1
|
Porphyromonas gingivalis Tyrosine Kinase Is a Fitness Determinant in Polymicrobial Infections. Infect Immun 2022; 90:e0017022. [PMID: 35575504 PMCID: PMC9202411 DOI: 10.1128/iai.00170-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic microbial ecosystems are polymicrobial, and community function can be shaped by interbacterial interactions. Little is known, however, regarding the genetic determinants required for fitness in heterotypic community environments. In periodontal diseases, Porphyromonas gingivalis is a primary pathogen, but only within polymicrobial communities. Here, we used a transposon sequencing (Tn-Seq) library of P. gingivalis to screen for genes that influence fitness of the organism in a coinfection murine abscess model with the oral partner species Streptococcus gordonii and Fusobacterium nucleatum. Genes impacting fitness with either organism were involved in diverse processes, including metabolism and energy production, along with cell wall and membrane biogenesis. Despite the overall similarity of function, the majority of identified genes were specific to the partner species, indicating that synergistic mechanisms of P. gingivalis vary to a large extent according to community composition. Only two genes were identified as essential for P. gingivalis fitness in abscess development with both S. gordonii and F. nucleatum: ptk1, encoding a tyrosine kinase, and inlJ, encoding an internalin family surface protein. Ptk1, but not InlJ, is required for community development with S. gordonii, and we found that the action of this kinase is similarly required for P. gingivalis to accumulate in a community with F. nucleatum. A limited number of P. gingivalis genes are therefore required for species-independent synergy, and the Ptk1 tyrosine kinase network may integrate and coordinate input from multiple organisms.
Collapse
|
2
|
Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. Sulfoglycolysis: catabolic pathways for metabolism of sulfoquinovose. Chem Soc Rev 2021; 50:13628-13645. [PMID: 34816844 DOI: 10.1039/d1cs00846c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sulfoquinovose (SQ), a derivative of glucose with a C6-sulfonate, is produced by photosynthetic organisms and is the headgroup of the sulfolipid sulfoquinovosyl diacylglycerol. The degradation of SQ allows recycling of its elemental constituents and is important in the global sulfur and carbon biogeochemical cycles. Degradation of SQ by bacteria is achieved through a range of pathways that fall into two main groups. One group involves scission of the 6-carbon skeleton of SQ into two fragments with metabolic utilization of carbons 1-3 and excretion of carbons 4-6 as dihydroxypropanesulfonate or sulfolactate that is biomineralized to sulfite/sulfate by other members of the microbial community. The other involves the complete metabolism of SQ by desulfonylation involving cleavage of the C-S bond to release sulfite and glucose, the latter of which can enter glycolysis. The discovery of sulfoglycolytic pathways has revealed a wide range of novel enzymes and SQ binding proteins. Biochemical and structural characterization of the proteins and enzymes in these pathways have illuminated how the sulfonate group is recognized by Nature's catalysts, supporting bioinformatic annotation of sulfoglycolytic enzymes, and has identified functional and structural relationships with the pathways of glycolysis.
Collapse
Affiliation(s)
- Alexander J D Snow
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Laura Burchill
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Xu Y, Zhang Y, Zhu J, Sun Y, Guo B, Liu F, Huang J, Wang H, Dong S, Wang Y, Wang Y. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. PLANT PHYSIOLOGY 2021; 187:321-335. [PMID: 34618132 PMCID: PMC8418418 DOI: 10.1093/plphys/kiab239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the β-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.
