1
|
Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG, Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell Mol Life Sci 2025; 82:122. [PMID: 40105962 PMCID: PMC11923325 DOI: 10.1007/s00018-025-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Investigating innate immunity and its signaling transduction is essential to understand inflammation and host defence mechanisms. Toll-like receptors (TLRs), an evolutionarily ancient group of pattern recognition receptors, are crucial for detecting microbial components and initiating immune responses. This review summarizes the mechanisms and outcomes of TLR-mediated signaling, focusing on motifs shared with other immunological pathways, which enhances our understanding of the innate immune system. TLRs recognize molecular patterns in microbial invaders, activate innate immunity and promote antigen-specific adaptive immunity, and each of them triggers unique downstream signaling patterns. Recent advances have highlighted the importance of supramolecular organizing centers (SMOCs) in TLR signaling, ensuring precise cellular responses and pathogen detection. Furthermore, this review illuminates how TLR pathways coordinate metabolism and gene regulation, contributing to adaptive immunity and providing novel insights for next-generation therapeutic strategies. Ongoing studies hold promise for novel treatments against infectious diseases, autoimmune conditions, and cancers.
Collapse
Affiliation(s)
- Md Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - Debaraj Bhattacharyya
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Li X, Huang Y, Liu X, Zhang L, Wang X, Zhao F, Zou L, Wu K, Chen W, Qin Y, Zeng S, Li B, He Y, Song Y, Li Z, Fan J, Zhao M, Yi L, Ding H, Fan S, Chen J. Classical swine fever virus inhibits serine metabolism-mediated antiviral immunity by deacetylating modified PHGDH. mBio 2024; 15:e0209724. [PMID: 39207107 PMCID: PMC11481501 DOI: 10.1128/mbio.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-β production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Wang ZX, Liu B, Xie H, Liu X, Li X, Shi F, Ouyang S, Zhang YA. Crystal Structures of DNA-bound Fish IRF10 and IRF11 Reveal the Determinants of IFN Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:743-752. [PMID: 39058321 DOI: 10.4049/jimmunol.2300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haizhou Xie
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiangliang Li
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fuqiang Shi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Al Hamrashdi M, Sanchez Perez C, Haas DA, Vishwakarma J, Pichlmair A, Bowie AG, Brady G. Molluscum contagiosum virus protein MC089 inhibits interferon regulatory factor 3 activation. J Gen Virol 2024; 105:002015. [PMID: 39167082 PMCID: PMC11338640 DOI: 10.1099/jgv.0.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Carla Sanchez Perez
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Darya A. Haas
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Jyoti Vishwakarma
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
5
|
Zeng X, Liu C, Fan J, Zou J, Guo M, Sun G. RNF138 Downregulates Antiviral Innate Immunity by Inhibiting IRF3 Activation. Int J Mol Sci 2023; 24:16110. [PMID: 38003298 PMCID: PMC10671598 DOI: 10.3390/ijms242216110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
A viral infection activates the transcription factors IRF3 and NF-κB, which synergistically induces type I interferons (IFNs). Here, we identify the E3 ubiquitin ligase RNF138 as an important negative regulator of virus-triggered IRF3 activation and IFN-β induction. The overexpression of RNF138 inhibited the virus-induced activation of IRF3 and the transcription of the IFNB1 gene, whereas the knockout of RNF138 promoted the virus-induced activation of IRF3 and transcription of the IFNB1 gene. We further found that RNF138 promotes the ubiquitination of PTEN and subsequently inhibits PTEN interactions with IRF3, which is essential for the PTEN-mediated nuclear translocation of IRF3, thereby inhibiting IRF3 import into the nucleus. Our findings suggest that RNF138 negatively regulates virus-triggered signaling by inhibiting the interaction of PTEN with IRF3, and these data provide new insights into the molecular mechanisms of cellular antiviral responses.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jinhao Fan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China;
| | - Jiabin Zou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- School of Ecology and Environment, Tibet University, Lhasa 850000, China;
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
6
|
Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J 2023:e112907. [PMID: 37367474 DOI: 10.15252/embj.2022112907] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Yang S, Jin S, Xian H, Zhao Z, Wang L, Wu Y, Zhou L, Li M, Cui J. Metabolic enzyme UAP1 mediates IRF3 pyrophosphorylation to facilitate innate immune response. Mol Cell 2023; 83:298-313.e8. [PMID: 36603579 DOI: 10.1016/j.molcel.2022.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.
Collapse
Affiliation(s)
- Shuai Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huifang Xian
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiyao Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liqiu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Cheng Q, Yuan L, Guo J, Guo D, Liu X, Li S. Phosphorylation of Ser82 on IRF3 Acts as Negative-feedback Regulation of IRF3-dependent Innate Immunity. Int J Biochem Cell Biol 2022; 150:106275. [DOI: 10.1016/j.biocel.2022.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
|
10
|
Maciag K, Raychowdhury R, Smith K, Schneider AM, Coers J, Mumbach MR, Schwartz S, Hacohen N. IRF3 inhibits IFN-γ-mediated restriction of intracellular pathogens in macrophages independently of IFNAR. J Leukoc Biol 2022; 112:257-271. [PMID: 34826345 PMCID: PMC9550582 DOI: 10.1002/jlb.3a0218-069rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 01/14/2023] Open
Abstract
Macrophages use an array of innate immune sensors to detect intracellular pathogens and to tailor effective antimicrobial responses. In addition, extrinsic activation with the cytokine IFN-γ is often required as well to tip the scales of the host-pathogen balance toward pathogen restriction. However, little is known about how host-pathogen sensing impacts the antimicrobial IFN-γ-activated state. It was observed that in the absence of IRF3, a key downstream component of pathogen sensing pathways, IFN-γ-primed macrophages more efficiently restricted the intracellular bacterium Legionella pneumophila and the intracellular protozoan parasite Trypanosoma cruzi. This effect did not require IFNAR, the receptor for Type I IFNs known to be induced by IRF3, nor the sensing adaptors MyD88/TRIF, MAVS, or STING. This effect also did not involve differential activation of STAT1, the major signaling protein downstream of both Type 1 and Type 2 IFN receptors. IRF3-deficient macrophages displayed a significantly altered IFN-γ-induced gene expression program, with up-regulation of microbial restriction factors such as Nos2. Finally, we found that IFN-γ-primed but not unprimed macrophages largely excluded the activated form of IRF3 from the nucleus following bacterial infection. These data are consistent with a relationship of mutual inhibition between IRF3 and IFN-γ-activated programs, possibly as a component of a partially reversible mechanism for modulating the activity of potent innate immune effectors (such as Nos2) in the context of intracellular infection.
