1
|
Ling Q. A "one size fits all" gene therapy for neurological disorders with mitochondrial dysfunction. Mol Ther 2024; 32:2045-2046. [PMID: 38936369 PMCID: PMC11286798 DOI: 10.1016/j.ymthe.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Qinglan Ling
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Derrien V, André E, Bernad S. Peroxidase activity of rice (Oryza sativa) hemoglobin: distinct role of tyrosines 112 and 151. J Biol Inorg Chem 2023; 28:613-626. [PMID: 37507628 DOI: 10.1007/s00775-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Five non-symbiotic hemoglobins (nsHb) have been identified in rice (Oryza sativa). Previous studies have shown that stress conditions can induce their overexpression, but the role of those globins is still unclear. To better understand the functions of nsHb, the reactivity of rice Hb1 toward hydrogen peroxide (H2O2) has been studied in vitro. Our results show that recombinant rice Hb1 dimerizes through dityrosine cross-links in the presence of H2O2. By site-directed mutagenesis, we suggest that tyrosine 112 located in the FG loop is involved in this dimerization. Interestingly, this residue is not conserved in the sequence of the five rice non-symbiotic hemoglobins. Stopped-flow spectrophotometric experiments have been performed to measure the catalytic constants of rice Hb and its variants using the oxidation of guaiacol. We have shown that Tyrosine112 is a residue that enhances the peroxidase activity of rice Hb1, since its replacement by an alananine leads to a decrease of guaiacol oxidation. In contrast, tyrosine 151, a conserved residue which is buried inside the heme pocket, reduces the protein reactivity. Indeed, the variant Tyr151Ala exhibits a higher peroxidase activity than the wild type. Interestingly, this residue affects the heme coordination and the replacement of the tyrosine by an alanine leads to the loss of the distal ligand. Therefore, even if the amino acid at position 151 does not participate to the formation of the dimer, this residue modulates the peroxidase activity and plays a role in the hexacoordinated state of the heme.
Collapse
Affiliation(s)
- Valérie Derrien
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France.
| | - Eric André
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| | - Sophie Bernad
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| |
Collapse
|
3
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
4
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022; 14:pharmaceutics14081737. [PMID: 36015363 PMCID: PMC9412405 DOI: 10.3390/pharmaceutics14081737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Stroke is a global health and socio-economic problem. However, no efficient preventive and/or palliative treatments have yet been found. Neuroglobin (Ngb) is an endogen neuroprotective protein, but it only exerts its beneficial action against stroke after increasing its basal levels. Therefore, its systemic administration appears to be an efficient therapy applicable to stroke and other neurodegenerative pathologies. Unfortunately, Ngb cannot cross the blood-brain barrier (BBB), making its direct pharmacological use unfeasible. Thus, the association of Ngb with a drug delivery system (DDS), such as nanoparticles (NPs), appears to be a good strategy for overcoming this handicap. NPs are a type of DDS which efficiently transport Ngb and increase its bioavailability in the infarcted area. Hence, we previously built hyaluronate NPS linked to Ngb (Ngb-NPs) as a therapeutic tool against stroke. This nanoformulation induced an improvement of the cerebral infarct prognosis. However, this innovative therapy is still in development, and a more in-depth study focusing on its long-lasting neuroprotectant and neuroregenerative capabilities is needed. In short, this review aims to update the state-of-the-art of stroke therapies based on Ngb, paying special attention to the use of nanotechnological drug-delivering tools.
Collapse
|
6
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Exertier C, Montemiglio LC, Freda I, Gugole E, Parisi G, Savino C, Vallone B. Neuroglobin, clues to function and mechanism. Mol Aspects Med 2021; 84:101055. [PMID: 34876274 DOI: 10.1016/j.mam.2021.101055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.
Collapse
Affiliation(s)
- Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy.