Collapse
Affiliation(s)
- Yuanpeng Xu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Zhang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyin Zhu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Sun
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Baodian Guo
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Liu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haonan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Author for communication:
| |
Collapse
|
4
|
Banford S, Timson DJ. The structural and molecular biology of type IV galactosemia. Biochimie 2020; 183:13-17. [PMID: 33181226 DOI: 10.1016/j.biochi.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Type IV galactosemia is a recently discovered inherited metabolic disease. It is caused by mutations in the GALM gene which result in reduced activity of the enzyme galactose mutarotase. This enzyme catalyses the interconversion of the α- and β-anomers of d-galactose and some other monosaccharides. Human galactose mutarotase is monomeric and its structure is largely composed of β-sheets. The catalytic mechanism requires a histidine residue acting as an acid, and a glutamate acting as a base. Together, these residues open the pyranose ring of d-galactose enabling free rotation of the bond between the first two carbon atoms in the monosaccharide. This can cause reversal of the configuration of the hydroxyl group attached to carbon 1. Type IV galactosemia manifests with similar symptoms to type II galactosemia (galactokinase deficiency), i.e. early onset cataracts. However, as a recently discovered disease, the longer-term consequences are unknown. The physiological role, if any, of galactose mutarotase's reactions with other monosaccharides are not yet known. The possible associations with other proteins also require further investigation.
Collapse
Affiliation(s)
- Samantha Banford
- South Eastern Health and Social Care Trust, Upper Newtownards Road, Dundonald, Belfast, BT16 1RH, UK
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewis Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
5
|
Watanabe Y, Watanabe S, Fukui Y, Nishiwaki H. Functional and structural characterization of a novel L-fucose mutarotase involved in non-phosphorylative pathway of L-fucose metabolism. Biochem Biophys Res Commun 2020; 528:21-27. [PMID: 32448506 DOI: 10.1016/j.bbrc.2020.05.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
Abstract
Mutarotases catalyze the α-β anomeric conversion of monosaccharide, and play a key role in utilizing sugar as enzymes involved in sugar metabolism have specificity for the α- or β-anomer. In spite of the sequential similarity to l-rhamnose mutarotase protein superfamily (COG3254: RhaM), the ACAV_RS08160 gene in Acidovorax avenae ATCC 19860 (AaFucM) is located in a gene cluster related to non-phosphorylative l-fucose and l-galactose metabolism, and transcriptionally induced by these carbon sources; therefore, the physiological role remains unclear. Here, we report that AaFucM possesses mutarotation activity only toward l-fucose by saturation difference (SD) NMR experiments. Moreover, we determined the crystal structures of AaFucM in the apo form and in the l-fucose-bound form at resolutions of 2.21 and 1.75 Å, respectively. The overall structural folding was clearly similar to the RhaM members, differed from the known l-fucose mutarotase (COG4154: FucU), strongly indicating their convergent evolution. The structure-based mutational analyses suggest that Tyr18 is important for catalytic action, and that Gln87 and Trp99 are involved in the l-fucose-specific recognition.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| | - Yasutaka Fukui
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Hisashi Nishiwaki
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
6
|
Shishmarev D, Quiquempoix L, Fontenelle CQ, Linclau B, Kuchel PW. Review of Mutarotase in ‘Metabolic Subculture’ and Analytical Biochemistry: Prelude to 19F NMR Studies of its Substrate Specificity and Mechanism. Aust J Chem 2020. [DOI: 10.1071/ch19397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This is the first paper in a sequential pair devoted to the enzyme mutarotase (aldose 1-epimerase; EC 5.1.3.3). Here, the broader context of the physiological role of mutarotase, among those enzymes considered to be part of ‘metabolic structure’, is reviewed. We also summarise the current knowledge about the molecular mechanism and substrate specificity of the enzyme, which is considered in the context of the binding of fluorinated glucose analogues to the enzyme’s active site. This was done as a prelude to our experimental studies of the anomerisation of fluorinated sugars by mutarotase that are described in the following paper.
