1
|
Chen J, Wu Y, Hao W, You J, Wu L. Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis. Cell Rep 2025; 44:115188. [PMID: 39792556 DOI: 10.1016/j.celrep.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/27/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice. Notably, AR expression in the liver of female mice is up to three times higher than that in their male littermates, accounting for the more pronounced response to glucagon in females. Mechanistically, hepatic AR promotes energy metabolism and enhances lipid breakdown for liver glucose production in response to glucagon treatment through the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/estrogen-related receptor alpha (ERRα)-mitochondria axis. Overall, our findings highlight the crucial role of hepatic AR in mediating glucagon signaling and the sexual dimorphism in hepatic glucagon sensitivity.
Collapse
Affiliation(s)
- Jie Chen
- Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Wenyuan Secondary School Affiliated to Xuejun High School, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Pharmaceuticals, Hangzhou, Zhejiang, China
| | - Jia You
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen W, Song YS, Lee HS, Lin CW, Lee J, Kang YE, Kim SK, Kim SY, Park YJ, Park JI. Estrogen-related receptor alpha promotes thyroid tumor cell survival via a tumor subtype-specific regulation of target gene networks. Oncogene 2024; 43:2431-2446. [PMID: 38937602 PMCID: PMC11629884 DOI: 10.1038/s41388-024-03078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Sai Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Junguee Lee
- Department of Pathology, Konyang University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital & College of Medicine, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Ning Z, Liu Y, Wan M, Zuo Y, Chen S, Shi Z, Xu Y, Li H, Ko H, Zhang J, Xiao S, Guo D, Tang Y. APOE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell Mol Biol Lett 2024; 29:87. [PMID: 38867189 PMCID: PMC11170814 DOI: 10.1186/s11658-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aβ). Moreover, APOE2 overexpression alleviates Aβ1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aβ1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aβ injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Mengyao Wan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - You Zuo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Desmet SJ, Thommis J, Vanderhaeghen T, Vandenboorn EMF, Clarisse D, Li Y, Timmermans S, Fijalkowska D, Ratman D, Van Hamme E, De Cauwer L, Staels B, Brunsveld L, Peelman F, Libert C, Tavernier J, De Bosscher K. Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression. Mol Metab 2024; 84:101938. [PMID: 38631478 PMCID: PMC11059514 DOI: 10.1016/j.molmet.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
Collapse
Affiliation(s)
- Sofie J Desmet
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Edmee M F Vandenboorn
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Yunkun Li
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Dariusz Ratman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | - Lode De Cauwer
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Frank Peelman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
6
|
Clark AJ, Saade MC, Vemireddy V, Vu KQ, Flores BM, Etzrodt V, Ciampa EJ, Huang H, Takakura A, Zandi-Nejad K, Zsengellér ZK, Parikh SM. Hepatocyte nuclear factor 4α mediated quinolinate phosphoribosylltransferase (QPRT) expression in the kidney facilitates resilience against acute kidney injury. Kidney Int 2023; 104:1150-1163. [PMID: 37783445 PMCID: PMC10843022 DOI: 10.1016/j.kint.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA; Division of Nephrology, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Vamsidhara Vemireddy
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Kyle Q Vu
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Brenda Mendoza Flores
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Valerie Etzrodt
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ayumi Takakura
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kambiz Zandi-Nejad
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Zsuzsanna K Zsengellér
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern, Dallas, Texas, USA.
| |
Collapse
|
7
|
Sacco SA, McAtee Pereira AG, Trenary I, Smith KD, Betenbaugh MJ, Young JD. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺) in Chinese hamster ovary cells increases oxidative metabolism and IgG productivity. Metab Eng 2023; 79:108-117. [PMID: 37473833 DOI: 10.1016/j.ymben.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome proliferator-activated receptor γ co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-producing clones in stable cell pools.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Penfold L, Woods A, Pollard AE, Arizanova J, Pascual-Navarro E, Muckett PJ, Dore MH, Montoya A, Whilding C, Fets L, Mokochinski J, Constantin TA, Varela-Carver A, Leach DA, Bevan CL, Nikitin AY, Hall Z, Carling D. AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep 2023; 42:112396. [PMID: 37061917 PMCID: PMC10576838 DOI: 10.1016/j.celrep.2023.112396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.
Collapse
Affiliation(s)
- Lucy Penfold
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK.
| | - Angela Woods
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Alice E Pollard
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Julia Arizanova
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Eneko Pascual-Navarro
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Phillip J Muckett
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Marian H Dore
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Chad Whilding
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Louise Fets
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Theodora A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Anabel Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Damien A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY, USA
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, London, UK.
| |
Collapse
|
9
|
Cerutti C, Shi JR, Vanacker JM. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. Int J Mol Sci 2023; 24:ijms24054265. [PMID: 36901694 PMCID: PMC10002233 DOI: 10.3390/ijms24054265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Estrogen-related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several cell types and they display various functions in normal and pathological contexts. Amongst others, they are notably involved in bone homeostasis, energy metabolism and cancer progression. In contrast to other nuclear receptors, the activities of the ERRs are apparently not controlled by a natural ligand but they rely on other means such as the availability of transcriptional co-regulators. Here we focus on ERRα and review the variety of co-regulators that have been identified by various means for this receptor and their reported target genes. ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes. This exemplifies the combinatorial specificity of transcriptional regulation that induces discrete cellular phenotypes depending on the selected coregulator. We finally propose an integrated view of the ERRα transcriptional network.
Collapse
|
10
|
Rambout X, Cho H, Blanc R, Lyu Q, Miano JM, Chakkalakal JV, Nelson GM, Yalamanchili HK, Adelman K, Maquat LE. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol Cell 2023; 83:186-202.e11. [PMID: 36669479 PMCID: PMC9951270 DOI: 10.1016/j.molcel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Roméo Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qing Lyu
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph M Miano
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Ryan A, Shade O, Bardhan A, Bartnik A, Deiters A. Quantitative Analysis and Optimization of Site-Specific Protein Bioconjugation in Mammalian Cells. Bioconjug Chem 2022; 33:2361-2369. [PMID: 36459098 DOI: 10.1021/acs.bioconjchem.2c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aleksander Bartnik
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Liu C, Jiang Y, Liu G, Guo Z, Jin Q, Long D, Zhou W, Qian K, Zhao H, Liu K. PPARGC1A affects inflammatory responses in photodynamic therapy (PDT)-treated inflammatory bowel disease (IBD). Biochem Pharmacol 2022; 202:115119. [PMID: 35667414 DOI: 10.1016/j.bcp.2022.115119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic inflammation of the gastrointestinal tract is a feature of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Targeting inflammatory signaling represents promising strategy for IBD treatment regimens. METHODS Dextran sulfate sodium (DSS)-induced colitis model was established in mice. Histopathological examinations were conducted by H&E staining and IHC staining. IL-1β, IL-10, and TNF-α were tested by ELISA kits. TargetScan was used to predict miRNAs that target PPARGC1A and luciferase activity assay was performed to validate the predicted binding. RESULTS DSS-induced acute colitis model was successfully established in mice; photodynamic therapy (PDT) treatment partially improved DSS-induced colonic damages and cell inflammation. Microarray assays and integrative bioinformatics analysis identified PPARG coactivator 1 alpha (PPARGC1A) as a significantly differentially-expressed gene in PDT-treated IBD compared with non-treated IBD. PPARGC1A expression was downregulated in IBD clinical samples, DSS-induced colitis mice colons, and DSS-stimulated colonic epithelial cells, whereas partially upregulated by PDT treatment in DSS-stimulated cells. Single DSS stimulation significantly promoted cellular inflammation; PDT partially attenuated, whereas sh-PPARGC1A transduction further enhanced DSS effects on cancer cell inflammation. In colitis mice, DSS decreased PPRA-α and PPRA-γ proteins in mice colons; the in vivo effects of DSS were partially attenuated by PDT treatment, whereas amplified by sh-PPARGC1A transduction. Upstream miR-301a-3p targeted and inhibited PPARGC1A expression. CONCLUSIONS Collectively, PPARGC1A, which is downregulated in DSS-induced acute colitis and DSS-stimulated colonic epithelial cells, could be upregulated by PDT treatment. PPARGC1A knockdown could attenuate PDT therapeutic effects on DSS-induced acute colitis and DSS-stimulated colonic epithelial cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuhong Jiang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ganglei Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhushu Guo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qianqian Jin
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dongju Long
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Weihan Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kuijie Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
13
|
FACI Is a Novel CREB-H-Induced Protein That Inhibits Intestinal Lipid Absorption and Reverses Diet-Induced Obesity. Cell Mol Gastroenterol Hepatol 2022; 13:1365-1391. [PMID: 35093589 PMCID: PMC8938335 DOI: 10.1016/j.jcmgh.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.