Collapse
Affiliation(s)
- Karolina Maciag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Karen Smith
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexis M. Schneider
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Torres AA, Macilwee SL, Rashid A, Cox SE, Albarnaz JD, Bonjardim CA, Smith GL. The actin nucleator Spir-1 is a virus restriction factor that promotes innate immune signalling. PLoS Pathog 2022; 18:e1010277. [PMID: 35148361 PMCID: PMC8870497 DOI: 10.1371/journal.ppat.1010277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/24/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular proteins often have multiple and diverse functions. This is illustrated with protein Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1 overexpression enhanced IRF3 activation. Furthermore, the infectious virus titres and sizes of plaques formed by two viruses that are sensed by RIG-I, vaccinia virus (VACV) and Zika virus, are increased in Spir-1 KO cells. These observations demonstrate the biological importance of Spir-1 in the response to virus infection. Like cellular proteins, viral proteins also have multiple and diverse functions. Here, we also show that VACV virulence factor K7 binds directly to Spir-1 and that a diphenylalanine motif of Spir-1 is needed for this interaction and for Spir-1-mediated enhancement of IRF3 activation. Thus, Spir-1 is a new virus restriction factor and is targeted directly by an immunomodulatory viral protein that enhances virus virulence and diminishes the host antiviral responses.
Collapse
Affiliation(s)
- Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Amir Rashid
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Cox
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonas D. Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Claudio A. Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
13
|
Gao FF, Quan JH, Choi IW, Lee YJ, Jang SG, Yuk JM, Lee YH, Cha GH. FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth. J Cell Mol Med 2021; 25:9460-9472. [PMID: 34464509 PMCID: PMC8500981 DOI: 10.1111/jcmm.16889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/27/2023] Open
Abstract
Fas‐associated factor 1 (FAF1) has gained a reputation as a member of the FAS death‐inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE‐19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii‐induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii‐induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1‐dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - In-Wook Choi
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Yeon-Jae Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Seul-Gi Jang
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Jae-Min Yuk
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Young-Ha Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Guang-Ho Cha
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Shen L, Hu P, Zhang Y, Ji Z, Shan X, Ni L, Ning N, Wang J, Tian H, Shui G, Yuan Y, Li G, Zheng H, Yang XP, Huang D, Feng X, Li MJ, Liu Z, Wang T, Yu Q. Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation. Cell Metab 2021; 33:971-987.e6. [PMID: 33798471 DOI: 10.1016/j.cmet.2021.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Serine metabolism promotes tumor oncogenesis and regulates immune cell functions, but whether it also contributes to antiviral innate immunity is unknown. Here, we demonstrate that virus-infected macrophages display decreased expression of serine synthesis pathway (SSP) enzymes. Suppressing the SSP key enzyme phosphoglycerate dehydrogenase (PHGDH) by genetic approaches or by treatment with the pharmaceutical inhibitor CBR-5884 and by exogenous serine restriction enhanced IFN-β-mediated antiviral innate immunity in vitro and in vivo. Mechanistic experiments showed that virus infection or serine metabolism deficiency increased the expression of the V-ATPase subunit ATP6V0d2 by inhibiting S-adenosyl methionine-dependent H3K27me3 occupancy at the promoter. ATP6V0d2 promoted YAP lysosomal degradation to relieve YAP-mediated blockade of the TBK1-IRF3 axis and, thus, enhance IFN-β production. These findings implicate critical functions of PHGDH and the key immunometabolite serine in blunting antiviral innate immunity and also suggest manipulation of serine metabolism as a therapeutic strategy against virus infection.
Collapse
Affiliation(s)
- Long Shen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Penghui Hu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zemin Ji
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiao Shan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lina Ni
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Na Ning
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoli Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dandan Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiangling Feng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Qiujing Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
15
|
Khan KA, Marineau A, Doyon P, Acevedo M, Durette É, Gingras AC, Servant MJ. TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response. PLoS Pathog 2021; 17:e1009111. [PMID: 33411856 PMCID: PMC7790228 DOI: 10.1371/journal.ppat.1009111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response. Antiviral innate immune response is the first line of defence against the invading viruses through type I interferon (IFN) signaling. However, viruses have devised ways to target signaling molecules for aberrant IFN response and worsen the disease outcome. As such, deciphering the roles of new regulators of innate immunity could transform the antiviral treatment paradigm by introducing novel panviral therapeutics designed to reinforce antiviral host responses. This could be of great use in fighting recent outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. However, aberrant activation of such pathways can lead to detrimental consequences, including autoimmune diseases. Regulation of type I IFN responses is thus of paramount importance. To prevent an uncontrolled response, signaling events happen in discrete subcellular compartments, therefore, distinguishing sites involved in recognition of pathogens and those permitting downstream signaling. Here, we show TFG as a new regulator of type I IFN response allowing the efficient organization of signaling molecules. TFG, thus, further substantiates the importance of the protein trafficking machinery in the regulation of optimal antiviral responses. Our findings have implications for both antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Mariana Acevedo
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Étienne Durette
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
16
|
Khan H, Sumner RP, Rasaiyaah J, Tan CP, Rodriguez-Plata MT, Van Tulleken C, Fink D, Zuliani-Alvarez L, Thorne L, Stirling D, Milne RSB, Towers GJ. HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF-κB/IRF3 nuclear transport. eLife 2020; 9:e60821. [PMID: 33300875 PMCID: PMC7759385 DOI: 10.7554/elife.60821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here, we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr-dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.