Collapse
|
7
|
Discovery and characterization of a sulfoquinovose mutarotase using kinetic analysis at equilibrium by exchange spectroscopy. Biochem J 2018. [PMID: 29535276 PMCID: PMC5902678 DOI: 10.1042/bcj20170947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial sulfoglycolytic pathways catabolize sulfoquinovose (SQ), or glycosides thereof, to generate a three-carbon metabolite for primary cellular metabolism and a three-carbon sulfonate that is expelled from the cell. Sulfoglycolytic operons encoding an Embden–Meyerhof–Parnas-like or Entner–Doudoroff (ED)-like pathway harbor an uncharacterized gene (yihR in Escherichia coli; PpSQ1_00415 in Pseudomonas putida) that is up-regulated in the presence of SQ, has been annotated as an aldose-1-epimerase and which may encode an SQ mutarotase. Our sequence analyses and structural modeling confirmed that these proteins possess mutarotase-like active sites with conserved catalytic residues. We overexpressed the homolog from the sulfo-ED operon of Herbaspirillum seropedicaea (HsSQM) and used it to demonstrate SQ mutarotase activity for the first time. This was accomplished using nuclear magnetic resonance exchange spectroscopy, a method that allows the chemical exchange of magnetization between the two SQ anomers at equilibrium. HsSQM also catalyzed the mutarotation of various aldohexoses with an equatorial 2-hydroxy group, including d-galactose, d-glucose, d-glucose-6-phosphate (Glc-6-P), and d-glucuronic acid, but not d-mannose. HsSQM displayed only 5-fold selectivity in terms of efficiency (kcat/KM) for SQ versus the glycolysis intermediate Glc-6-P; however, its proficiency [kuncat/(kcat/KM)] for SQ was 17 000-fold better than for Glc-6-P, revealing that HsSQM preferentially stabilizes the SQ transition state.
Collapse
|
8
|
Sheshukova EV, Komarova TV, Pozdyshev DV, Ershova NM, Shindyapina AV, Tashlitsky VN, Sheval EV, Dorokhov YL. The Intergenic Interplay between Aldose 1-Epimerase-Like Protein and Pectin Methylesterase in Abiotic and Biotic Stress Control. FRONTIERS IN PLANT SCIENCE 2017; 8:1646. [PMID: 28993784 PMCID: PMC5622589 DOI: 10.3389/fpls.2017.01646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
The mechanical damage that often precedes the penetration of a leaf by a pathogen promotes the activation of pectin methylesterase (PME); the activation of PME leads to the emission of methanol, resulting in a "priming" effect on intact leaves, which is accompanied by an increased sensitivity to Tobacco mosaic virus (TMV) and resistance to bacteria. In this study, we revealed that mRNA levels of the methanol-inducible gene encoding Nicotiana benthamiana aldose 1-epimerase-like protein (NbAELP) in the leaves of intact plants are very low compared with roots. However, stress and pathogen attack increased the accumulation of the NbAELP mRNA in the leaves. Using transiently transformed plants, we obtained data to support the mechanism underlying AELP/PME-related negative feedback The insertion of the NbAELP promoter sequence (proNbAELP) into the N. benthamiana genome resulted in the co-suppression of the natural NbAELP gene expression, accompanied by a reduction in the NbAELP mRNA content and increased PME synthesis. Knockdown of NbAELP resulted in high activity of PME in the cell wall and a decrease in the leaf glucose level, creating unfavorable conditions for Agrobacterium tumefaciens reproduction in injected leaves. Our results showed that NbAELP is capable of binding the TMV movement protein (MPTMV) in vitro and is likely to affect the cellular nucleocytoplasmic transport, which may explain the sensitivity of NbAELP knockdown plants to TMV. Although NbAELP was primarily detected in the cell wall, the influence of this protein on cellular PME mRNA levels might be associated with reduced transcriptional activity of the PME gene in the nucleus. To confirm this hypothesis, we isolated the N. tabacum PME gene promoter (proNtPME) and showed the inhibition of proNtPME-directed GFP and GUS expression in leaves when co-agroinjected with the NbAELP-encoding plasmid. We hypothesized that plant wounding and/or pathogen attack lead to PME activation and increased methanol emission, followed by increased NbAELP expression, which results in reversion of PME mRNA level and methanol emission to levels found in the intact plant.