Collapse
|
14
|
Moolhuijsen LME, Louwers YV, McLuskey A, Broer L, Uitterlinden AG, Verdiesen RMG, Sisk RK, Dunaif A, Laven JSE, Visser JA. OUP accepted manuscript. Hum Reprod 2022; 37:1544-1556. [PMID: 35451015 PMCID: PMC9247424 DOI: 10.1093/humrep/deac082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
STUDY QUESTION Do polymorphisms in the anti-Müllerian hormone (AMH) promoter have an effect on AMH levels in patients with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER We have identified a novel AMH promoter polymorphism rs10406324 that is associated with lower serum AMH levels and is suggested to play a role in the mechanism of regulation of AMH gene expression in women. WHAT IS KNOWN ALREADY Follicle number is positively correlated with serum AMH levels, reflected by elevated AMH levels in women with PCOS. In addition, it is suggested that AMH production per follicle is higher in women with PCOS than in normo-ovulatory women, implying an altered regulation of AMH in PCOS. STUDY DESIGN, SIZE, DURATION A discovery cohort of 655 PCOS women of Northern European ancestry and both an internal and external validation PCOS cohort (n = 458 and n = 321, respectively) were included in this study. Summary-level data of an AMH genome-wide association study meta-analysis including 7049 normo-ovulatory women was included as a control cohort. A genetic approach was taken through association analysis and in silico analysis of the associated variants in the AMH promoter. In vitro analysis was performed to investigate the functional mechanisms. PARTICIPANTS/MATERIALS, SETTING, METHODS All common two-allelic single-nucleotide polymorphisms (SNPs) in the region Chr19:2 245 353–2 250 827 bp (Build 37) were selected for the analysis. Linear regression analyses were performed to determine the association between SNPs in the AMH promoter region and serum AMH levels. For the in silico analysis, the webtools ‘HaploReg’ v4.1 for ENCODE prediction weight matrices and ‘atSNP’ were used. In vitro analysis was performed using KK1 cells, a mouse granulosa cell line and COV434 cells, a human granulosa tumor cell line. Cells were transfected with the reference or the variant human AMH promoter reporter construct together with several transcription factors (TFs). Dual-Glo® Luciferase Assay was performed to measure the luciferase activity. MAIN RESULTS AND THE ROLE OF CHANCE Polymorphism rs10406324 was significantly associated with serum AMH levels in all three PCOS cohorts. Carriers of the minor allele G had significantly lower log-transformed serum AMH levels compared to non-carriers (P = 8.58 × 10−8, P = 1.35 × 10−3 and P = 1.24 × 10−3, respectively). This result was validated in a subsequent meta-analysis (P = 3.24 × 10−12). Interestingly, rs10406324 was not associated with follicle count, nor with other clinical traits. Also, in normo-ovulatory women, the minor allele of this variant was associated with lower serum AMH levels (P = 1.04 × 10−5). These findings suggest that polymorphism rs10406324 plays a role in the regulation of AMH expression, irrespective of clinical background. In silico analysis suggested a decreased binding affinity of the TFs steroidogenenic factor 1, estrogen-related receptor alpha and glucocorticoid receptor to the minor allele G variant, however in vitro analysis did not show a difference in promoter activity between the A and G allele. LIMITATIONS, REASONS FOR CAUTION Functional analyses were performed in a mouse and a human granulosa cell line using an AMH promoter reporter construct. This may have limited assessment of the impact of the polymorphism on higher order chromatin structures. Human granulosa cells generated from induced pluripotent stem cells, combined with gene editing, may provide a method to elucidate the exact mechanism behind the decrease in serum AMH levels in carriers of the −210 G allele. We acknowledge that the lack of follicle number in the external validation and the control cohort is a limitation of the paper. Although we observed that the association between rs10406324 and AMH levels was independent of follicle number in our discovery and internal validation PCOS cohorts, we cannot fully rule out that the observed effects on serum AMH levels are, in part, caused by differences in follicle number. WIDER IMPLICATIONS OF THE FINDINGS These results suggest that variations in serum AMH levels are not only caused by differences in follicle number but also by genetic factors. Therefore, the genetic context should be taken into consideration when assessing serum AMH levels in women. This may have clinical consequences when serum AMH levels are used as a marker for the polycystic ovarian morphology phenotype. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used. J.S.E.L. has received consultancy fees from the following companies: Ferring, Roche Diagnostics and Ansh Labs and has received travel reimbursement from Ferring. J.A.V. has received royalties from AMH assays, paid to the institute/lab with no personal financial gain. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Renée M G Verdiesen
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ryan K Sisk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
15
|
Bizjak DA, Zügel M, Treff G, Winkert K, Jerg A, Hudemann J, Mooren FC, Krüger K, Nieß A, Steinacker JM. Effects of Training Status and Exercise Mode on Global Gene Expression in Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222212578. [PMID: 34830458 PMCID: PMC8674764 DOI: 10.3390/ijms222212578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate differences in skeletal muscle gene expression of highly trained endurance and strength athletes in comparison to untrained individuals at rest and in response to either an acute bout of endurance or strength exercise. Endurance (ET, n = 8, VO2max 67 ± 9 mL/kg/min) and strength athletes (ST, n = 8, 5.8 ± 3.0 training years) as well as untrained controls (E-UT and S-UT, each n = 8) performed an acute endurance or strength exercise test. One day before testing (Pre), 30 min (30'Post) and 3 h (180'Post) afterwards, a skeletal muscle biopsy was obtained from the m. vastus lateralis. Skeletal muscle mRNA was isolated and analyzed by Affymetrix-microarray technology. Pathway analyses were performed to evaluate the effects of training status (trained vs. untrained) and exercise mode-specific (ET vs. ST) transcriptional responses. Differences in global skeletal muscle gene expression between trained and untrained were smaller compared to differences in exercise mode. Maximum differences between ET and ST were found between Pre and 180'Post. Pathway analyses showed increased expression of exercise-related genes, such as nuclear transcription factors (NR4A family), metabolism and vascularization (PGC1-α and VEGF-A), and muscle growth/structure (myostatin, IRS1/2 and HIF1-α. The most upregulated genes in response to acute endurance or strength exercise were the NR4A genes (NR4A1, NR4A2, NR4A3). The mode of acute exercise had a significant effect on transcriptional regulation Pre vs. 180'Post. In contrast, the effect of training status on human skeletal muscle gene expression profiles was negligible compared to strength or endurance specialization. The highest variability in gene expression, especially for the NR4A-family, was observed in trained individuals at 180'Post. Assessment of these receptors might be suitable to obtain a deeper understanding of skeletal muscle adaptive processes to develop optimized training strategies.
Collapse
Affiliation(s)
- Daniel A. Bizjak
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
- Correspondence: ; Tel.: +49-73150045368; Fax: +49-73150045301
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Gunnar Treff
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Kay Winkert
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Achim Jerg
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Jens Hudemann
- Department of Sports Medicine, University Hospital Tübingen, 72074 Tübingen, Germany; (J.H.); (A.N.)
| | - Frank C. Mooren
- Department of Medicine, Faculty of Health, University of Witten/Herdecke, 58455 Witten, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany;
| | - Andreas Nieß
- Department of Sports Medicine, University Hospital Tübingen, 72074 Tübingen, Germany; (J.H.); (A.N.)