Collapse
Affiliation(s)
- Hataf Khan
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Rebecca P Sumner
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Jane Rasaiyaah
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Choon Ping Tan
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | | | - Chris Van Tulleken
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Douglas Fink
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | | | - Lucy Thorne
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - David Stirling
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Richard SB Milne
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Dalskov L, Narita R, Andersen LL, Jensen N, Assil S, Kristensen K, Mikkelsen JG, Fujita T, Mogensen TH, Paludan SR, Hartmann R. Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Nucleic Acids Res 2020; 48:11421-11433. [PMID: 33205822 PMCID: PMC7672473 DOI: 10.1093/nar/gkaa873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
IRF3 and IRF7 are critical transcription factors in the innate immune response. Their activation is controlled by phosphorylation events, leading to the formation of homodimers that are transcriptionally active. Phosphorylation occurs when IRF3 is recruited to adaptor proteins via a positively charged surface within the regulatory domain of IRF3. This positively charged surface also plays a crucial role in forming the active homodimer by interacting with the phosphorylated sites stabilizing the homodimer. Here, we describe a distinct molecular interaction that is responsible for adaptor docking and hence phosphorylation as well as a separate interaction responsible for the formation of active homodimer. We then demonstrate that IRF7 can be activated by both MAVS and STING in a manner highly similar to that of IRF3 but with one key difference. Regulation of IRF7 appears more tightly controlled; while a single phosphorylation event is sufficient to activate IRF3, at least two phosphorylation events are required for IRF7 activation.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ryo Narita
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Line L Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nanna Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | | - Takashi Fujita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
18
|
Jing T, Zhao B, Xu P, Gao X, Chi L, Han H, Sankaran B, Li P. The Structural Basis of IRF-3 Activation upon Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2020; 205:1886-1896. [PMID: 32826280 DOI: 10.4049/jimmunol.2000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/23/2020] [Indexed: 11/19/2022]
Abstract
The innate immune system is the first line of defense against bacterial and viral infections. The recognition of pathogen-associated molecular patterns by the RIG-I-like receptors, TLRs, and cGAS leads to the induction of IFN-I by activating the transcription factor IRF-3. Although the mechanism of IRF-3 activation has been extensively studied, the structural basis of IRF-3 activation upon phosphorylation is not fully understood. In this study, we determined the crystal structures of phosphorylated human and mouse IRF-3 bound to CREB-binding protein (CBP), which reveal that phosphorylated IRF-3 forms a dimer via pSer386 (pSer379 in mouse IRF-3) and a downstream pLxIS motif. Size-exclusion chromatography and cell-based studies show that mutations of key residues interacting with pSer386 severely impair IRF-3 activation and IFN-β induction. By contrast, phosphorylation of Ser396 within the pLxIS motif of human IRF-3 only plays a moderate role in IRF-3 activation. The mouse IRF-3/CBP complex structure reveals that the mechanism of mouse IRF-3 activation is similar but distinct from human IRF-3. These structural and functional studies reveal the detailed mechanism of IRF-3 activation upon phosphorylation.
Collapse
Affiliation(s)
- Tao Jing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Pengbiao Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Xinsheng Gao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Lei Chi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843.,School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China; and
| | - Huajun Han
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
19
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
20
|
Zheng C. Protein Dynamics in Cytosolic DNA-Sensing Antiviral Innate Immune Signaling Pathways. Front Immunol 2020; 11:1255. [PMID: 32714322 PMCID: PMC7343935 DOI: 10.3389/fimmu.2020.01255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Antiviral innate immunity works as the first line of host defense against viral infection. Pattern recognition receptors (PRRs) and adaptor proteins involved in the innate immune signaling pathways play critical roles in controlling viral infections via the induction of type I interferon and its downstream interferon-stimulated genes. Dynamic changes of adaptor proteins contribute to precise regulation of the activation and shut-off of signaling transduction, though numerous complex processes are involved in achieving dynamic changes to various proteins of the host and viruses. In this review, we will summarize recent progress on the trafficking patterns and conformational transitions of the adaptors that are involved in the antiviral innate immune signaling pathway during viral DNA sensing. Moreover, we aim to dissect the relationships between protein dynamics and DNA-sensing antiviral innate immune responses, which will reveal the underlying mechanisms controlling protein activity and maintaining cell homeostasis. By comprehensively revealing protein dynamics in cytosolic DNA-sensing antiviral innate immune signaling pathways, we will be able to identify potential new targets for the therapies of certain autoimmune diseases.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors. Proc Natl Acad Sci U S A 2020; 117:15778-15788. [PMID: 32571931 DOI: 10.1073/pnas.1921861117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RIG-I, MDA5, and LGP2 comprise the RIG-I-like receptors (RLRs). RIG-I and MDA5 are essential pathogen recognition receptors sensing viral infections while LGP2 has been described as both RLR cofactor and negative regulator. After sensing and binding to viral RNA, including double-stranded RNA (dsRNA), RIG-I and MDA5 undergo cytosol-to-membrane relocalization to bind and signal through the MAVS adaptor protein on intracellular membranes, thus directing downstream activation of IRF3 and innate immunity. Here, we report examination of the dynamic subcellular localization of all three RLRs within the intracellular response to dsRNA and RNA virus infection. Observations from high resolution biochemical fractionation and electron microscopy, coupled with analysis of protein interactions and IRF3 activation, show that, in resting cells, microsome but not mitochondrial fractions harbor the central components to initiate innate immune signaling. LGP2 interacts with MAVS in microsomes, blocking the RIG-I/MAVS interaction. Remarkably, in response to dsRNA treatment or RNA virus infection, LGP2 is rapidly released from MAVS and redistributed to mitochondria, temporally correlating with IRF3 activation. We reveal that IRF3 activation does not take place on mitochondria but instead occurs at endoplasmic reticulum (ER)-derived membranes. Our observations suggest ER-derived membranes as key RLR signaling platforms controlled through inhibitory actions of LGP2 binding to MAVS wherein LGP2 translocation to mitochondria releases MAVS inhibition to facilitate RLR-mediated signaling of innate immunity.