Collapse
Affiliation(s)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Natalia M. Ershova
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Anastasia V. Shindyapina
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Eugene V. Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- *Correspondence: Yuri L. Dorokhov
| |
Collapse
|
9
|
Lee YJ, Lee SJ, Kim SB, Lee SJ, Lee SH, Lee DW. Structural insights into conservedl-arabinose metabolic enzymes reveal the substrate binding site of a thermophilicl-arabinose isomerase. FEBS Lett 2014; 588:1064-70. [DOI: 10.1016/j.febslet.2014.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
10
|
Fekete E, Seiboth B, Kubicek CP, Szentirmai A, Karaffa L. Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): a key to cellulase gene expression on lactose. Proc Natl Acad Sci U S A 2008; 105:7141-6. [PMID: 18480250 PMCID: PMC2438218 DOI: 10.1073/pnas.0802789105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Indexed: 11/18/2022] Open
Abstract
The heterodisaccharide lactose (1,4-O-beta-D-galactopyranosyl-D-glucose) induces cellulase formation in the ascomycete Hypocrea jecorina (= Trichoderma reesei). Lactose assimilation is slow, and the assimilation of its beta-D-galactose moiety depends mainly on the operation of a recently described reductive pathway and depends less on the Leloir pathway, which accepts only alpha-D-galactose. We therefore reasoned whether galactomutarotase [aldose 1-epimerase (AEP)] activity might limit lactose assimilation and thus influence cellulase formation. We identified three putative AEP-encoding genes (aep1, aep2, aep3) in H. jecorina, of which two encoded intracellular protein (AEP1 and AEP2) and one encoded an extracellular protein (AEP3). Although all three were transcribed, only the aep3 transcript was detected on lactose. However, no mutarotase activity was detected in the mycelia, their cell walls, or the extracellular medium during growth on lactose. Therefore, the effect of galactomutarotase activity on lactose assimilation was studied with H. jecorina strains expressing the C-terminal galactose mutarotase part of the Saccharomyces cerevisiae Gal10. These strains showed increased growth on lactose in a gene copy number-dependent manner, although their formation of extracellular beta-galactosidase activity and transcription of the genes encoding the first steps in the Leloir and the reductive pathway was similar to the parental strain QM9414. Cellulase gene transcription on lactose dramatically decreased in these strains, but remained unaffected during growth on cellulose. Our data show that cellulase induction in H. jecorina by lactose requires the beta-anomer of D-galactose and reveal the lack of mutarotase activity during growth on lactose as an important key for cellulase formation on this sugar.
Collapse
Affiliation(s)
- Erzsébet Fekete
- *Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 56, H-4010, Debrecen, Hungary; and
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Vienna, Austria
| | - Christian P. Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Vienna, Austria
| | - Attila Szentirmai
- *Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 56, H-4010, Debrecen, Hungary; and
| | - Levente Karaffa
- *Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 56, H-4010, Debrecen, Hungary; and
| |
Collapse
|
11
|
Pai T, Chen Q, Zhang Y, Zolfaghari R, Ross AC. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells. Biochemistry 2007; 46:15198-207. [PMID: 18052213 PMCID: PMC2527030 DOI: 10.1021/bi701891t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.
Collapse
Affiliation(s)
| | - Qiuyan Chen
- Department of Nutritional Sciences, Graduate Program in Nutrition, and Huck Institute for Life Sciences, The Pennsylvania State University University Park, PA 16802, USA
| | - Yao Zhang
- Department of Nutritional Sciences, Graduate Program in Nutrition, and Huck Institute for Life Sciences, The Pennsylvania State University University Park, PA 16802, USA
| | - Reza Zolfaghari
- Department of Nutritional Sciences, Graduate Program in Nutrition, and Huck Institute for Life Sciences, The Pennsylvania State University University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Graduate Program in Nutrition, and Huck Institute for Life Sciences, The Pennsylvania State University University Park, PA 16802, USA
| |
Collapse
|
12
|
Abstract
Of the nine genes comprising the L-rhamnose operon of Rhizobium leguminosarum, rhaU has not been assigned a function. The construction of a Delta rhaU strain revealed a growth phenotype that was slower than that of the wild-type strain, although the ultimate cell yields were equivalent. The transport of L-rhamnose into the cell and the rate of its phosphorylation were unaffected by the mutation. RhaU exhibits weak sequence similarity to the formerly hypothetical protein YiiL of Escherichia coli that has recently been characterized as an L-rhamnose mutarotase. To characterize RhaU further, a His-tagged variant of the protein was prepared and subjected to mass spectrometry analysis, confirming the subunit size and demonstrating its dimeric structure. After crystallization, the structure was refined to a 1.6-A resolution to reveal a dimer in the asymmetric unit with a very similar structure to that of YiiL. Soaking a RhaU crystal with L-rhamnose resulted in the appearance of beta-L-rhamnose in the active site.