| | - Jürgen M. Steinacker
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| |
Collapse
|
16
|
Larson-Casey JL, Gu L, Davis D, Cai GQ, Ding Q, He C, Carter AB. Post-translational regulation of PGC-1α modulates fibrotic repair. FASEB J 2021; 35:e21675. [PMID: 34038004 PMCID: PMC8252570 DOI: 10.1096/fj.202100339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-ɣ (PPARɣ) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
17
|
Mori MP, Souza-Pinto NCD. PPRC1, but not PGC-1α, levels directly correlate with expression of mitochondrial proteins in human dermal fibroblasts. Genet Mol Biol 2020; 43:e20190083. [PMID: 32639509 PMCID: PMC7341727 DOI: 10.1590/1678-4685-gmb-2019-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/15/2020] [Indexed: 11/22/2022] Open
Abstract
The XPC protein, which is mutated in xeroderma pigmentosum (XP) complementation group C (XP-C), is a lesion recognition factor in NER, but it has also been shown to interact with and stimulate DNA glycosylases, to act as transcriptional co-activator and on energy metabolism adaptation. We have previously demonstrated that XP-C cells show increased mitochondrial H2O2 production with a shift between respiratory complexes I and II, leading to sensitivity to mitochondrial stress. Here we report a marked decrease in expression of the transcriptional co-activator PGC-1α, a master regulator of mitochondrial biogenesis, in XP-C cells. A transcriptional role for XPC in PGC-1α expression was discarded, as XPC knockdown did not downregulate PGC-1α expression and XPC-corrected cells still showed lower PGC-1α expression. DNA methylation alone did not explain PGC-1α silencing. In four different XP-C cell lines tested, reduction of PGC-1α expression was detected in three, all of them carrying the c.1643_1644delTG mutation (ΔTG) in XPC. Indeed, all cell lines carrying XPC ΔTG mutation, whether homozygous or heterozygous, presented decreased PGC-1α expression. However, this alteration in gene expression was not exclusive to XPC ΔTG cell lines, for other non-related cell lines also showed altered PGC-1α expression. Moreover, PGC1-α expression did not correlate with expression levels of TFAM and SDHA, known PGC-1α target-genes. In turn, PPRC1, another member of the PGC family of transcription co-activators controlling mitochondrial biogenesis, displayed a good correlation between its expression in 10 cell lines and TFAM and SDHA. Nonetheless, PGC-1α knockdown led to a slight decrease of its target-gene protein level, TFAM, and subsequently of a mtDNA-encoded gene, MT-CO2. These results indicate that PGC-1α and PPRC1 cooperate as regulators of mitochondrial biogenesis and maintenance in fibroblasts.
Collapse
Affiliation(s)
- Mateus Prates Mori
- Universidade de São Paulo, Departamento de Bioquímica, Instituto de Química, São Paulo, SP, Brazil
| | | |
Collapse
|
18
|
Shires SE, Quiles JM, Najor RH, Leon LJ, Cortez MQ, Lampert MA, Mark A, Gustafsson ÅB. Nuclear Parkin Activates the ERRα Transcriptional Program and Drives Widespread Changes in Gene Expression Following Hypoxia. Sci Rep 2020; 10:8499. [PMID: 32444656 PMCID: PMC7244578 DOI: 10.1038/s41598-020-65438-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase well-known for facilitating clearance of damaged mitochondria by ubiquitinating proteins on the outer mitochondrial membrane. However, knowledge of Parkin's functions beyond mitophagy is still limited. Here, we demonstrate that Parkin has functions in the nucleus and that Parkinson's disease-associated Parkin mutants, ParkinR42P and ParkinG430D, are selectively excluded from the nucleus. Further, Parkin translocates to the nucleus in response to hypoxia which correlates with increased ubiquitination of nuclear proteins. The serine-threonine kinase PINK1 is responsible for recruiting Parkin to mitochondria, but translocation of Parkin to the nucleus occurs independently of PINK1. Transcriptomic analyses of HeLa cells overexpressing wild type or a nuclear-targeted Parkin revealed that during hypoxia, Parkin contributes to both increased and decreased transcription of genes involved in regulating multiple metabolic pathways. Furthermore, a proteomics screen comparing ubiquitinated proteins in hearts from Parkin-/- and Parkin transgenic mice identified the transcription factor estrogen-related receptor α (ERRα) as a potential Parkin target. Co-immunoprecipitation confirmed that nuclear-targeted Parkin interacts with and ubiquitinates ERRα. Further analysis uncovered that nuclear Parkin increases the transcriptional activity of ERRα. Overall, our study supports diverse roles for Parkin and demonstrates that nuclear Parkin regulates transcription of genes involved in multiple metabolic pathways.
Collapse
Affiliation(s)
- Sarah E Shires
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Justin M Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Rita H Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Melissa Q Cortez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Adam Mark
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Shally A, McDonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy. Biogerontology 2020; 21:461-473. [PMID: 32323076 DOI: 10.1007/s10522-020-09879-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Medical advancements have extended human life expectancy, which is not always accompanied by an improved quality of life or healthspan. A decline in muscle mass and function is a consequence of ageing and can result in a loss of independence in elderly individuals while increasing their risk of falls. Multiple cellular pathways have been implicated in age-related muscle atrophy, including the contribution of reactive oxygen species (ROS) and disrupted redox signalling. Aberrant levels of ROS disrupts the redox environment in older muscle, potentially disrupting cellular signalling and in some cases blunting the adaptive response to exercise. Age-related muscle atrophy is associated with disrupted mitochondrial content and function, one of the hallmarks of age-related diseases. There is a critical link between abnormal ROS generation and dysfunctional mitochondrial dynamics including mitochondrial biogenesis, fusion and fission. In order to develop effective treatments or preventative strategies, it is important to gain a comprehensive understanding of the mechanistic pathways implicated in age associated loss of muscle.
Collapse
Affiliation(s)
- Alice Shally
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
20
|
Sirt6 opposes glycochenodeoxycholate-induced apoptosis of biliary epithelial cells through the AMPK/PGC-1α pathway. Cell Biosci 2020; 10:43. [PMID: 32206298 PMCID: PMC7083051 DOI: 10.1186/s13578-020-00402-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Induction of biliary epithelial cell apoptosis by toxic bile acids is involved in the development of cholestatic disease, but the underlying molecular mechanism is not clear. The purpose of this study was to investigate the molecular mechanisms involved in Sirt6 protection against the apoptosis of human intrahepatic biliary epithelial cells (HiBEC) induced by the bile acid glycochenodeoxycholate (GCDC). Results Sirt6 was either overexpressed or knocked down in HiBEC, with or without GCDC pretreatment. The CCK-8 assay was used to assess cell viability and, Hoechst 33258 staining was used to determine apoptotic rate. Mitochondrial DNA (mtDNA) copy number, malondialdehyde (MDA) and reactive oxygen species (ROS) production were detected to evaluate the severity of the mitochondrial dysfunction and oxidative stress. The mRNA and protein levels of PGC-1α, Nrf1, and Nrf2 were analyzed using RT-qPCR and western blot assay. The results showed that Sirt6 opposed GCDC-induced apoptosis in HiBEC via up-regulating PGC-1α expression and stabilizing mtDNA. We used agonists and inhibitors of AMPK to demonstrate that Sirt6 increased PGC-1α expression through the AMPK pathway whereas GCDC had the opposite effect. Finally, western blot, luciferase assay, and co-immunoprecipitation were used to describe a direct interaction and acetylation modification of PGC-1α by Sirt6. Conclusion Our data illuminated that Sirt6 ameliorated GCDC-induced HiBEC apoptosis by upregulating PGC-1α expression through the AMPK pathway and its deacetylation effect.