Collapse
|
22
|
Wu Y, Jin S, Liu Q, Zhang Y, Ma L, Zhao Z, Yang S, Li YP, Cui J. Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression. Autophagy 2020; 17:1379-1392. [PMID: 32476569 DOI: 10.1080/15548627.2020.1761653] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IRF3 (interferon regulatory factor 3) is one of the most critical transcription factors in antiviral innate immune signaling, which is ubiquitously expressed in a variety of cells. Although it has been demonstrated that IRF3 can provoke multiple cellular processes during viral infection, including type I interferon (IFN) production, the mechanisms underlying the precise regulation of IRF3 activity are still not completely understood. Here, we report that selective macroautophagy/autophagy mediated by cargo receptor CALCOCO2/NDP52 promotes the degradation of IRF3 in a virus load-dependent manner. Deubiquitinase PSMD14/POH1 prevents IRF3 from autophagic degradation by cleaving the K27-linked poly-ubiquitin chains at lysine 313 on IRF3 to maintain its basal level and IRF3-mediated type I IFN activation. The autophagic degradation of IRF3 mediated by PSMD14 or CALCOCO2 ensures the precise control of IRF3 activity and fine-tunes the immune response against viral infection. Our study reveals the regulatory role of PSMD14 in balancing IRF3-centered IFN activation with immune suppression and provides insights into the crosstalk between selective autophagy and type I IFN signaling.Abbreviations: ATG5: autophagy related gene 5; Baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DUBs: deubiquitinating enzymes; IFN: interferon; IRF3: interferon regulatory factor 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; PBMC: peripheral blood mononuclear cell; PSMD14/POH1: proteasome 26S subunit, non-ATPase 14; RIPA: RLR-induced IRF3-mediated pathway of apoptosis; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Yaoxing Wu
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Shouheng Jin
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Qingxiang Liu
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Ling Ma
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Zhiyao Zhao
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Shuai Yang
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Diseases Control Ministry of Education, Sun Yat-sen University, Guangzhou, GD, China.,Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, GD, China
| | - Jun Cui
- State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, GD, China
| |
Collapse
|
23
|
Classical swine fever virus N pro antagonises IRF3 to prevent IFN-independent TLR3 and RIG-I-mediated apoptosis. J Virol 2020; 95:JVI.01136-20. [PMID: 33328306 PMCID: PMC8092839 DOI: 10.1128/jvi.01136-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever, a notifiable disease of economic importance that causes severe leukopenia, fever and haemorrhagic disease in domesticated pigs and wild boar across the globe. CSFV has been shown to antagonise the induction of type I IFN, partly through a function of its N-terminal protease (Npro) which binds IRF3 and targets it for proteasomal degradation. Additionally, Npro has been shown to antagonise apoptosis triggered by the dsRNA-homolog poly(I:C), however the exact mechanism by which this is achieved has not been fully elucidated. In this study we confirm the ability of Npro to inhibit dsRNA-mediated apoptosis and show that Npro is also able to antagonise Sendai virus-mediated apoptosis in PK-15 cells. Gene edited PK-15 cell lines were used to show the dsRNA-sensing pathogen recognition receptors (PRRs) TLR3 and RIG-I specifically respond to poly(I:C) and SeV respectively, subsequently triggering apoptosis through pathways that converge on IRF3 and culminate in the cleavage of caspase-3. Importantly, this IRF3-mediated apoptosis was found to be dependent on transcription-independent functions of IRF3 and also on Bax, a pro-apoptotic Bcl-2 family protein, through a direct interaction between the two proteins. Deletion of IRF3, stable expression of Npro and infection with wild-type CSFV were found to antagonise the mitochondrial localisation of Bax, a key hallmark of the intrinsic, mitochondrial pathway of apoptosis. Together, these findings show that Npro's putative interaction with IRF3 is involved not only in its antagonism of type I IFN, but also dsRNA-mediated mitochondrial apoptosis.Importance Responsible for severe haemorrhagic disease in domestic pigs and wild boar, classical swine fever is recognised by the World Organisation for Animal Health (OIE) and European Union as a notifiable disease of economic importance. Persistent infection, immunotolerance and early dissemination of the virus at local sites of infection have been linked to the antagonism of type I IFN induction by Npro This protein may further contribute to these phenomena by antagonising the induction of dsRNA-mediated apoptosis. Ultimately, apoptosis is an important innate mechanism by which cells counter viruses at local sites of infection, thus preventing wider spread and dissemination within the host, potentially also contributing to the onset of persistence. Elucidation of the mechanism by which Npro antagonises the apoptotic response will help inform the development of rationally-designed live-attenuated vaccines and antivirals for control of outbreaks in typically CSFV-free countries.
Collapse
|
24
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
25
|
Antibody-Mediated Porcine Reproductive and Respiratory Syndrome Virus Infection Downregulates the Production of Interferon-α and Tumor Necrosis Factor-α in Porcine Alveolar Macrophages via Fc Gamma Receptor I and III. Viruses 2020; 12:v12020187. [PMID: 32046249 PMCID: PMC7077232 DOI: 10.3390/v12020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022] Open
Abstract
Antibody-dependent enhancement (ADE) contributes to the pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV)-persistent infection. However, the mechanisms of PRRSV-ADE infection are still confusing. A clear understanding of the event upon virus infection by the ADE pathway has become crucial for developing efficient intervention of the PRRSV infection. In this study, an ADE assay showed that PRRSV-ADE infection in porcine alveolar macrophages (AMs) significantly decreased the production of interferon-α (IFN-α) and tumor necrosis factor-α (TNF-α), and significantly increased the production of interleukine-10 (IL-10). A gene knockdown assay based on small interfering RNA (siRNA) showed that both Fc gamma receptor I (FcγRI) and FcγRIII in porcine AMs were involved in PRRSV-ADE infection. An activation assay showed that specific activation of FcγRI or FcγRIII in porcine AMs during PRRSV infection not only significantly decreased the production of IFN-α and TNF-α, but also significantly increased the production of IL-10 and significantly facilitated PRRSV replication. In conclusion, our studies suggested that ADE downregulated the production of IFN-α and TNF-α in porcine AMs maybe via FcγRI and FcγRIII, thereby leading to enhanced PRRSV infection.