Collapse
|
13
|
Graille M, Baltaze JP, Leulliot N, Liger D, Quevillon-Cheruel S, van Tilbeurgh H. Structure-based Functional Annotation. J Biol Chem 2006; 281:30175-85. [PMID: 16857670 DOI: 10.1074/jbc.m604443200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.
Collapse
Affiliation(s)
- Marc Graille
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, IFR115, CNRS UMR8619, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Hung MN, Rangarajan E, Munger C, Nadeau G, Sulea T, Matte A. Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis. J Bacteriol 2006; 188:5606-17. [PMID: 16855251 PMCID: PMC1540030 DOI: 10.1128/jb.00306-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/22/2006] [Indexed: 11/20/2022] Open
Abstract
Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose, organized into trisaccharide repeating units having the sequence -->3)-alpha-d-Fuc4NAc-(1-->4)-beta-d-ManNAcA-(1-->4)-alpha-d-GlcNAc-(1-->. While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-d-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstrom resolution and bound to acetyl-CoA at a 1.66-Angstrom resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.
Collapse
Affiliation(s)
- Ming-Ni Hung
- Biotechnology Research Institute, 6100 Royalmount Ave., Montreal QC, Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
15
|
Ryu KS, Kim JI, Cho SJ, Park D, Park C, Cheong HK, Lee JO, Choi BS. Structural Insights into the Monosaccharide Specificity of Escherichia coli Rhamnose Mutarotase. J Mol Biol 2005; 349:153-62. [PMID: 15876375 DOI: 10.1016/j.jmb.2005.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/17/2022]
Abstract
The crystal structure of Escherichia coli rhamnose mutarotase (YiiL) is completely different from the previously reported structures of the Lactococcus lactis galactose mutarotase and the Bacillus subtilis RbsD (pyranase). YiiL exists as a locally asymmetric dimer, which is stabilized by an intermolecular beta-sheet, various hydrophobic interactions, and a cation-pi interaction with a salt-bridge. The protein folds of YiiL are similar to those of a Streptomyces coelicolor mono-oxygenase and a hypothetical Arabidopsis thaliana protein At3g17210. By assaying the enzymatic activity of six active-site mutants and by comparing the crystal structure-derived active site conformations of YiiL, RbsD, and a galactose mutarotase, we were able to define the amino acid residues required for catalysis and suggest a possible catalytic mechanism for YiiL. Although the active-site amino acid residues of YiiL (His, Tyr, and Trp) differ greatly from those of galactose mutarotase (His, Glu, and Asp), their geometries, which determine the structures of the preferred monosaccharide substrates, are conserved. In addition, the in vivo function of YiiL was assessed by constructing a mutant E.coli strain that carries a yiiL deletion. The presence of the yiiL gene is critical for efficient cell growth only when concentrations of l-rhamnose are limited.