Collapse
|
21
|
Soyal SM, Bonova P, Kwik M, Zara G, Auer S, Scharler C, Strunk D, Nofziger C, Paulmichl M, Patsch W. The Expression of CNS-Specific PPARGC1A Transcripts Is Regulated by Hypoxia and a Variable GT Repeat Polymorphism. Mol Neurobiol 2020; 57:752-764. [PMID: 31471878 PMCID: PMC7031416 DOI: 10.1007/s12035-019-01731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
PPARGC1A encodes a transcriptional co-activator also termed peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) which orchestrates multiple transcriptional programs. We have recently identified CNS-specific transcripts that are initiated far upstream of the reference gene (RG) promoter. The regulation of these isoforms may be relevant, as experimental and genetic studies implicated the PPARGC1A locus in neurodegenerative diseases. We therefore studied cis- and trans-regulatory elements activating the CNS promoter in comparison to the RG promoter in human neuronal cell lines. A naturally occurring variable guanidine thymidine (GT) repeat polymorphism within a microsatellite region in the proximal CNS promoter increases promoter activity in neuronal cell lines. Both the RG and the CNS promoters are activated by ESRRA, and the PGC-1α isoforms co-activate ESRRA on their own promoters suggesting an autoregulatory feedback loop. The proximal CNS, but not the RG, promoter is induced by FOXA2 and co-activated by PGC-1α resulting in robust activation. Furthermore, the CNS, but not the RG, promoter is targeted by the canonical hypoxia response involving HIF1A. Importantly, the transactivation by HIF1A is modulated by the size of the GT polymorphism. Increased expression of CNS-specific transcripts in response to hypoxia was observed in an established rat model, while RG transcripts encoding the full-length reference protein were not increased. These results suggest a role of the CNS region of the PPARGC1A locus in ischemia and warrant further studies in humans as the activity of the CNS promoter as well as its induction by hypoxia is subject to inter-individual variability due to the GT polymorphism.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Petra Bonova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Markus Kwik
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Greta Zara
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Simon Auer
- Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Markus Paulmichl
- PharmGenetix GmbH, Niederalm, 5081, Salzburg, Austria
- Department of Personalized Medicine, Humanomed, 9020, Klagenfurt, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
22
|
Xia H, Dufour CR, Giguère V. ERRα as a Bridge Between Transcription and Function: Role in Liver Metabolism and Disease. Front Endocrinol (Lausanne) 2019; 10:206. [PMID: 31024446 PMCID: PMC6459935 DOI: 10.3389/fendo.2019.00206] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
As transcriptional factors, nuclear receptors (NRs) function as major regulators of gene expression. In particular, dysregulation of NR activity has been shown to significantly alter metabolic homeostasis in various contexts leading to metabolic disorders and cancers. The orphan estrogen-related receptor (ERR) subfamily of NRs, comprised of ERRα, ERRβ, and ERRγ, for which a natural ligand has yet to be identified, are known as central regulators of energy metabolism. If AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can be viewed as sensors of the metabolic needs of a cell and responding acutely via post-translational control of proteins, then the ERRs can be regarded as downstream effectors of metabolism via transcriptional regulation of genes for a long-term and sustained adaptive response. In this review, we will focus on recent findings centered on the transcriptional roles played by ERRα in hepatocytes. Modulation of ERRα activity in both in vitro and in vivo models via genetic or pharmacological manipulation coupled with chromatin-immunoprecipitation (ChIP)-on-chip and ChIP-sequencing (ChIP-seq) studies have been fundamental in delineating the direct roles of ERRα in the control of hepatic gene expression. These studies have identified crucial roles for ERRα in lipid and carbohydrate metabolism as well as in mitochondrial function under both physiological and pathological conditions. The regulation of ERRα expression and activity via ligand-independent modes of action including coregulator binding, post-translational modifications (PTMs) and control of protein stability will be discussed in the context that may serve as valuable tools to modulate ERRα function as new therapeutic avenues for the treatment of hepatic metabolic dysfunction and related diseases.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Medicine and Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Liu L, He Z, Xu L, Lu L, Feng H, Leong DJ, Kim SJ, Hirsh DM, Majeska RJ, Goldring MB, Cobelli NJ, Sun HB. CITED2 mediates the mechanical loading-induced suppression of adipokines in the infrapatellar fat pad. Ann N Y Acad Sci 2019; 1442:153-164. [PMID: 30891782 DOI: 10.1111/nyas.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Adipokines secreted from the infrapatellar fat pad (IPFP), such as adipsin and adiponectin, have been implicated in osteoarthritis pathogenesis. CITED2, a mechanosensitive transcriptional regulator with chondroprotective activity, may modulate their expression. Cited2 haploinsufficient mice (Cited2+/- ) on a high-fat diet (HFD) exhibited increased body weight and increased IPFP area compared to wild-type (WT) mice on an HFD. While an exercise regimen of moderate treadmill running induced the expression of CITED2, as well as PGC-1α, and reduced the expression of adipsin and adiponectin in the IPFP of WT mice on an HFD, Cited2 haploinsufficiency abolished the loading-induced expression of PGC-1α and loading-induced suppression of adipsin and adiponectin. Furthermore, knocking down or knocking out CITED2 in adipose stem cells (ASCs)/preadipocytes derived from the IPFP in vitro led to the increased expression of adipsin and adiponectin and reduced PGC-1α, and abolished the loading-induced suppression of adipsin and adiponectin and loading-induced expression of PGC-1α. Overexpression of PGC-1α in these ASC/preadipocytes reversed the effects caused by CITED2 deficiency. The current data suggest that CITED2 is a critical regulator in physiologic loading-induced chondroprotection in the context of an HFD and PGC-1α is required for the inhibitory effects of CITED2 on the expression of adipokines such as adipsin and adiponectin in the IPFP.
Collapse
Affiliation(s)
- Lidi Liu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Spine Surgery, Jilin Provincial Key Laboratory of Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin, China
| | - Zhiyong He
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Lin Xu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Laijin Lu
- Department of Hand Surgery, Jilin Provincial Key Laboratory of Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin, China
| | - Haotian Feng
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sun J Kim
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David M Hirsh
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York City, New York
| | - Mary B Goldring
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, and Weill Cornell Medical College, New York City, New York
| | - Neil J Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
24
|
CFTR Deletion Confers Mitochondrial Dysfunction and Disrupts Lipid Homeostasis in Intestinal Epithelial Cells. Nutrients 2018; 10:nu10070836. [PMID: 29954133 PMCID: PMC6073936 DOI: 10.3390/nu10070836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Cystic Fibrosis (CF) is a genetic disease in which the intestine exhibits oxidative and inflammatory markers. As mitochondria are the central source and the main target of reactive oxygen species, we hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) defect leads to the disruption of cellular lipid homeostasis, which contributes to mitochondrial dysfunction. Methods. Mitochondrial functions and lipid metabolism were investigated in Caco-2/15 cells with CFTR knockout (CFTR-/-) engineered by the zinc finger nuclease technique. Experiments were performed under basal conditions and after the addition of the pro-oxidant iron-ascorbate (Fe/Asc) complex. Results. Mitochondria of intestinal cells with CFTR-/-, spontaneously showed an altered redox homeostasis characterised by a significant decrease in the expression of PPARα and nuclear factor like 2. Consistent with these observations, 8-oxoguanine-DNA glycosylase, responsible for repair of ROS-induced DNA lesion, was weakly expressed in CFTR-/- cells. Moreover, disturbed fatty acid β-oxidation process was evidenced by the reduced expression of CPT1 and acyl-CoA dehydrogenase long-chain in CFTR-/- cells. The decline of mitochondrial cytochrome c and B-cell lymphoma 2 expression pointing to magnified apoptosis. Mitochondrial respiration was also affected as demonstrated by the low expression of respiratory oxidative phosphorylation (OXPHOS) complexes and a high adenosine diphosphate/adenosine triphosphate ratio. In contrast, the FAS and ACC enzymes were markedly increased, thereby indicating lipogenesis stimulation. This was associated with an augmented secretion of lipids, lipoproteins and apolipoproteins in CFTR-/- cells. The addition of Fe/Asc worsened while butylated hydroxy toluene partially improved these processes. Conclusions: CFTR silencing results in lipid homeostasis disruption and mitochondrial dysfunction in intestinal epithelial cells. Further investigation is needed to elucidate the mechanisms underlying the marked abnormalities in response to CFTR deletion.
Collapse
|
25
|
Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 2018; 11:eaam5855. [PMID: 29945885 DOI: 10.1126/scisignal.aam5855] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Thyroid hormone receptor β1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and β-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.