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
9
|
De Simone G, di Masi A, Fattibene P, Ciaccio C, Platas-Iglesias C, Coletta M, Pesce A, Ascenzi P. Oxygen-mediated oxidation of ferrous nitrosylated nitrobindins. J Inorg Biochem 2021; 224:111579. [PMID: 34479003 DOI: 10.1016/j.jinorgbio.2021.111579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/25/2023]
Abstract
The O2-mediated oxidation of all-β-barrel ferrous nitrosylated nitrobindin from Arabidopsis thaliana (At-Nb(II)-NO), Mycobacterium tuberculosis (Mt-Nb(II)-NO), and Homo sapiens (Hs-Nb(II)-NO) to ferric derivative (At-Nb(III), Mt-Nb(III), and Hs-Nb(III), respectively) has been investigated at pH 7.0 and 20.0 °C. Unlike ferrous nitrosylated horse myoglobin, human serum heme-albumin and human hemoglobin, the process in Nb(II)-NO is mono-exponential and linearly dependent on the O2 concentration, displaying a bimolecular behavior, characterized by kon = (6.3 ± 0.8) × 103 M-1 s-1, (1.4 ± 0.2) × 103 M-1 s-1, and (3.9 ± 0.5) × 103 M-1 s-1 for At-Nb(II)-NO, Mt-Nb(II)-NO, and Hs-Nb(II)-NO, respectively. No intermediate is detected, indicating that the O2 reaction with Nb(II)-NO is the rate-limiting step and that the subsequent conversion of the heme-Fe(III)-N(O)OO- species (i.e., N-bound peroxynitrite to heme-Fe(III)) to heme-Fe(III) and NO3- is much faster. A similar mechanism can be invoked for ferrous nitrosylated human neuroglobin and rabbit hemopexin, in which the heme-Fe(III)-N(O)OO- species is formed as well, although the rate-limiting step seems represented by the reshaping of the six-coordinated heme-Fe(III) complex. Although At-Nb(II)-NO and Mt-Nb(II)-NO are partially (while Hs-Nb(II)-NO is almost completely) penta-coordinated, density functional theory (DFT) calculations rule out that the cleavage of the proximal heme-Fe-His bond in Nb(II)-NO is responsible for the more stable heme-Fe(III)-N(O)OO- species. Moreover, the oxidation of the penta-coordinated heme-Fe(II)-NO adduct does not depend on O2 binding at the proximal side of the metal center. These features may instead reflect the peculiarity of Nb folding and of the heme environment, with a reduced steric constraint for the formation of the heme-Fe(III)-N(O)OO- complex.
Collapse
Affiliation(s)
- Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Roma, Italy
| | - Paola Fattibene
- Technical Scientific Service and Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133 Roma, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigatiòns Cientìficas Avanzadas (CIA), Departamento de Quìmica, Facultade de Ciencias, Universidad da Coruña, 15071 A Coruña, Galicia, Spain
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133 Roma, Italy
| | - Alessandra Pesce
- Department of Physics, University of Genova, Via Dodecaneso 33, 16100 Genova, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Roma, Italy; Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy.
| |
Collapse
|
10
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
11
|
Nys K, Cuypers B, Berghmans H, Hammerschmid D, Moens L, Dewilde S, Van Doorslaer S. Surprising differences in the respiratory protein of insects: A spectroscopic study of haemoglobin from the European honeybee and the malaria mosquito. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140413. [PMID: 32179182 DOI: 10.1016/j.bbapap.2020.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Only recently it was discovered that haemoglobin (Hb) belongs to the standard gene repertoire of insects, although their tracheal system is used for respiration. A classical oxygen-carrying function of Hb is only obvious for hexapods living in hypoxic environments. In other insect species, including the common fruit fly Drosophila melanogaster, the physiological role of Hb is yet unclear. Here, we study recombinant haemoglobin from the European honeybee Apis mellifera (Ame) and the malaria mosquito Anopheles gambiae (Aga). Spectroscopic evidence shows that both proteins can be classified as hexacoordinate Hbs with a strong affinity for the distal histidine. AgaHb1 is proposed to play a role in oxygen transport or sensing based on its multimeric state, slow autoxidation, and small but significant amount of five-coordinated haem in the deoxy ferrous form. AmeHb appears to behave more like vertebrate neuroglobin with a complex function given its diversified distribution in the genome.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium.