Collapse
Affiliation(s)
- Kyoung-Seok Ryu
- Yusong-Gu, Yeoeun-Dong 52, Magnetic Resonance Team, Korea Basic Science Institute, Daejon 305-333, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Thoden JB, Holden HM. The molecular architecture of galactose mutarotase/UDP-galactose 4-epimerase from Saccharomyces cerevisiae. J Biol Chem 2005; 280:21900-7. [PMID: 15795221 DOI: 10.1074/jbc.m502411200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolic pathway by which beta-D-galactose is converted to glucose 1-phosphate is known as the Leloir pathway and consists of four enzymes. In most organisms, these enzymes appear to exist as soluble entities in the cytoplasm. In yeast such as Saccharomyces cerevisiae, however, the first and last enzymes of the pathway, galactose mutarotase and UDP-galactose 4-epimerase, are contained within a single polypeptide chain referred to as Gal10p. Here we report the three-dimensional structure of Gal10p in complex with NAD(+), UDP-glucose, and beta-D-galactose determined to 1.85-A resolution. The enzyme is dimeric with dimensions of approximately 91 A x 135 A x 108 A and assumes an almost V-shaped appearance. The overall architecture of the individual subunits can be described in terms of two separate N- and C-terminal domains connected by a Type II turn formed by Leu-357 to Val-360. The first 356 residues of Gal10p fold into the classical bilobal topology observed for all other UDP-galactose 4-epimerases studied thus far. This N-terminal domain contains the binding sites for NAD(+) and UDP-glucose. The polypeptide chain extending from Glu-361 to Ser-699 adopts a beta-sandwich motif and harbors the binding site for beta-D-galactose. The two active sites of Gal10p are separated by over 50 A. This investigation represents the first structural analysis of a dual function enzyme in the Leloir pathway.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
17
|
Hanoulle X, Rollet E, Clantin B, Landrieu I, Odberg-Ferragut C, Lippens G, Bohin JP, Villeret V. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 2004; 342:195-205. [PMID: 15313617 DOI: 10.1016/j.jmb.2004.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/06/2004] [Accepted: 07/06/2004] [Indexed: 11/17/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.
Collapse
Affiliation(s)
- Xavier Hanoulle
- UMR 8525 CNRS, Institut de Biologie de Lille, Université de Lille II, 1 rue du Professeur Calmette, BP447, 59021, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vaillancourt K, LeMay JD, Lamoureux M, Frenette M, Moineau S, Vadeboncoeur C. Characterization of a galactokinase-positive recombinant strain of Streptococcus thermophilus. Appl Environ Microbiol 2004; 70:4596-603. [PMID: 15294791 PMCID: PMC492372 DOI: 10.1128/aem.70.8.4596-4603.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 04/21/2004] [Indexed: 11/20/2022] Open
Abstract
The lactic acid bacterium Streptococcus thermophilus is widely used by the dairy industry for its ability to transform lactose, the primary sugar found in milk, into lactic acid. Unlike the phylogenetically related species Streptococcus salivarius, S. thermophilus is unable to metabolize and grow on galactose and thus releases substantial amounts of this hexose into the external medium during growth on lactose. This metabolic property may result from the inability of S. thermophilus to synthesize galactokinase, an enzyme of the Leloir pathway that phosphorylates intracellular galactose to generate galactose-1-phosphate. In this work, we report the complementation of Gal(-) strain S. thermophilus SMQ-301 with S. salivarius galK, the gene that codes for galactokinase, and the characterization of recombinant strain SMQ-301K01. The recombinant strain, which was obtained by transformation of strain SMQ-301 with pTRKL2TK, a plasmid bearing S. salivarius galK, grew on galactose with a generation time of 55 min, which was almost double the generation time on lactose. Data confirmed that (i) the ability of SMQ-301K01 to grow on galactose resulted from the expression of S. salivarius galK and (ii) transcription of the plasmid-borne galK gene did not require GalR, a transcriptional regulator of the gal and lac operons, and did not interfere with the transcription of these operons. Unexpectedly, recombinant strain SMQ-301K01 still expelled galactose during growth on lactose, but only when the amount of the disaccharide in the medium exceeded 0.05%. Thus, unlike S. salivarius, the ability to metabolize galactose was not sufficient for S. thermophilus to simultaneously metabolize the glucose and galactose moieties of lactose. Nevertheless, during growth in milk and under time-temperature conditions that simulated those used to produce mozzarella cheese, the recombinant Gal(+) strain grew and produced acid more rapidly than the Gal(-) wild-type strain.