Collapse
|
26
|
Ye J, Cheung J, Gerbino V, Ahlsén G, Zimanyi C, Hirsh D, Maniatis T. Effects of ALS-associated TANK binding kinase 1 mutations on protein-protein interactions and kinase activity. Proc Natl Acad Sci U S A 2019; 116:24517-24526. [PMID: 31748271 PMCID: PMC6900539 DOI: 10.1073/pnas.1915732116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exonic DNA sequence variants in the Tbk1 gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein-protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy. By contrast, mutations in the scaffold dimerization domain (SDD) of TBK1 can cause the loss of kinase activity due to structural disruption, despite an intact KD. Familial ALS mutations in ubiquitin-like domain (ULD) or SDD display defects in dimerization; however, a subset retains kinase activity. These observations indicate that TBK1 dimerization is not required for kinase activation. Rather, dimerization seems to increase protein stability and enables efficient kinase-substrate interactions. Our study revealed many aspects of TBK1 activities affected by ALS mutations, highlighting the complexity of disease pathogenicity and providing insights into TBK1 activation mechanism.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Jonah Cheung
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - Valeria Gerbino
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Göran Ahlsén
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Christina Zimanyi
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - David Hirsh
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032;
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
- New York Genome Center, New York, NY 10013
| |
Collapse
|
27
|
Xu J, Zhang L, Xu Y, Zhang H, Gao J, Wang Q, Tian Z, Xuan L, Chen H, Wang Y. PP2A Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication by Deactivating irf3 and Limiting Type I Interferon Production. Viruses 2019; 11:v11100948. [PMID: 31618847 PMCID: PMC6832233 DOI: 10.3390/v11100948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase in mammalian cells, is known to regulate the kinase-driven intracellular signaling pathways. Emerging evidences have shown that the PP2A phosphatase functions as a bona-fide therapeutic target for anticancer therapy, but it is unclear whether PP2A affects a porcine reproductive and respiratory syndrome virus infection. In the present study, we demonstrated for the first time that inhibition of PP2A activity by either inhibitor or small interfering RNA duplexes in target cells significantly reduced their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Further analysis revealed that inhibition of PP2A function resulted in augmented production of type I interferon (IFN). The mechanism is that inhibition of PP2A activity enhances the levels of phosphorylated interferon regulatory factor 3, which activates the transcription of IFN-stimulated genes. Moreover, inhibition of PP2A activity mainly blocked PRRSV replication in the early stage of viral life cycle, after virus entry but before virus release. Using type I IFN receptor 2 specific siRNA in combination with PP2A inhibitor, we confirmed that the effect of PP2A on viral replication within target cells was an interferon-dependent manner. Taken together, these findings demonstrate that PP2A serves as a negative regulator of host cells antiviral responses and provides a novel therapeutic target for virus infection.
Collapse
Affiliation(s)
- Jiayu Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lv Xuan
- Department of public health policy, University of California, Irvine, CA 92697, USA
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
28
|
Abstract
Viral infections are accompanied by the release of pathogen-associated molecular patterns (PAMPs) during the virus life-cycle and damage-associated molecular patterns (DAMPs) from collateral injured cells. The sensing of viral PAMPs by pattern recognition receptors (PRRs) such as Toll-like receptors RIG-I and cGAS is essential in initiating host antiviral responses, especially the type I interferon (IFN-I) response. Here, we report that the DAMP-sensing C-type lectin receptor Clec12A positively regulates the IFN-I response induced by RIG-I, providing a mechanism of cross-talk between PAMP- and DAMP-triggered signaling pathways. Moreover, this modulatory function of Clec12A has functional consequences in both acute and chronic viral infection in mice. The detection of microbes and damaged host cells by the innate immune system is essential for host defense against infection and tissue homeostasis. However, how distinct positive and negative regulatory signals from immune receptors are integrated to tailor specific responses in complex scenarios remains largely undefined. Clec12A is a myeloid cell-expressed inhibitory C-type lectin receptor that can sense cell death under sterile conditions. Clec12A detects uric acid crystals and limits proinflammatory pathways by counteracting the cell-activating spleen tyrosine kinase (Syk). Here, we surprisingly find that Clec12A additionally amplifies type I IFN (IFN-I) responses in vivo and in vitro. Using retinoic acid-inducible gene I (RIG-I) signaling as a model, we demonstrate that monosodium urate (MSU) crystal sensing by Clec12A enhances cytosolic RNA-induced IFN-I production and the subsequent induction of IFN-I–stimulated genes. Mechanistically, Clec12A engages Src kinase to positively regulate the TBK1-IRF3 signaling module. Consistently, Clec12A-deficient mice exhibit reduced IFN-I responses upon lymphocytic choriomeningitis virus (LCMV) infection, which affects the outcomes of these animals in acute and chronic virus infection models. Thus, our results uncover a previously unrecognized connection between an MSU crystal-sensing receptor and the IFN-I response, and they illustrate how the sensing of extracellular damage-associated molecular patterns (DAMPs) can shape the immune response.