Collapse
Affiliation(s)
- Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Rohit A Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Jann A C Sy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sherwin Y Xie
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jia Pei Ho
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sujoy Ghosh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Donald P McDonnell
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
26
|
Hwang P, Willoughby DS. Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise. J Am Coll Nutr 2018; 37:738-748. [DOI: 10.1080/07315724.2018.1461146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Paul Hwang
- Department of Health, Human Performance, and Recreation, Exercise and Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Darryn S. Willoughby
- Department of Health, Human Performance, and Recreation, Exercise and Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| |
Collapse
|
27
|
Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R. Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective. Front Mol Neurosci 2018; 11:109. [PMID: 29686608 PMCID: PMC5900053 DOI: 10.3389/fnmol.2018.00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR) independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson's disease (PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aravinda K. Chavalmane
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Malini Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Veena Ammanathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D. J. Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Phalguni A. Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
28
|
Kim B, Jung JW, Jung J, Han Y, Suh DH, Kim HS, Dhanasekaran DN, Song YS. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget 2017; 8:60299-60311. [PMID: 28947972 PMCID: PMC5601140 DOI: 10.18632/oncotarget.19140] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/10/2017] [Indexed: 12/13/2022] Open
Abstract
Malignant cells are subjected to high levels of oxidative stress that arise from the increased production of reactive oxygen species (ROS) due to their altered metabolism. They activate antioxidant mechanisms to relieve the oxidative stress, and thereby acquire resistance to chemotherapeutic agents. In the present study, we found that PGC1α, a key molecule that both increases mitochondrial biogenesis and activates antioxidant enzymes, enhances chemoresistance in response to ROS generated by exposure of cells to ovarian sphere-forming culture conditions. Cells in the cultured spheres exhibited stem cell-like characteristics, and maintained higher ROS levels than their parent cells. Intriguingly, scavenging ROS diminished the aldehyde dehydrogenase (ALDH)-positive cell population, and inhibited proliferation of the spheres. ROS production triggered PGC1α expression, which in turn caused changes to mitochondrial biogenesis and activity within the spheres. The drug-resistant phenotype was observed in both spheres and PGC1α-overexpressing parent cells, and conversely, PGC1α knockdown sensitized the spheres to cisplatin treatment. Similarly, floating malignant cells derived from patient ascitic fluid included an ALDH-positive population and exhibited the tendency of a positive correlation between expressions of multidrug resistance protein 1 (MDR1) and PGC1α. The present study suggests that ROS-induced PGC1α mediates chemoresistance, and represents a novel therapeutic target to overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Boyun Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Nano System Institute, Seoul National University, Seoul 08826, Korea
| | - Je Won Jung
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaeyoung Jung
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73012, United States of America
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
29
|
Milon A, Opydo-Chanek M, Tworzydlo W, Galas J, Pardyak L, Kaminska A, Ptak A, Kotula-Balak M. Chlorinated biphenyls effect on estrogen-related receptor expression, steroid secretion, mitochondria ultrastructure but not on mitochondrial membrane potential in Leydig cells. Cell Tissue Res 2017; 369:429-444. [PMID: 28315012 PMCID: PMC5552843 DOI: 10.1007/s00441-017-2596-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
To characterize polychlorinated biphenyls (PCBs) action on Leydig cells, PCBs congeners, low-chlorinated (delor 103; d103) and high-chlorinated ones (delor 106; d106) were selected. The cells were treated according to PCBs dose (d103 or d106 0.2 ng/ml in low doses:, or 2 ng/ml in high doses) and type (d103 + d106 in low doses or 103 + 106 in high doses). After 24 h treatment with PCBs, a distinct increase in estrogen-related receptors (ERRs type α, β and γ) expression was revealed. However, the dose- and type-dependent PCBs effect was mostly exerted on ERRα expression. A similar increase in ERRs expression was demonstrated by estradiol but not testosterone, which was without an effect on ERRs. PCBs caused no decrease in the membrane potential status of Leydig cells (either in dose or type schedule) but had severe effects on the mitochondria number and structure. Moreover, PCBs markedly increased calcium (Ca2+) concentration and sex steroid secretion (both androgens and estrogens were elevated). These findings suggest a similar estrogenic action of PCBs congeners (d103 and d106) on Leydig cell function. We report dose- and type-specific effects of PCBs only on Leydig cell ERRs expression. Both delors showed common effects on the mitochondria ultrastructural and functional status. Based on our results, ERRα seems to be the most sensitive to hormonal modulation. The increases in Ca2+ and sex steroid secretion may be due to the activation of ERRs by PCBs binding and/or direct effect of PCBs on ERRs mRNA/protein expression. Nevertheless, to confirm the existence of possible relationships between ERRs signaling (including PCBs as ligands) and mitochondria function in Leydig cells, further intensive studies are needed.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
30
|
He X, Ma S, Tian Y, Wei C, Zhu Y, Li F, Zhang P, Wang P, Zhang Y, Zhong H. ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog 2017; 13:e1006347. [PMID: 28591144 PMCID: PMC5476288 DOI: 10.1371/journal.ppat.1006347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy.
Collapse
Affiliation(s)
- Xiang He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Shengli Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yinyin Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Congwen Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yongjie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Penghao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yanhong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hui Zhong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
31
|
Yu DD, Huss JM, Li H, Forman BM. Identification of novel inverse agonists of estrogen-related receptors ERRγ and ERRβ. Bioorg Med Chem 2017; 25:1585-1599. [PMID: 28189393 DOI: 10.1016/j.bmc.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 01/27/2023]
Abstract
Estrogen-related receptors (ERRs, α, β, and γ) are orphan nuclear receptors most closely related in sequence to estrogen receptors (ERα and ERβ). Much attention has been paid recently to the functions of ERRs for their potential roles as new therapeutic targets implicated in the etiology of metabolic disorders. While no endogenous ligand has been identified for any of the ERR isoforms to date, the potential for using synthetic small molecules to modulate their activity has been demonstrated. In the present study, a series of novel inverse agonists of ERRγ and ERRβ were synthesized using regio- and stereo-specific direct substitution of triarylethylenes. These compounds were evaluated for their ability to modulate the activities of ERRs. The rational directed substitution approach and extensive SAR studies resulted in the discovery of compound 4a (DY40) as the most potent ERRγ inverse agonist described to date with mixed ERRγ/ERRβ functional activities, which potently suppressed the transcriptional functions of ERRγ with IC50=0.01μM in a cell-based reporter gene assay and antagonized ERRγ with a potency approximately 60 times greater than its analog Z-4-OHT (Z-4-hydroxytamoxifen). In addition, compound 3h (DY181) was identified as the most potent synthetic inverse agonist for the ERRβ that exhibited excellent selectivity over ERRα/γ in functional assays. This selectivity was also supported by computational docking models that suggest DY181 forms more extensive hydrogen bound network with ERRβ which should result in higher binding affinity on ERRβ over ERRγ.
Collapse
Affiliation(s)
- Donna D Yu
- Department of Diabetes and Metabolic Diseases Research, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Janice M Huss
- Department of Diabetes and Metabolic Diseases Research, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Hongzhi Li
- Department of Diabetes and Metabolic Diseases Research, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Barry M Forman
- Department of Diabetes and Metabolic Diseases Research, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Corso-Díaz X, de Leeuw CN, Alonso V, Melchers D, Wong BKY, Houtman R, Simpson EM. Co-activator candidate interactions for orphan nuclear receptor NR2E1. BMC Genomics 2016; 17:832. [PMID: 27782803 PMCID: PMC5080790 DOI: 10.1186/s12864-016-3173-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background NR2E1 (Tlx) is an orphan nuclear receptor that regulates the maintenance and self-renewal of neural stem cells, and promotes tumourigenesis. Nr2e1-null mice exhibit reduced cortical and limbic structures and pronounced retinal dystrophy. NR2E1 functions mainly as a repressor of gene transcription in association with the co-repressors atrophin-1, LSD1, HDAC and BCL11A. Recent evidence suggests that NR2E1 also acts as an activator of gene transcription. However, co-activator complexes that interact with NR2E1 have not yet been identified. In order to find potential novel co-regulators for NR2E1, we used a microarray assay for real-time analysis of co-regulator–nuclear receptor interaction (MARCoNI) that contains peptides representing interaction motifs from potential co-regulatory proteins, including known co-activator nuclear receptor box sequences (LxxLL motif). Results We found that NR2E1 binds strongly to an atrophin-1 peptide (Atro box) used as positive control and to 19 other peptides that constitute candidate NR2E1 partners. Two of these proteins, p300 and androgen receptor (AR), were further validated by reciprocal pull-down assays. The specificity of NR2E1 binding to peptides in the array was evaluated using two single amino acid variants, R274G and R276Q, which disrupted the majority of the binding interactions observed with wild-type NR2E1. The decreased binding affinity of these variants to co-regulators was further validated by pull-down assays using atrophin1 as bait. Despite the high conservation of arginine 274 in vertebrates, its reduced interactions with co-regulators were not significant in vivo as determined by retinal phenotype analysis in single-copy Nr2e1-null mice carrying the variant R274G. Conclusions We showed that MARCoNI is a specific assay to test interactions of NR2E1 with candidate co-regulators. In this way, we unveiled 19 potential co-regulator partners for NR2E1, including eight co-activators. All the candidates here identified need to be further validated using in vitro and in vivo models. This assay was sensitive to point mutations in NR2E1 ligand binding domain making it useful to identify mutations and/or small molecules that alter binding of NR2E1 to protein partners. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3173-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vivian Alonso
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | | | - Bibiana K Y Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - René Houtman
- PamGene International B.V., Den Bosch, The Netherlands
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada. .,Department of Ophthalmology and Visual Science, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada.
