera from systemic lupus erythematosus (SLE) patients have been tested: eight and 41 of them were positive for anti-Hsp70.1 and anti-HepG2 lysate antigen antibodies, respectively. Therefore, anti-Hsp70.1 autoantibodies may be produced and can partially lead to biological autoimmunity in chronic hepatitis C patients.
Collapse
Affiliation(s)
- B F F Chumpitazi
- Laboratoire d'Immunologie du Département de Biologie et Pathologie de la Cellule, CHU de Grenoble, Hôpital Michalon, BP 217X, 38043, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Christis C, Lubsen NH, Braakman I. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008; 275:4700-27. [DOI: 10.1111/j.1742-4658.2008.06590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 2008; 121:2415-22. [PMID: 18577578 DOI: 10.1242/jcs.025452] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein B-100 (ApoB) is a major component of very-low-density lipoproteins, and is deposited in a region around lipid droplets (LDs) called the ;ApoB-crescent'. The ApoB-crescent is thought to be related to ApoB degradation because it drastically increases when proteasome or autophagy is inhibited. In the present study, we found that ApoB-crescents were significantly reduced when ApoB lipidation was suppressed by either the inhibition or knockdown of the microsomal triglyceride-transfer protein. By contrast, ApoB-crescents increased under conditions that are presumed to cause lipidated ApoB abnormalities in secretory compartments. By electron microscopic analyses, we identified the ApoB-crescent as a thin cholesterol-rich ER cistern fused to an LD, and - topologically - this structure is equivalent to a lipid-ester globule between the two leaflets of the ER membrane. ApoB localized in the thin cisternal lumen, and its binding to LDs was resistant to alkaline treatment. Overexpression of ADRP or TIP47 suppressed the increase in the number of ApoB-crescents, whereas knockdown of these proteins had the opposite effect. From these results, we inferred that the ApoB-crescent is formed by an LD that is arrested in the ER membrane by tight binding of lipidated ApoB to its luminal surface. We suggest that ApoB processing and LD formation are closely linked.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
42
|
Ghannam A, Hammache D, Matias C, Louwagie M, Garin J, Gerlier D. High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation. Mol Immunol 2008; 45:3036-44. [DOI: 10.1016/j.molimm.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/26/2008] [Indexed: 12/22/2022]
|
43
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
44
|
Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87:1377-408. [PMID: 17928587 DOI: 10.1152/physrev.00050.2006] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A substantial fraction of eukaryotic gene products are synthesized by ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) membrane. These polypeptides enter cotranslationally in the ER lumen, which contains resident molecular chaperones and folding factors that assist their maturation. Native proteins are released from the ER lumen and are transported through the secretory pathway to their final intra- or extracellular destination. Folding-defective polypeptides are exported across the ER membrane into the cytosol and destroyed. Cellular and organismal homeostasis relies on a balanced activity of the ER folding, quality control, and degradation machineries as shown by the dozens of human diseases related to defective maturation or disposal of individual polypeptides generated in the ER.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
45
|
Ji C, Shinohara M, Kuhlenkamp J, Chan C, Kaplowitz N. Mechanisms of protection by the betaine-homocysteine methyltransferase/betaine system in HepG2 cells and primary mouse hepatocytes. Hepatology 2007; 46:1586-96. [PMID: 17705221 PMCID: PMC2642650 DOI: 10.1002/hep.21854] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Betaine-homocysteine methyltransferase (BHMT) regulates homocysteine levels in the liver. We previously reported that the alteration of BHMT is associated with alcoholic liver steatosis and injury. In this study, we tested whether BHMT protects hepatocytes from homocysteine-induced injury and lipid accumulation. Both BHMT transfectants of HepG2 cells and primary mouse hepatocytes with suppressed BHMT were generated. Comparisons were made between the cell models with respect to their response to homocysteine treatments. Homocysteine metabolism was impaired in HepG2 cells, and the expression of BHMT in HepG2 cells ameliorated the impairment and stabilized the levels of intracellular homocysteine after the addition of exogenous homocysteine. BHMT expression inhibited homocysteine-induced glucose-regulated protein 78 (GRP78) and C/EBP-homologous protein (CHOP) and homocysteine-induced cell death. A betaine treatment protected primary mouse hepatocytes from a homocysteine-induced increase in GRP78 and cell death but not a tunicamycin-induced increase. Homocysteine induced greater CHOP expression (2.7-fold) in BHMT small interfering RNA (siRNA)-transfected cells than in a control (1.9-fold). Homocysteine-induced cell death was increased by 40% in the siRNA-treated cells in comparison with the control. Apolipoprotein B (apoB) expression was higher and triglycerides and cholesterol were lower in HepG2 expressing BHMT. In primary mouse hepatocytes, homocysteine induced the accumulation of triglycerides and cholesterol, which was reduced in the presence of betaine. Betaine partially reduced homocysteine-induced sterol regulatory element binding protein 1 expression in HepG2 cells and increased S-adenosylmethionine in primary mouse hepatocytes. CONCLUSION The BHMT/betaine system directly protects hepatocytes from homocysteine-induced injury but not tunicamycin-induced injury, including an endoplasmic reticulum stress response, lipid accumulation, and cell death. This system also exhibits a more generalized effect on liver lipids by inducing ApoB expression and increasing S-adenosylmethionine/S-adenosylhomocysteine.