Collapse
|
29
|
Li D, Fu S, Wu Z, Yang W, Ru Y, Shu H, Liu X, Zheng H. DDX56 inhibits type I interferon by disrupting assembly of IRF3-IPO5 to inhibit IRF3 nucleus import. J Cell Sci 2019; 133:133/5/jcs230409. [PMID: 31340999 PMCID: PMC6899003 DOI: 10.1242/jcs.230409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Transcription factor IRF3-mediated type I interferon induction plays a role in antiviral innate immunity. However, mechanisms for the control and regulation of IRF3 nuclear import remain largely unknown. We have identified DEAD box polypeptide 56 (DDX56) as a negative regulator of virus-triggered IFN-β induction. Overexpression of DDX56 suppressed nuclear translocation of IRF3 via disrupting the IRF3–IOP5 interaction, whereas knockdown or knockout of DDX56 had the opposite effect. In addition, the interaction between DDX56 and IRF3 increased during viral infection. We further found that the D166 site of DDX56 was essential for inhibiting IRF3 import into the nucleus. Our findings suggest that DDX56 regulates antiviral innate immunity by inhibiting the nuclear translocation of IRF3, revealing a novel mechanism of the DDX56-mediated innate antiviral response. This article has an associated First Person interview with the first author of the paper. Summary: DDX56 is a negative regulator of virus-triggered IFN-β induction that acts by disruputing the IRF3–IOP5 interaction to inhibit the import of IRF3 into the nucleus.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Shaozu Fu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Zhengqian Wu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Hongbing Shu
- Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
30
|
Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, Wang D, Visal T, Li MK, Pinto J, Castrillon JA, Cheney EM, Bouwman P, Jonkers J, Rottenberg S, Guerriero JL, Wulf GM, Shapiro GI. PARP Inhibitor Efficacy Depends on CD8 + T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov 2019; 9:722-737. [PMID: 31015319 DOI: 10.1158/2159-8290.cd-18-1218] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023]
Abstract
Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T-cell infiltration and activation in vivo, and that CD8+ T-cell depletion severely compromises antitumor efficacy. Olaparib-induced T-cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared with HR-proficient TNBC cells and in vivo models. CRISPR-mediated knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T-cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC. SIGNIFICANCE: This work demonstrates cross-talk between PARP inhibition and the tumor microenvironment related to STING/TBK1/IRF3 pathway activation in cancer cells that governs CD8+ T-cell recruitment and antitumor efficacy. The data provide insight into the mechanism of action of PARP inhibitors in BRCA-associated breast cancer.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Olmo Sonzogni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mateus De Oliveria Taveira
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Imaging, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Anita K Mehta
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aditi Kothari
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dan Wang
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tanvi Visal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle K Li
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jocelin Pinto
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jessica A Castrillon
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter Bouwman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
31
|
Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses 2019; 11:v11020152. [PMID: 30781790 PMCID: PMC6410008 DOI: 10.3390/v11020152] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion.
Collapse
|
32
|
Negishi H, Taniguchi T, Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol 2018; 10:a028423. [PMID: 28963109 PMCID: PMC6211389 DOI: 10.1101/cshperspect.a028423] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines elicited on challenge to the host defense and are essential for mobilizing immune responses to pathogens. Divided into three classes, type I, type II, and type III, all IFNs share in common the ability to evoke antiviral activities initiated by the interaction with their cognate receptors. The nine-member IFN regulatory factor (IRF) family, first discovered in the context of transcriptional regulation of type I IFN genes following viral infection, are pivotal for the regulation of the IFN responses. In this review, we briefly describe cardinal features of the three types of IFNs and then focus on the role of the IRF family members in the regulation of each IFN system.
Collapse
Affiliation(s)
- Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
33
|
Nguyen TT, Suzuki S, Sugamata R, Ito F, Tran DH, Yamamoto T, Kawachi S, Suzuki K. Hypothiocyanous Acid Suppresses PolyI:C-Induced Antiviral Responses by Modulating IRF3 Phosphorylation in Human Airway Epithelial Cells. TOHOKU J EXP MED 2018; 245:131-140. [PMID: 29962372 DOI: 10.1620/tjem.245.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pattern recognition receptors recognize RNA viruses and trigger type I and III interferon (IFN) production and apoptosis to limit viral replication and spread. Some innate immune cells produce oxidants in response to viral infection to protect against invasion. Recent studies have demonstrated the virucidal activity of hypothiocyanous acid (HOSCN), an oxidant generated by the peroxidase-catalyzed reaction of thiocyanate with hydrogen peroxide. However, the effects of HOSCN on host antiviral responses are still unknown. In this study, we aimed to clarify the role of HOSCN in host antiviral responses against RNA viruses in airway epithelial cells using polyinosinic-polycytidylic acid (polyI:C), a mimic of viral RNA. Our results show that HOSCN repressed antiviral responses in NCI-H292 human airway epithelial cells. HOSCN decreased polyI:C-induced apoptosis and the expression levels of IFNB1, IFNL1, IFNL2 and IFNL3 mRNAs. In addition, the induction of other interferon regulatory factor 3 (IRF3)-dependent genes was also suppressed by HOSCN. Further analyses focused on IRF3 revealed that HOSCN inhibited the phosphorylation of IRF3 at Ser386 and Ser396 as well as its dimerization and nuclear translocation by inhibiting the phosphorylation of TANK-binding kinase 1 (TBK1). Furthermore, HOSCN led to the phosphorylation of IRF3 at residues other than Ser386 and Ser396, implying that HOSCN may cause a conformational change in IRF3 to impair its function. Collectively, these results suggest that HOSCN plays a novel signaling role in the antiviral response, acting as a negative regulator of apoptotic and TBK1-IRF3 signaling pathways and limiting IRF3-dependent gene expression.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoichi Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Ryuichi Sugamata
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Fuyu Ito
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Dat Huu Tran
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Tomoko Yamamoto
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoji Kawachi
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Kazuo Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| |
Collapse
|
34
|