| |
Collapse
|
33
|
Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, Yoriki K, Umemura S, Akashi K, Kitawaki J. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget 2016; 7:34131-48. [PMID: 27153547 PMCID: PMC5085142 DOI: 10.18632/oncotarget.9151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/16/2016] [Indexed: 12/26/2022] Open
Abstract
Estrogen-related receptor (ERR)α presents structural similarities with estrogen receptor (ER)α. However, it is an orphan receptor not binding to naturally occurring estrogens. This study was designed to investigate the role of ERRα in endometrial cancer progression. Immunohistochemistry analysis on 50 specimens from patients with endometrial cancer showed that ERRα was expressed in all examined tissues and the elevated expression levels of ERRα were associated with advanced clinical stages and serous histological type (p < 0.01 for each). ERRα knockdown with siRNA suppressed angiogenesis via VEGF and cell proliferation in vitro (p < 0.01). Cell cycle and apoptosis assays using flow cytometry and western blot revealed that ERRα knockdown induced cell cycle arrest during the mitotic phase followed by apoptosis initiated by caspase-3. Additionally, ERRα knockdown sensitized cells to paclitaxel. A significant reduction of tumor growth and angiogenesis was also observed in ERRα knockdown xenografts (p < 0.01). These findings indicate that ERRα may serve as a novel molecular target for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Takuro Yamamoto
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Makoto Akiyama
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Kaori Yoriki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Shiori Umemura
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Kyoko Akashi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
34
|
Li Q, Wang Y, Zhang L, Chen L, Du Y, Ye T, Shi X. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway. Fitoterapia 2016; 111:78-86. [PMID: 27105956 DOI: 10.1016/j.fitote.2016.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Naringenin (Nar), most abundant in oranges and tomatoes, are known for the hypocholesterolemic, anti-estrogenic, hypolipidemic, anti-hypertensive, and anti-inflammatory activities. Here, the present study was designed to investigate the in vitro and in vivo anti-angiogenesis of Nar. Inhibition of angiogenesis was determined in vitro by using proliferation, apoptosis, migration, and tube-formation assays in Nar-treated human endothelial cell. Finally, CAM assays were used to assess inhibitory effect of Nar on physiological angiogenesis in vivo. The data suggest that Nar should be a direct ERRα inhibitor capable of inhibiting angiogenesis in vitro and in vivo, including endothelial cell proliferation, survival, migration and capillary-like structures formation of HUVECs, as well as reduced neovascularization of the CAM. Furthermore, the effects exerted by Nar are cell cycle related and mediated by VEGF/KDR signaling pathway along with downregulation of certain proangiogenic inflammatory cytokines. Our data thus provide potential molecular mechanisms through which Nar manifests it as a promising anti-angiogenic and anti-cancer agent.
Collapse
Affiliation(s)
- Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China; Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| | - Yi Wang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Liudi Zhang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Lu Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Ting Ye
- General Surgery Unit, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, China.
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China; Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| |
Collapse
|
35
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Guh YJ, Yang CY, Liu ST, Huang CJ, Hwang PP. Oestrogen-related receptor α is required for transepithelial H+ secretion in zebrafish. Proc Biol Sci 2016; 283:20152582. [PMID: 26911965 PMCID: PMC4810828 DOI: 10.1098/rspb.2015.2582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 01/22/2023] Open
Abstract
Oestrogen-related receptor α (ERRα) is an orphan nuclear receptor which is important for adaptive metabolic responses under conditions of increased energy demand, such as cold, exercise and fasting. Importantly, metabolism under these conditions is usually accompanied by elevated production of organic acids, which may threaten the body acid-base status. Although ERRα is known to help regulate ion transport by the renal epithelia, its role in the transport of acid-base equivalents remains unknown. Here, we tested the hypothesis that ERRα is involved in acid-base regulation mechanisms by using zebrafish as the model to examine the effects of ERRα on transepithelial H(+) secretion. ERRα is abundantly expressed in H(+)-pump-rich cells (HR cells), a group of ionocytes responsible for H(+) secretion in the skin of developing embryos, and its expression is stimulated by acidic (pH 4) environments. Knockdown of ERRα impairs both basal and low pH-induced H(+) secretion in the yolk-sac skin, which is accompanied by decreased expression of H(+)-secreting-related transporters. The effect of ERRα on H(+) secretion is achieved through regulating both the total number of HR cells and the function of individual HR cells. These results demonstrate, for the first time, that ERRα is required for transepithelial H(+) secretion for systemic acid-base homeostasis.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Chao-Yew Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China
| | - Chang-Jen Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| |
Collapse
|
37
|
Xiao W, Goswami PC. Down-regulation of peroxisome proliferator activated receptor γ coactivator 1α induces oxidative stress and toxicity of 1-(4-Chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes. Toxicol In Vitro 2015; 29:1332-8. [PMID: 26004620 PMCID: PMC4553100 DOI: 10.1016/j.tiv.2015.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/21/2015] [Accepted: 05/15/2015] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that is known to regulate oxidative stress response by enhancing the expression of antioxidant genes. We have shown previously that 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone-metabolite of 4-monochlorobiphenyl (PCB3) induces oxidative stress and toxicity in human skin keratinocytes, and breast and prostate epithelial cells. In this study, we investigate whether PGC-1α regulates oxidative stress and toxicity in 4-ClBQ treated HaCaT human keratinocytes. Results showed significant down-regulation in the expression of PGC-1α and catalase in 4-ClBQ treated HaCaT cells. Down-regulation of PGC-1α expression was associated with 4-ClBQ induced increase in the steady-state levels of cellular reactive oxygen species (ROS) and toxicity. Overexpression of pgc-1α enhanced the expression of catalase and suppressed 4-ClBQ induced increase in cellular ROS levels and toxicity. These results suggest that pgc-1α mediates 4-ClBQ induced oxidative stress and toxicity in HaCaT cells presumably by regulating catalase expression.
Collapse
Affiliation(s)
- Wusheng Xiao
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
38
|
Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J 2015; 30:13-22. [PMID: 26370848 DOI: 10.1096/fj.15-276337] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Exercise training enhances physical performance and confers health benefits, largely through adaptations in skeletal muscle. Mitochondrial adaptation, encompassing coordinated improvements in quantity (content) and quality (structure and function), is increasingly recognized as a key factor in the beneficial outcomes of exercise training. Exercise training has long been known to promote mitochondrial biogenesis, but recent work has demonstrated that it has a profound impact on mitochondrial dynamics (fusion and fission) and clearance (mitophagy), as well. In this review, we discuss the various mechanisms through which exercise training promotes mitochondrial quantity and quality in skeletal muscle.
Collapse
Affiliation(s)
- Joshua C Drake
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rebecca J Wilson
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Zhen Yan
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, Department of Medicine, Department of Pharmacology, and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
39
|
Bhlhe40 Represses PGC-1α Activity on Metabolic Gene Promoters in Myogenic Cells. Mol Cell Biol 2015; 35:2518-29. [PMID: 25963661 DOI: 10.1128/mcb.00387-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
PGC-1α is a transcriptional coactivator promoting oxidative metabolism in many tissues. Its expression in skeletal muscle (SKM) is induced by hypoxia and reactive oxidative species (ROS) generated during exercise, suggesting that PGC-1α might mediate the cross talk between oxidative metabolism and cellular responses to hypoxia and ROS. Here we found that PGC-1α directly interacted with Bhlhe40, a basic helix-loop-helix (bHLH) transcriptional repressor induced by hypoxia, and protects SKM from ROS damage, and they cooccupied PGC-1α-targeted gene promoters/enhancers, which in turn repressed PGC-1α transactivational activity. Bhlhe40 repressed PGC-1α activity through recruiting histone deacetylases (HDACs) and preventing the relief of PGC-1α intramolecular repression caused by its own intrinsic suppressor domain. Knockdown of Bhlhe40 mRNA increased levels of ROS, fatty acid oxidation, mitochondrial DNA, and expression of PGC-1α target genes. Similar effects were also observed when the Bhlhe40-mediated repression was rescued by a dominantly active form of the PGC-1α-interacting domain (PID) from Bhlhe40. We further found that Bhlhe40-mediated repression can be largely relieved by exercise, in which its recruitment to PGC-1α-targeted cis elements was significantly reduced. These observations suggest that Bhlhe40 is a novel regulator of PGC-1α activity repressing oxidative metabolism gene expression and mitochondrion biogenesis in sedentary SKM.