Collapse
Affiliation(s)
- Katy Vaillancourt
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
19
|
Vilfan T, ÄreÅ¡nar B, Fournier D, Stojan J, Breskvar K. Characterisation and expression of a gene encoding a mutarotase from the fungus Rhizopus nigricans. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09573.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Thoden JB, Timson DJ, Reece RJ, Holden HM. Molecular Structure of Human Galactose Mutarotase. J Biol Chem 2004; 279:23431-7. [PMID: 15026423 DOI: 10.1074/jbc.m402347200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galactose mutarotase catalyzes the conversion of beta-d-galactose to alpha-d-galactose during normal galactose metabolism. The enzyme has been isolated from bacteria, plants, and animals and is present in the cytoplasm of most cells. Here we report the x-ray crystallographic analysis of human galactose mutarotase both in the apoform and complexed with its substrate, beta-d-galactose. The polypeptide chain folds into an intricate array of 29 beta-strands, 25 classical reverse turns, and 2 small alpha-helices. There are two cis-peptide bonds at Arg-78 and Pro-103. The sugar ligand sits in a shallow cleft and is surrounded by Asn-81, Arg-82, His-107, His-176, Asp-243, Gln-279, and Glu-307. Both the side chains of Glu-307 and His-176 are in the proper location to act as a catalytic base and a catalytic acid, respectively. These residues are absolutely conserved among galactose mutarotases. To date, x-ray models for three mutarotases have now been reported, namely that described here and those from Lactococcus lactis and Caenorhabditis elegans. The molecular architectures of these enzymes differ primarily in the loop regions connecting the first two beta-strands. In the human protein, there are six extra residues in the loop compared with the bacterial protein for an approximate longer length of 9 A. In the C. elegans protein, the first 17 residues are missing, thereby reducing the total number of beta-strands by one.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
21
|
Assairi L, Bertrand T, Ferdinand J, Slavova-Azmanova N, Christensen M, Briozzo P, Schaeffer F, Craescu CT, Neuhard J, Bârzu O, Gilles AM. Deciphering the function of an ORF: Salmonella enterica DeoM protein is a new mutarotase specific for deoxyribose. Protein Sci 2004; 13:1295-303. [PMID: 15075407 PMCID: PMC2286760 DOI: 10.1110/ps.03566004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We identified in Salmonella enterica serovar Typhi a cluster of four genes encoding a deoxyribokinase (DeoK), a putative permease (DeoP), a repressor (DeoQ), and an open reading frame encoding a 337 amino acid residues protein of unknown function. We show that the latter protein, called DeoM, is a hexamer whose synthesis is increased by a factor over 5 after induction with deoxyribose. The CD spectrum of the purified recombinant protein indicated a dominant contribution of betatype secondary structure and a small content of alpha-helix. Temperature and guanidinium hydrochloride induced denaturation of DeoM indicated that the hexamer dissociation and monomer unfolding are coupled processes. DeoM exhibits 12.5% and 15% sequence identity with galactose mutarotase from Lactococcus lactis and respectively Escherichia coli, which suggested that these three proteins share similar functions. Polarimetric experiments demonstrated that DeoM is a mutarotase with high specificity for deoxyribose. Site-directed mutagenesis of His183 in DeoM, corresponding to a catalytically active residue in GalM, yielded an almost inactive deoxyribose mutarotase. DeoM was crystallized and diffraction data collected for two crystal systems, confirmed its hexameric state. The possible role of the protein and of the entire gene cluster is discussed in connection with the energy metabolism of S. enterica under particular growth conditions.
Collapse
Affiliation(s)
- Liliane Assairi
- Laboratoire de Chimie Structurale des Macromolécules, Unité de Recherche Associeé 2185 du Cantre National de la Recherche Scientifique, Institut Pasteur, 75724 Paris 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ryu KS, Kim C, Kim I, Yoo S, Choi BS, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem 2004; 279:25544-8. [PMID: 15060078 DOI: 10.1074/jbc.m402016200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By exploiting nuclear magnetic resonance (NMR) techniques along with novel applications of saturation difference analysis, we deciphered the functions of the previously uncharacterized products of three bacterial genes, rbsD, fucU, and yiiL, which are part of the ribose, fucose, and rhamnose operons of Escherichia coli, respectively. We show that RbsD catalyzes the pyran to furan conversion of ribose, whereas FucU and YiiL are involved in the catalysis of the anomeric conversion of their respective sugars. It was observed that the anomeric exchange of only ribofuranose, not ribopyranose, occurs spontaneously in solution rationalizing its evolutionary incorporation into the nucleic acid. The RbsD and FucU proteins share sequence homology and belong to the same protein family that is found from eubacteria to human, whereas the YiiL homologues exist in archaebacteria and lower eukaryotes. These enzymes, including the galactose mutarotase, exhibit a certain degree of cross-specificity to structurally analogous sugars thereby encompassing all existing monosaccharides in terms of their reactivities. The ubiquitous presence of enzymes involved in the anomeric changes of monosaccharides highlights an importance of these activities in various cellular processes requiring efficient monosaccharide utilization.