| | - Bert Cuypers
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Herald Berghmans
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Luc Moens
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | | |
Collapse
|
12
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
14
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
15
|
Strong modulation of nitrite reductase activity of cytoglobin by disulfide bond oxidation: Implications for nitric oxide homeostasis. Nitric Oxide 2018; 72:16-23. [DOI: 10.1016/j.niox.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022]
|
16
|
Abstract
While the biological role of nitric oxide (NO) synthase (NOS) is appreciated, several fundamental aspects of the NOS/NO-related signaling pathway(s) remain incompletely understood. Canonically, the NOS-derived NO diffuses through the (inter)cellular milieu to bind the prosthetic ferro(Fe2+)-heme group of the soluble guanylyl cyclase (sGC). The formation of ternary NO-ferroheme-sGC complex results in the enzyme activation and accelerated production of the second messenger, cyclic GMP. This paper argues that cells dynamically generate mobile/exchangeable NO-ferroheme species, which activate sGC and regulate the function of some other biomolecules. In contrast to free NO, the mobile NO-ferroheme may ensure safe, efficient and coordinated delivery of the signal within and between cells. The NO-heme signaling may contribute to a number of NOS/NO-related phenomena (e.g. nitrite bioactivity, selective protein S-(N-)nitrosation, endothelium and erythrocyte-dependent vasodilation, some neural and immune NOS functions) and predicts new NO-related discoveries, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Andrei L Kleschyov
- Laboratory of Biophysics, Freiberg Instruments GmbH, 09599 Freiberg, Germany.
| |
Collapse
|
17
|
Van Doorslaer S, Cuypers B. Electron paramagnetic resonance of globin proteins – a successful match between spectroscopic development and protein research. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1392629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Fiocchetti M, Cipolletti M, Brandi V, Polticelli F, Ascenzi P. Neuroglobin and friends. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze; Università Roma Tre; Rome Italy
- Istituto Nazionale di Fisica Nucleare; Sezione dell'Università Roma Tre; Rome Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica; Università Roma Tre; Rome Italy
| |
Collapse
|
19
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
20
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
21
|
Ruetz M, Kumutima J, Lewis BE, Filipovic MR, Lehnert N, Stemmler TL, Banerjee R. A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin. J Biol Chem 2017; 292:6512-6528. [PMID: 28246171 DOI: 10.1074/jbc.m116.770370] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide is a critical signaling molecule, but high concentrations cause cellular toxicity. A four-enzyme pathway in the mitochondrion detoxifies H2S by converting it to thiosulfate and sulfate. Recent studies have shown that globins like hemoglobin and myoglobin can also oxidize H2S to thiosulfate and hydropolysulfides. Neuroglobin, a globin enriched in the brain, was reported to bind H2S tightly and was postulated to play a role in modulating neuronal sensitivity to H2S in conditions such as stroke. However, the H2S reactivity of the coordinately saturated heme in neuroglobin is expected a priori to be substantially lower than that of the 5-coordinate hemes present in myoglobin and hemoglobin. To resolve this discrepancy, we explored the role of the distal histidine residue in muting the reactivity of human neuroglobin toward H2S. Ferric neuroglobin is slowly reduced by H2S and catalyzes its inefficient oxidative conversion to thiosulfate. Mutation of the distal His64 residue to alanine promotes rapid binding of H2S and its efficient conversion to oxidized products. X-ray absorption, EPR, and resonance Raman spectroscopy highlight the chemically different reaction options influenced by the distal histidine ligand. This study provides mechanistic insights into how the distal heme ligand in neuroglobin caps its reactivity toward H2S and identifies by cryo-mass spectrometry a range of sulfide oxidation products with 2-6 catenated sulfur atoms with or without oxygen insertion, which accumulate in the absence of the His64 ligand.