Collapse
Affiliation(s)
- Cheng Ji
- University of Southern California Research Center for Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
46
|
Charpian S, Przyborski JM. Protein Transport Across the Parasitophorous Vacuole of Plasmodium falciparum: Into the Great Wide Open. Traffic 2007; 9:157-65. [DOI: 10.1111/j.1600-0854.2007.00648.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Hrizo SL, Gusarova V, Habiel DM, Goeckeler JL, Fisher EA, Brodsky JL. The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 2007; 282:32665-75. [PMID: 17823116 PMCID: PMC2666968 DOI: 10.1074/jbc.m705216200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B (apoB) is the most abundant protein in low density lipoproteins and plays key roles in cholesterol homeostasis. The co-translational degradation of apoB is controlled by fatty acid levels in the endoplasmic reticulum (ER) and is mediated by the proteasome. To define the mechanism of apoB degradation, we employed a cell-free system in which proteasome-dependent degradation is recapitulated with yeast cytosol, and we developed an apoB yeast expression system. We discovered that a yeast Hsp110, Sse1p, associates with and stabilizes apoB, which contrasts with data indicating that select Hsp70s and Hsp90s facilitate apoB degradation. However, the Ssb Hsp70 chaperones have no effect on apoB turnover. To determine whether our results are relevant in mammalian cells, Hsp110 was overexpressed in hepatocytes, and enhanced apoB secretion was observed. This study indicates that chaperones within distinct complexes can play unique roles during ER-associated degradation (ERAD), establishes a role for Sse1/Hsp110 in ERAD, and identifies Hsp110 as a target to lower cholesterol.
Collapse
Affiliation(s)
- Stacy L. Hrizo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Viktoria Gusarova
- Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine, New York, New York 10016
| | - David M. Habiel
- Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Jennifer L. Goeckeler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Edward A. Fisher
- Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- To whom correspondence should be addressed: Dept. of Biological Sciences, 274 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260. Tel.: 412-624-4830; Fax: 412-624-4759; E-mail:
| |
Collapse
|
48
|
Calpe-Berdiel L, Escolà-Gil JC, Julve J, Zapico-Muñiz E, Canals F, Blanco-Vaca F. Differential intestinal mucosal protein expression in hypercholesterolemic mice fed a phytosterol-enriched diet. Proteomics 2007; 7:2659-66. [PMID: 17610203 DOI: 10.1002/pmic.200600792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The molecular mechanisms involved in the phytosterol-induced decrease in intestinal cholesterol absorption remain unclear. Further, other biological properties such as immunomodulatory activity and protection against cancer have also been ascribed to these plant compounds. To gain insight into the mechanisms underlying phytosterol actions, we conducted a proteomic study in the intestinal mucosa of phytosterol-fed apolipoprotein E-deficient hypercholesterolemic (apoE-/-) mice. With respect to control-fed apoE-/- mice, nine differentially expressed proteins were identified in whole-enterocyte homogenates using 2-D DIGE and MALDI-TOF MS. These proteins are involved in plasma membrane stabilization, cytoskeleton assembly network, and cholesterol metabolism. Four of these proteins were selected for further study since they showed the highest abundance change or had a potential functional relationship with known effects of phytosterols. Annexin A2 (ANXA2) and beta-actin decrease and annexin A4 (ANXA4) and annexin A5 (ANXA5) increase were confirmed by Western blot analysis. Intestinal gene expression of ANXA2 and A5 and beta-actin was reduced, whereas that of ANXA4 was unchanged. The main results were retested in normocholesterolemic C57BL/6J mice. ANXA4 and ANXA5 protein upregulation and ANXA2 and beta-actin downregulation were reproduced in these animals. However, no changes in gene expression were found in C57BL/6J mice in either of the four proteins selected. ANXA2, A4, and A5 and beta-actin are proteins of special interest given their pleiotropic functions that include cholesterol-ester transport from caveolae, apoptosis, and anti-inflammatory properties. Therefore, the protein expression changes identified in this study might be involved in the biological effects of phytosterols.
Collapse
Affiliation(s)
- Laura Calpe-Berdiel
- Servei de Bioquímica i Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Tremmel D, Tropschug M. Neurospora crassa FKBP22 Is a Novel ER Chaperone and Functionally Cooperates with BiP. J Mol Biol 2007; 369:55-68. [PMID: 17428499 DOI: 10.1016/j.jmb.2007.01.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 11/30/2022]
Abstract
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.
Collapse
Affiliation(s)
- Dirk Tremmel
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | |
Collapse
|
50
|
Tremmel D, Duarte M, Videira A, Tropschug M. FKBP22 is part of chaperone/folding catalyst complexes in the endoplasmic reticulum ofNeurospora crassa. FEBS Lett 2007; 581:2036-40. [PMID: 17470367 DOI: 10.1016/j.febslet.2007.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/17/2007] [Indexed: 11/17/2022]
Abstract
FKBP22 is a dimeric protein in the lumen of the endoplasmic reticulum, which exhibits a chaperone as well as a PPIase activity. It binds via its FK506 binding protein (FKBP) domain directly to the Hsp70 chaperone BiP that stimulates the chaperone activity of FKBP22. Here we demonstrate additionally the association of FKBP22 with the molecular chaperones and folding catalysts Grp170, alpha-subunit of glucosidase II, PDI, ERp38, and CyP23. These proteins are associated with FKBP22 in at least two protein complexes. Furthermore, we report an essential role for FKBP22 in the development of microconidiophores in Neurospora crassa.
Collapse
Affiliation(s)
- Dirk Tremmel
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|