Collapse
|
40
|
Hu JZ, Long H, Wu TD, Zhou Y, Lu HB. The effect of estrogen-related receptor α on the regulation of angiogenesis after spinal cord injury. Neuroscience 2015; 290:570-80. [PMID: 25665753 DOI: 10.1016/j.neuroscience.2015.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/08/2023]
Abstract
Estrogen receptor-related receptor-α (ERRα) is an orphan member of the nuclear receptor superfamily that interacts with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to stimulate vascular endothelial growth factor (VEGF) expression and angiogenesis in a hypoxia-inducible factor-1α-independent pathway. Although it is not regulated by any natural ligand, the action of ERRα can be blocked by the synthetic molecule XCT790. In the present study, Sprague-Dawley rats were randomly allocated to a sham group, injury-saline group or injury-XCT90 group. A modified Allen's weight-drop method was applied to induce the acute traumatic spinal cord injury (SCI) model in these rats, and an injection of XCT790 was administered every 24h, starting half an hour after the SCI contusion. Histological analyses revealed that XCT790 significantly aggravated tissue damage and decreased the number of ERRα-positive cells at 1, 3 and 7 days after SCI. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analyses also indicated that XCT790 dramatically repressed the expression of ERRα, thus reducing the expression of VEGF and angiopoietin-2 (Ang-2) throughout the duration of the experiment, but the expression of PGC-1α was not affected. Immunofluorescence analyses indicated that vascular density and endothelial cell proliferation were decreased in the injury-XCT90 group compared with the injury-saline group. These results suggest that ERRα is involved in mediating angiogenesis after SCI in the rat traumatic SCI model.
Collapse
Affiliation(s)
- J Z Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - H Long
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - T-D Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Y Zhou
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - H-B Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
41
|
Cunningham KF, Beeson GC, Beeson CC, Baicu CF, Zile MR, McDermott PJ. Estrogen-Related Receptor α (ERRα) is required for adaptive increases in PGC-1 isoform expression during electrically stimulated contraction of adult cardiomyocytes in sustained hypoxic conditions. Int J Cardiol 2015; 187:393-400. [PMID: 25841134 DOI: 10.1016/j.ijcard.2015.03.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/17/2015] [Accepted: 03/22/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES In adult myocardium, Estrogen-Related Receptor α (ERRα) programs energetic capacity of cardiomyocytes by regulating expression of target genes required for mitochondrial biogenesis, fatty acid metabolism and oxidative phosphorylation. Transcriptional activation by ERRα is dependent on the α or β isoform of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1). This study utilized a model of continuously contracting adult cardiomyocytes to determine the effects of sustained oxygen reduction (hypoxia) on ERRα target gene expression. METHODS AND RESULTS Adult feline cardiomyocytes in primary culture were electrically stimulated to contract at 1 Hz in either normoxia (21% O2) or hypoxia (0.5% O2). Compared to normoxia, hypoxia increased PGC-1α mRNA and PGC-1β mRNA levels by 16-fold and 14-fold after 24h. ERRα mRNA levels were increased 3-fold by hypoxia over the same time period. Treatment of cardiomyocytes with XCT-790, an ERRα inverse agonist, caused knockdown of ERRα protein expression. The increases in PGC-1 mRNA levels in response to hypoxia were blocked by XCT-790 treatment, which indicates that expression of PGC-1 isoforms is dependent on ERRα activity. The products of two ERRα target genes required for energy metabolism, Cox6c mRNA and Fabp3 mRNA, increased by 4.5-fold and 3.5 fold after 24h of hypoxia as compared to normoxic controls. These increases were blocked by XCT-790 treatment of hypoxic cardiomyocytes with a concomitant decrease in ERRα expression. CONCLUSIONS ERRα activity is required to increase expression of PGC-1 isoforms and downstream target genes as part of the adaptive response of contracting adult cardiomyocytes to sustained hypoxia.
Collapse
Affiliation(s)
- Kathryn F Cunningham
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gyda C Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Craig C Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Catalin F Baicu
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Zile
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
| | - Paul J McDermott
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
42
|
Besseiche A, Riveline JP, Gautier JF, Bréant B, Blondeau B. Metabolic roles of PGC-1α and its implications for type 2 diabetes. DIABETES & METABOLISM 2015; 41:347-57. [PMID: 25753246 DOI: 10.1016/j.diabet.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/25/2022]
Abstract
PGC-1α is a transcriptional coactivator expressed in brown adipose tissue, liver, pancreas, kidney, skeletal and cardiac muscles, and the brain. This review presents data illustrating how PGC-1α regulates metabolic adaptations and participates in the aetiology of type 2 diabetes (T2D). Studies in mice have shown that increased PGC-1α expression may be beneficial or deleterious, depending on the tissue: in adipose tissue, it promotes thermogenesis and thus protects against energy overload, such as seen in diabetes and obesity; in muscle, PGC-1α induces a change of phenotype towards oxidative metabolism. In contrast, its role is clearly deleterious in the liver and pancreas, where it induces hepatic glucose production and inhibits insulin secretion, changes that promote diabetes. Previous studies by our group have also demonstrated the role of PGC-1α in the fetal origins of T2D. Overexpression of PGC-1α in β cells during fetal life in mice is sufficient to induce β-cell dysfunction in adults, leading to glucose intolerance. PGC-1α also is associated with glucocorticoid receptors in repressing expression of Pdx1, a key β-cell transcription factor. In conclusion, PGC-1α participates in the onset of diabetes through regulation of major metabolic tissues. Yet, it may not represent a useful target for therapeutic strategies against diabetes as it exerts both beneficial and deleterious actions on glucose homoeostasis, and because PGC-1α modulation is involved in neurodegenerative diseases. However, its role in cellular adaptation shows that greater comprehension of PGC-1α actions is needed.
Collapse
Affiliation(s)
- A Besseiche
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - J-P Riveline
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - J-F Gautier
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - B Bréant
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - B Blondeau
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France.
| |
Collapse
|
43
|
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 2015; 282:647-72. [DOI: 10.1111/febs.13175] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Josep A. Villena
- Laboratory of Metabolism and Obesity; Vall d'Hebron-Institut de Recerca; Universitat Autònoma de Barcelona; Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas); Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
44
|
Perry MC, Dufour CR, Tam IS, B'chir W, Giguère V. Estrogen-related receptor-α coordinates transcriptional programs essential for exercise tolerance and muscle fitness. Mol Endocrinol 2014; 28:2060-71. [PMID: 25361393 PMCID: PMC5414781 DOI: 10.1210/me.2014-1281] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 01/22/2023] Open
Abstract
Muscle fitness is an important determinant of health and disease. However, the molecular mechanisms involved in the coordinate regulation of the metabolic and structural determinants of muscle endurance are still poorly characterized. Herein, we demonstrate that estrogen-related receptor α (ERRα, NR3B1) is essential for skeletal muscle fitness. Notably, we show that ERRα-null animals are hypoactive and that genetic or therapeutic disruption of ERRα in mice results in reduced exercise tolerance. Mice lacking ERRα also exhibited lactatemia at exhaustion. Gene expression profiling demonstrates that ERRα plays a key role in various metabolic processes important for muscle function including energy substrate transport and use (Ldhd, Slc16a1, Hk2, and Glul), the tricarboxylic acid cycle (Cycs, and Idh3g), and oxidative metabolism (Pdha1, and Uqcrq). Metabolomics studies revealed impairment in replenishment of several amino acids (eg, glutamine) during recovery to exercise. Moreover, loss of ERRα was found to alter the expression of genes involved in oxidative stress response (Hmox1), maintenance of muscle fiber integrity (Trim63, and Hspa1b), and muscle plasticity and neovascularization (Vegfa). Taken together, our study shows that ERRα plays a key role in directing transcriptional programs required for optimal mitochondrial oxidative potential and muscle fitness, suggesting that modulation of ERRα activity could be used to manage metabolic myopathies and/or promote the adaptive response to physical exercise.
Collapse
Affiliation(s)
- Marie-Claude Perry
- Goodman Cancer Research Centre (M.-C.P., C.R.D., I.S.T., W.B., V.G.), McGill University, Montréal, Québec, H3A 1A3, Canada; and Departments of Biochemistry (M.-C.P., V.G.), Medicine (I.S.T., V.G.), and Oncology (V.G.), McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
45
|
Liu Z, Liu Y, Gao R, Li H, Dunn T, Wu P, Smith RG, Sarkar PS, Fang X. Ethanol suppresses PGC-1α expression by interfering with the cAMP-CREB pathway in neuronal cells. PLoS One 2014; 9:e104247. [PMID: 25099937 PMCID: PMC4123904 DOI: 10.1371/journal.pone.0104247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/25/2014] [Indexed: 11/26/2022] Open
Abstract
Alcohol intoxication results in neuronal apoptosis, neurodegeneration and manifest with impaired balance, loss of muscle coordination and behavioral changes. One of the early events of alcohol intoxication is mitochondrial (Mt) dysfunction and disruption of intracellular redox homeostasis. The mechanisms by which alcohol causes Mt dysfunction, disrupts cellular redox homeostasis and triggers neurodegeneration remains to be further investigated. Proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) plays critical roles in regulating Mt biogenesis and respiration, cellular antioxidant defense mechanism, and maintenance of neuronal integrity and function. In this study, we sought to investigate whether alcohol causes Mt dysfunction and triggers neurodegeneration by suppressing PGC-1α expression. We report that ethanol suppresses PGC-1α expression, and impairs mitochondrial function and enhances cellular toxicity in cultured neuronal cell line and also in human fetal brain neural stem cell-derived primary neurons. Moreover, we report that cells over-expressing exogenous PGC-1α or treated with Rolipram, a selective phosphodiesterase-4 inhibitor, ameliorate alcohol-induced cellular toxicity. Further analysis show that ethanol decreases steady-state intracellular cAMP levels, and thus depletes phosphorylation of cAMP-response element binding protein (p-CREB), the key transcription factor that regulates transcription of PGC-1α gene. Accordingly, we found PGC-1α promoter activity and transcription was dramatically repressed in neuronal cells when exposed to ethanol, suggesting that ethanol blunts cAMP→CREB signaling pathway to interfere with the transcription of PGC-1α. Ethanol-mediated decrease in PGC-1α activity results in the disruption of Mt respiration and function and higher cellular toxicity. This study might lead to potential therapeutic intervention to ameliorate alcohol-induced apoptosis and/or neurodegeneration by targeting PGC-1α.