Aziz N, Son YJ, Cho JY. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1. Int J Mol Sci 2018; 19:E1355. [PMID: 29751576 PMCID: PMC5983753 DOI: 10.3390/ijms19051355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon 16419, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
35
|
Duffney PF, McCarthy CE, Nogales A, Thatcher TH, Martinez-Sobrido L, Phipps RP, Sime PJ. Cigarette smoke dampens antiviral signaling in small airway epithelial cells by disrupting TLR3 cleavage. Am J Physiol Lung Cell Mol Physiol 2018; 314:L505-L513. [PMID: 29351447 PMCID: PMC5900359 DOI: 10.1152/ajplung.00406.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Cigarette smokers and people exposed to second-hand smoke are at an increased risk for pulmonary viral infections, and yet the mechanism responsible for this heightened susceptibility is not understood. To understand the effect of cigarette smoke on susceptibility to viral infection, we used an air-liquid interface culture system and exposed primary human small airway epithelial cells (SAEC) to whole cigarette smoke, followed by treatment with the viral mimetic polyinosinic polycytidylic acid (poly I:C) or influenza A virus (IAV). We found that prior smoke exposure strongly inhibited production of proinflammatory (interleukin-6 and interleukin-8) and antiviral [interferon-γ-induced protein 10 (IP-10) and interferons] mediators in SAECs in response to poly I:C and IAV infection. Impaired antiviral responses corresponded to increased infection with IAV. This was associated with a decrease in phosphorylation of the key antiviral transcription factor interferon response factor 3 (IRF3). Here, we found that cigarette smoke exposure inhibited activation of Toll-like receptor 3 (TLR3) by impairing TLR3 cleavage, which was required for downstream phosphorylation of IRF3 and production of IP-10. These results identify a novel mechanism by which cigarette smoke exposure impairs antiviral responses in lung epithelial cells, which may contribute to increased susceptibility to respiratory infections.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Claire E McCarthy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| |
Collapse
|
36
|
DUSP1 regulates apoptosis and cell migration, but not the JIP1-protected cytokine response, during Respiratory Syncytial Virus and Sendai Virus infection. Sci Rep 2017; 7:17388. [PMID: 29234123 PMCID: PMC5727028 DOI: 10.1038/s41598-017-17689-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
The host antiviral response involves the induction of interferons and proinflammatory cytokines, but also the activation of cell death pathways, including apoptosis, to limit viral replication and spreading. This host defense is strictly regulated to eliminate the infection while limiting tissue damage that is associated with virus pathogenesis. Post-translational modifications, most notably phosphorylation, are key regulators of the antiviral defense implying an important role of protein phosphatases. Here, we investigated the role of the dual-specificity phosphatase 1 (DUSP1) in the host defense against human respiratory syncytial virus (RSV), a pathogenic virus of the Pneumoviridae family, and Sendai virus (SeV), a model virus being developed as a vector for anti-RSV vaccine. We found that DUSP1 is upregulated before being subjected to proteasomal degradation. DUSP1 does not inhibit the antiviral response, but negatively regulates virus-induced JNK/p38 MAPK phosphorylation. Interaction with the JNK-interacting protein 1 scaffold protein prevents dephosphorylation of JNK by DUSP1, likely explaining that AP-1 activation and downstream cytokine production are protected from DUSP1 inhibition. Importantly, DUSP1 promotes SeV-induced apoptosis and suppresses cell migration in RSV-infected cells. Collectively, our data unveils a previously unrecognized selective role of DUSP1 in the regulation of tissue damage and repair during infections by RSV and SeV.
Collapse
|
37
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
38
|
The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J Virol 2017; 91:JVI.02143-16. [PMID: 28148787 DOI: 10.1128/jvi.02143-16] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein.IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response.
Collapse
|
39
|
Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β. Biochem J 2017; 474:1163-1174. [PMID: 28159912 PMCID: PMC5350611 DOI: 10.1042/bcj20160992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
The double-stranded RNA mimetic poly(I:C) and lipopolysaccharide (LPS) activate Toll-like receptors 3 (TLR3) and TLR4, respectively, triggering the activation of TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1) complexes, the phosphorylation of interferon regulatory factor 3 (IRF3) and transcription of the interferon β (IFNβ) gene. Here, we demonstrate that the TANK–TBK1 and optineurin (OPTN)–TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone marrow-derived macrophages (BMDMs) from TANK knockout (KO) mice crossed to knockin mice expressing the ubiquitin-binding-defective OPTN[D477N] mutant. In contrast, IRF3 phosphorylation and IFNβ production were not reduced significantly in BMDM from OPTN[D477N] knockin mice and only reduced partially in TANK KO BMDM. The TLR3/TLR4-dependent phosphorylation of IRF3 and IFNβ gene transcription were not decreased in macrophages from OPTN[D477N] crossed to mice deficient in IκB kinase ε, a TANK-binding kinase related to TBK1. In contrast with the OPTN–TBK1 complex, TBK1 associated with OPTN[D477N] did not undergo phosphorylation at Ser172 in response to poly(I:C) or LPS, indicating that the interaction of ubiquitin chains with OPTN is required to activate OPTN–TBK1 in BMDM. The phosphorylation of IRF3 and IFNβ production induced by Sendai virus infection were unimpaired in BMDM from TANK KO × OPTN[D477N] mice, suggesting that other/additional TBK1 complexes control the RIG-I-like receptor-dependent production of IFNβ. Finally, we present evidence that, in human HACAT cells, the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase(s).
Collapse
|
40
|
Wang J, Lei CQ, Ji Y, Zhou H, Ren Y, Peng Q, Zeng Y, Jia Y, Ge J, Zhong B, Li Y, Wei J, Shu HB, Zhu Q. Duck Tembusu Virus Nonstructural Protein 1 Antagonizes IFN-β Signaling Pathways by Targeting VISA. THE JOURNAL OF IMMUNOLOGY 2016; 197:4704-4713. [PMID: 27821666 DOI: 10.4049/jimmunol.1502317] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
Abstract
Duck Tembusu virus (DTMUV) is an emergent infectious pathogen that has caused severe disease in ducks and huge economic losses to the poultry industry in China since 2009. Previously, we showed that DTMUV inhibits IFN-β induction early in infection; however, the mechanisms of the inhibition of innate immune responses remain poorly understood. In this study, we screened DTMUV-encoded structural and nonstructural proteins using reporter assays and found that DTMUV NS1 markedly suppressed virus-triggered IFN-β expression by inhibiting retinoic acid-inducible gene I-like receptor signaling. Moreover, we found that DTMUV NS1 specifically interacted with the C-terminal domain of virus-induced signaling adaptor and impaired the association of retinoic acid-inducible gene I or melanoma differentiation-associated gene 5 and virus-induced signaling adaptor, thereby downregulating the retinoic acid-inducible gene I-like receptor-mediated signal transduction and cellular antiviral responses, leading to evasion of the innate immune response. Together, our findings reveal a novel mechanism manipulated by DTMUV to circumvent the host antiviral immune response.