Collapse
Affiliation(s)
| | - Jacques Kumutima
- the Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Brianne E Lewis
- the Department of Pharmaceutical Science, Wayne State University, Detroit, Michigan 48201-2417
| | - Milos R Filipovic
- the University of Bordeaux, IBGC, UMR 5090, F33077 Bordeaux, France, and.,CNRS, Institute of Biochemistry and Cellular Genetics, UMR 5095, F33077 Bordeaux, France
| | - Nicolai Lehnert
- the Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Timothy L Stemmler
- the Department of Pharmaceutical Science, Wayne State University, Detroit, Michigan 48201-2417
| | | |
Collapse
|
22
|
Azarov I, Wang L, Rose JJ, Xu Q, Huang XN, Belanger A, Wang Y, Guo L, Liu C, Ucer KB, McTiernan CF, O'Donnell CP, Shiva S, Tejero J, Kim-Shapiro DB, Gladwin MT. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 2016; 8:368ra173. [PMID: 27928027 PMCID: PMC5206801 DOI: 10.1126/scitranslmed.aah6571] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 (partial pressure of O2 at which hemoglobin is half-saturated) value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxyhemoglobin to 0.11 and 0.41 min, respectively, from ≥200 min when the hemoglobin or red blood cells were exposed only to air. Infusion of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and was followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity, such as our mutant five-coordinate Ngb, are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO.
Collapse
Affiliation(s)
- Ivan Azarov
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jason J Rose
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xueyin N Huang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea Belanger
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ying Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Lanping Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Chen Liu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Kamil B Ucer
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Charles F McTiernan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Christopher P O'Donnell
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
23
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
24
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Neuroglobin, a Factor Playing for Nerve Cell Survival. Int J Mol Sci 2016; 17:ijms17111817. [PMID: 27809238 PMCID: PMC5133818 DOI: 10.3390/ijms17111817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Cell death represents the final outcome of several pathological conditions of the central nervous system and available evidence suggests that in both acute injuries and neurodegenerative diseases it is often associated with mitochondrial dysfunction. Thus, the possibility to prevent mitochondrial events involved in cell death might represent efficient tools to limit neuronal damage. In recent years, increased attention has been paid to the endogenous protein neuroglobin, since accumulating evidence showed that its high expression was associated with preserved mitochondrial function and to an increased survival of nerve cells in vitro and in vivo in a variety of experimental models of cell insult. The biological and structural features of neuroglobin and the mitochondria-related mechanisms of neuroglobin-induced neuroprotection will be here briefly discussed. In this respect, the inhibition of the intrinsic pathway of apoptosis emerges as a key neuroprotective effect induced by the protein. These findings could open the possibility to develop efficient neuroglobin-mediated therapeutic strategies aimed at minimizing the neuronal cell death occurring in impacting neurological pathologies like stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova 35122, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, Padova 35122, Italy.
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova 16126, Italy.
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova 16126, Italy.
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy.
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
25
|
Trashin S, de Jong M, Luyckx E, Dewilde S, De Wael K. Electrochemical Evidence for Neuroglobin Activity on NO at Physiological Concentrations. J Biol Chem 2016; 291:18959-66. [PMID: 27402851 DOI: 10.1074/jbc.m116.730176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.