Collapse
Affiliation(s)
- Kyoung-Seok Ryu
- Yusong-Gu, Gusong-Dong 373-1, Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Holden HM, Rayment I, Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 2003; 278:43885-8. [PMID: 12923184 DOI: 10.1074/jbc.r300025200] [Citation(s) in RCA: 371] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
24
|
Abstract
Galactokinase plays a key role in normal galactose metabolism by catalyzing the ATP-dependent phosphorylation of alpha-D-galactose to galactose 1-phosphate. In humans, mutations in the galactokinase gene can lead to the diseased state referred to as Type II galactosemia. Here we describe the three-dimensional structure of galactokinase from Lactococcus lactis determined to 2.1-A resolution. As expected from amino acid sequence alignments, galactokinase adopts a similar topology to that observed for members of the GHMP superfamily. The N-terminal domain is characterized by a five-stranded mixed beta-sheet while the C-terminal motif is dominated by two distinct four-stranded anti-parallel beta-sheets. The structure was solved in the presence of alpha-D-galactose and inorganic phosphate. These ligands are wedged between the N- and C-terminal domains. Amino acid side chains responsible for anchoring the sugar ligand to the protein include Arg36, Glu42, Asp45, Asp183, and Tyr233. Both Arg36 and Asp183 are strictly conserved in the amino acid sequences available in the literature thus far for galactokinases. Interestingly, the carboxylate side chain of Asp183 is positioned within 3.5 A of the C-1 hydroxyl group of galactose, whereas the guanidinium group of Arg36 is situated between both the C-1 hydroxyl group and the inorganic phosphate. Most likely these residues play key roles in catalysis. The structure of galactokinase described here serves as a model for understanding the functional consequences of point mutations known to result in Type II galactosemia in humans.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
25
|
Abstract
Aldose 1-epimerase or mutarotase (EC 5.1.3.3) is a key enzyme of carbohydrate metabolism catalysing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. We identified an open reading frame in the human genome (BC014916) which has high sequence similarity to previously identified bacterial aldose 1-epimerases. This sequence was cloned into a bacterial expression vector, and expressed and purified from this source. Enzyme assays show that the protein has aldose 1-epimerase activity and exhibits a preference for galactose over glucose. Site-directed mutagenesis confirmed the involvement of three residues involved in catalysis and substrate binding.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK
| | | |
Collapse
|
26
|
Abstract
Galactose mutarotase catalyzes the first step in normal galactose metabolism by catalyzing the conversion of beta-D-galactose to alpha-D-galactose. The structure of the enzyme from Lactococcus lactis was recently solved in this laboratory and shown to be topologically similar to domain 5 of beta-galactosidase. From this initial X-ray analysis, four amino acid residues were demonstrated to be intimately involved in sugar binding to the protein: His 96, His 170, Asp 243, and Glu 304. Here we present a combined X-ray crystallographic and kinetic analysis designed to examine the role of these residues in the reaction mechanism of the enzyme. For this investigation, the following site-directed mutant proteins were prepared: H96N, H170N, D243N, D243A, E304Q, and E304A. All of the structures of these proteins, complexed with either glucose or galactose, were solved to a nominal resolution of 1.95 A or better, and their kinetic parameters were measured against D-galactose, D-glucose, L-arabinose, or D-xylose. From these studies, it can be concluded that Glu 304 and His 170 are critical for catalysis and that His 96 and Asp 243 are important for proper substrate positioning within the active site. Specifically, Glu 304 serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate and His 170 functions as the active site acid to protonate the C-5 ring oxygen.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| | | | | | | |
Collapse
|