Collapse
Affiliation(s)
- Zilong Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yongping Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Haixia Li
- Department of Internal Medicine/Gastroenterology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany Dunn
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert G. Smith
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lichti CF, Fan X, English RD, Zhang Y, Li D, Kong F, Sinha M, Andersen CR, Spratt H, Luxon BA, Green TA. Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens. Front Behav Neurosci 2014; 8:246. [PMID: 25100957 PMCID: PMC4104784 DOI: 10.3389/fnbeh.2014.00246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/30/2014] [Indexed: 11/13/2022] Open
Abstract
Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntington's and Alzheimer's diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via ProteomeXchange with identifier PXD000990.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, The University of Texas Medical Branch Galveston, TX, USA
| | - Robert D English
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch Galveston, TX, USA
| | - Yafang Zhang
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, The University of Texas Medical Branch Galveston, TX, USA
| | - Dingge Li
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, The University of Texas Medical Branch Galveston, TX, USA
| | - Fanping Kong
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch Galveston, TX, USA
| | - Mala Sinha
- Sealy Center for Molecular Medicine, Institute for Translational Science, The University of Texas Medical Branch Galveston, TX, USA
| | - Clark R Andersen
- Sealy Center for Molecular Medicine, Institute for Translational Science, The University of Texas Medical Branch Galveston, TX, USA
| | - Heidi Spratt
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch Galveston, TX, USA ; Sealy Center for Molecular Medicine, Institute for Translational Science, The University of Texas Medical Branch Galveston, TX, USA ; Department of Preventative Medicine and Community Health, The University of Texas Medical Branch Galveston, TX, USA
| | - Bruce A Luxon
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch Galveston, TX, USA ; Sealy Center for Molecular Medicine, Institute for Translational Science, The University of Texas Medical Branch Galveston, TX, USA
| | - Thomas A Green
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, The University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
47
|
Buler M, Aatsinki SM, Izzi V, Uusimaa J, Hakkola J. SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J 2014; 28:3225-37. [PMID: 24687991 DOI: 10.1096/fj.13-245241] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The sirtuins (SIRTs; SIRT1-7) are a family of NAD(+)-dependent enzymes that dynamically regulate cellular physiology. Apart from SIRT1, the functions and regulatory mechanisms of the SIRTs are poorly defined. We explored regulation of the SIRT family by 2 energy metabolism-controlling factors: peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK). Overexpression of PGC-1α in mouse primary hepatocytes increased SIRT5 mRNA expression 4-fold and also the protein in a peroxisome proliferator-activated receptor α (PPARα)- and estrogen-related receptor α (ERRα)-dependent manner. Furthermore, food withdrawal increased SIRT5 mRNA 1.3-fold in rat liver. Overexpression of AMPK in mouse hepatocytes increased expression of SIRT1, SIRT2, SIRT3, and SIRT6 <2-fold. In contrast, SIRT5 mRNA was down-regulated by 58%. The antidiabetes drug metformin (1 mM), an established AMPK activator, reduced the mouse SIRT5 protein level by 44% in cultured hepatocytes and by 31% in liver in vivo (300 mg/kg, 7 d). Metformin also induced hypersuccinylation of mitochondrial proteins. Moreover, SIRT5 overexpression increased ATP synthesis and oxygen consumption in HepG2 cells, but did not affect mitochondrial biogenesis. In summary, our results identified SIRT5 as a novel factor that controls mitochondrial function. Moreover, SIRT5 levels are regulated by PGC-1α and AMPK, which have opposite effects on its expression.-Buler, M., Aatsinki, S.-M., Izzi, V., Uusimaa, J., Hakkola, J. SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Marcin Buler
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Medical Research Center Oulu and
| | - Sanna-Mari Aatsinki
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Medical Research Center Oulu and
| | - Valerio Izzi
- Center for Cell-Matrix Research and Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, and
| | - Johanna Uusimaa
- Medical Research Center Oulu and Institute of Clinical Medicine and Pediatrics, Clinical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Medical Research Center Oulu and
| |
Collapse
|
48
|
Ramayo-Caldas Y, Fortes MRS, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W, Kelly M, Moore SS, Goddard ME, Lehnert SA, Reverter A. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. J Anim Sci 2014; 92:2832-45. [PMID: 24778332 DOI: 10.2527/jas.2013-7484] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High intramuscular fat (IMF) awards price premiums to beef producers and is associated with meat quality and flavor. Studying gene interactions and pathways that affect IMF might unveil causative physiological mechanisms and inform genomic selection, leading to increased accuracy of predictions of breeding value. To study gene interactions and pathways, a gene network was derived from genetic markers associated with direct measures of IMF, other fat phenotypes, feedlot performance, and a number of meat quality traits relating to body conformation, development, and metabolism that might be plausibly expected to interact with IMF biology. Marker associations were inferred from genomewide association studies (GWAS) based on high density genotypes and 29 traits measured on 10,181 beef cattle animals from 3 breed types. For the network inference, SNP pairs were assessed according to the strength of the correlation between their additive association effects across the 29 traits. The co-association inferred network was formed by 2,434 genes connected by 28,283 edges. Topological network parameters suggested a highly cohesive network, in which the genes are strongly functionally interconnected. Pathway and network analyses pointed towards a trio of transcription factors (TF) as key regulators of carcass IMF: PPARGC1A, HNF4G, and FOXP3. Importantly, none of these genes would have been deemed as significantly associated with IMF from the GWAS. Instead, a total of 313 network genes show significant co-association with the 3 TF. These genes belong to a wide variety of biological functions, canonical pathways, and genetic networks linked to IMF-related phenotypes. In summary, our GWAS and network predictions are supported by the current literature and suggest a cooperative role for the 3 TF and other interacting genes including CAPN6, STC2, MAP2K4, EYA1, COPS5, XKR4, NR2E1, TOX, ATF1, ASPH, TGS1, and TTPA as modulators of carcass and meat quality traits in beef cattle.
Collapse
Affiliation(s)
- Y Ramayo-Caldas
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia Departament de Ciencia Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain INRA, UMR1313 Génétique Animale et Biologie Intégrative (GABI), Domaine de Vilvert, Bâtiment GABI-320, 78352 Jouy-en-Josas, France
| | - M R S Fortes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - N J Hudson
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - L R Porto-Neto
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - S Bolormaa
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia
| | - W Barendse
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - M Kelly
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - S S Moore
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - M E Goddard
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia School of Land and Environment, University of Melbourne, Parkville, VIC 3010, Australia
| | - S A Lehnert
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - A Reverter
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| |
Collapse
|
49
|
Curtil C, Enache LS, Radreau P, Dron AG, Scholtès C, Deloire A, Roche D, Lotteau V, André P, Ramière C. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription. FASEB J 2013; 28:1454-63. [PMID: 24297698 DOI: 10.1096/fj.13-236372] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.
Collapse
Affiliation(s)
- Claire Curtil
- 2Centre International de Recherche en Infectiologie, INSERM U1111, 21 Ave. Tony Garnier, 69365 Lyon Cedex 07, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hann SS, Chen J, Wang Z, Wu J, Zheng F, Zhao S. Targeting EP4 by curcumin through cross talks of AMP-dependent kinase alpha and p38 mitogen-activated protein kinase signaling: The role of PGC-1α and Sp1. Cell Signal 2013; 25:2566-74. [DOI: 10.1016/j.cellsig.2013.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022]
|