Collapse
Affiliation(s)
- Junyong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Cao-Qi Lei
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China;
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yujie Ren
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qianqian Peng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China; and
| | - Bo Zhong
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jianzhong Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Hong-Bing Shu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China;
| |
Collapse
|
41
|
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer. J Virol 2016; 90:7740-7. [PMID: 27334592 DOI: 10.1128/jvi.00318-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein N(pro) that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant N(pro) and IRF3 proteins and show that N(pro) interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between N(pro) and IRF3 is not dependent on the activation state of IRF3, since N(pro) binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the N(pro)-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, N(pro), is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the N(pro) interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that N(pro) targets for degradation, is largely unknown. We show that classical swine fever virus N(pro) and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with N(pro) Additionally, N(pro) interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that N(pro) is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.
Collapse
|
42
|
Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol 2016; 17:806-15. [DOI: 10.1038/ni.3464] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
|
43
|
Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel JL, Sen GC. Ubiquitination of the Transcription Factor IRF-3 Activates RIPA, the Apoptotic Pathway that Protects Mice from Viral Pathogenesis. Immunity 2016; 44:1151-61. [PMID: 27178468 DOI: 10.1016/j.immuni.2016.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/31/2015] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3's transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes.
Collapse
Affiliation(s)
- Saurabh Chattopadhyay
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Mailstop 1021, Toledo, OH 43614, USA.
| | - Teodora Kuzmanovic
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Zhang
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jaime L Wetzel
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ganes C Sen
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Immunology, Cleveland Clinic, 9500 Euclid Avenue, NE20, Cleveland, OH 44195, USA.
| |
Collapse
|
44
|
Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus. Mol Cell Biol 2016; 36:1136-51. [PMID: 26811330 PMCID: PMC4800795 DOI: 10.1128/mcb.00744-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/16/2016] [Indexed: 01/12/2023] Open
Abstract
This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus.
Collapse
|
45
|
Robitaille AC, Mariani MK, Fortin A, Grandvaux N. A High Resolution Method to Monitor Phosphorylation-dependent Activation of IRF3. J Vis Exp 2016:e53723. [PMID: 26862747 DOI: 10.3791/53723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The IRF3 transcription factor is critical for the first line of defense against pathogens mainly through interferon β and antiviral gene expression. A detailed analysis of IRF3 activation is essential to understand how pathogens induce or evade the innate antiviral response. Distinct activated forms of IRF3 can be distinguished based on their phosphorylation and monomer vs dimer status. In vivo discrimination between the different activated species of IRF3 can be achieved through the separation of IRF3 phosphorylated forms based on their mobility shifts on SDS-PAGE. Additionally, the levels of IRF3 monomer and dimer can be monitored using non-denaturing electrophoresis. Here, we detail a procedure to reach the highest resolution to gain the most information regarding IRF3 activation status. This is achieved through the combination of a high resolution SDS-PAGE and a native-PAGE coupled to immunoblots using multiple total and phosphospecific antibodies. This experimental strategy constitutes an affordable and sensitive approach to acquire all the necessary information for a complete analysis of the phosphorylation-mediated activation of IRF3.
Collapse
Affiliation(s)
- Alexa C Robitaille
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Department of Biochemistry and Molecular Medicine, Université de Montréal; Faculty of Medicine, Université de Montréal
| | - Mélissa K Mariani
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Faculty of Medicine, Université de Montréal
| | - Audray Fortin
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal
| | - Nathalie Grandvaux
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Department of Biochemistry and Molecular Medicine, Université de Montréal; Faculty of Medicine, Université de Montréal;
| |
Collapse
|
46
|
Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S, Zhao X, Lei CQ, Guo L, Chen Y, Li CM, Jokitalo E, Yin Y, Shu HB, Guo D. The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol 2015; 17:241-9. [DOI: 10.1038/ni.3311] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022]
|
47
|
Khan KA, Dô F, Marineau A, Doyon P, Clément JF, Woodgett JR, Doble BW, Servant MJ. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol 2015; 35:3029-43. [PMID: 26100021 PMCID: PMC4525315 DOI: 10.1128/mcb.00344-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α(-/-)), GSK-3β(-/-), and GSK-3α/β double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3β(-/-) mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3β, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of β-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/β-catenin axis in antiviral innate immunity.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bradley W Doble
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marc J Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
48
|
Shah M, Anwar MA, Park S, Jafri SS, Choi S. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. Sci Rep 2015; 5:13446. [PMID: 26289783 PMCID: PMC4542336 DOI: 10.1038/srep13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/03/2015] [Indexed: 02/04/2023] Open
Abstract
The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Seolhee Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Syyada Samra Jafri
- The Center of Excellence in Molecular Biology, University of the Punjab, Lahore, 54890, Pakistan
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
49
|
James SJ, Jiao H, Teh HY, Takahashi H, Png CW, Phoon MC, Suzuki Y, Sawasaki T, Xiao H, Chow VTK, Yamamoto N, Reynolds JM, Flavell RA, Dong C, Zhang Y. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response. Cell Rep 2015; 10:1722-1734. [PMID: 25772359 DOI: 10.1016/j.celrep.2015.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/20/2015] [Accepted: 02/08/2015] [Indexed: 11/17/2022] Open
Abstract
The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5), a dual-specificity phosphatase (DUSP), in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.
Collapse
Affiliation(s)
- Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Huipeng Jiao
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Hong-Ying Teh
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Hirotaka Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Chin Wen Png
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Meng Chee Phoon
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Tatsuy Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hui Xiao
- Unit of Immune Regulation and Signaling, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Vincent T K Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Joseph M Reynolds
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Richard A Flavell
- Department of Immunology, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Chen Dong
- Tsinghua University, Beijing 100084, China
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
50
|
Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen GC, Barik S. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog 2015; 11:e1004779. [PMID: 25811886 PMCID: PMC4374777 DOI: 10.1371/journal.ppat.1004779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/03/2015] [Indexed: 01/10/2023] Open
Abstract
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
Collapse
Affiliation(s)
- Tanmay Majumdar
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
| | - Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Evgeny Ozhegov
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
| | - Jayeeta Dhar
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ramansu Goswami
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ganes C. Sen
- Department of Molecular Genetics, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sailen Barik
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
| |
Collapse
|