Collapse
Affiliation(s)
| | | | - Evi Luyckx
- Biomedical Sciences, University of Antwerp, 2010 Antwerp, Belgium
| | - Sylvia Dewilde
- Biomedical Sciences, University of Antwerp, 2010 Antwerp, Belgium
| | | |
Collapse
|
26
|
Abstract
If life without heme-Fe were at all possible, it would definitely be different. Indeed this complex and versatile iron-porphyrin macrocycle upon binding to different “globins” yields hemeproteins crucial to sustain a variety of vital functions, generally classified, for convenience, in a limited number of functional families. Over-and-above the array of functions briefly outlined below, the spectacular progress in molecular genetics seen over the last 30 years led to the discovery of many hitherto unknown novel hemeproteins in prokaryotes and eukaryotes. Here, we highlight a few basic aspects of the chemistry of the hemeprotein universe, in particular those that are relevant to the control of heme-Fe reactivity and specialization, as sculpted by a variety of interactions with the protein moiety.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche “Alessandro Rossi Fanelli” and Istituto Pasteur — Fondazione Cenci, Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
27
|
Carballal S, Cuevasanta E, Yadav PK, Gherasim C, Ballou DP, Alvarez B, Banerjee R. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase. J Biol Chem 2016; 291:8004-13. [PMID: 26867575 DOI: 10.1074/jbc.m116.718734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO(•)), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2to Fe(III)-CBS, forming superoxide radical anion (O2 (̇̄)). In this study, we describe the kinetics of nitrite (NO2 (-)) reduction by Fe(II)-CBS to form Fe(II)NO(•)-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO(•)-CBS by O2showed complex kinetic behavior and led to peroxynitrite (ONOO(-)) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO(•)and peroxynitrite.
Collapse
Affiliation(s)
- Sebastián Carballal
- From the Departamento de Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, and
| | - Ernesto Cuevasanta
- Center for Free Radical and Biomedical Research, and Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo 11800, Uruguay and
| | - Pramod K Yadav
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Carmen Gherasim
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - David P Ballou
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Beatriz Alvarez
- Center for Free Radical and Biomedical Research, and Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo 11800, Uruguay and
| | - Ruma Banerjee
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
28
|
Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease. J Biol Inorg Chem 2015; 20:563-74. [DOI: 10.1007/s00775-015-1241-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023]
|
29
|
Tejero J, Sparacino-Watkins CE, Ragireddy V, Frizzell S, Gladwin MT. Exploring the mechanisms of the reductase activity of neuroglobin by site-directed mutagenesis of the heme distal pocket. Biochemistry 2015; 54:722-33. [PMID: 25554946 PMCID: PMC4410703 DOI: 10.1021/bi501196k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Neuroglobin
(Ngb) is a six-coordinate globin that can catalyze
the reduction of nitrite to nitric oxide. Although this reaction is
common to heme proteins, the molecular interactions in the heme pocket
that regulate this reaction are largely unknown. We have shown that
the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold
compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277–18289]. Here we explore
the effect of distal heme pocket mutations on nitrite reduction. For
this purpose, we have generated mutations of Ngb residues Phe28(B10),
His64(E7), and Val68(E11). Our results indicate a dichotomy in the
reactivity of deoxy five- and six-coordinate globins toward nitrite.
In hemoglobin and myoglobin, there is a correlation between faster
rates and more negative potentials. However, in Ngb, reaction rates
are apparently related to the distal pocket volume, and redox potential
shows a poor relationship with the rate constants. This suggests a
relationship between the nitrite reduction rate and heme accessibility
in Ngb, particularly marked for His64(E7) mutants. In five-coordinate
globins, His(E7) facilitates nitrite reduction, likely through proton
donation. Conversely, in Ngb, the reduction mechanism does not rely
on the delivery of a proton from the histidine side chain, as His64
mutants show the fastest reduction rates. In fact, the rate observed
for H64A Ngb (1120 M–1 s–1) is
to the best of our knowledge the fastest reported for a heme nitrite
reductase. These differences may be related to a differential stabilization
of the iron–nitrite complexes in five- and six-coordinate globins.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
30
|
Ascenzi P, di Masi A, Tundo GR, Pesce A, Visca P, Coletta M. Nitrosylation mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni truncated hemoglobins N, O, and P. PLoS One 2014; 9:e102811. [PMID: 25051055 PMCID: PMC4106858 DOI: 10.1371/journal.pone.0102811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- * E-mail:
| | - Alessandra di Masi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Grazia R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Paolo Visca
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
31
|
Morozov AN, Roach JP, Kotzer M, Chatfield DC. A possible mechanism for redox control of human neuroglobin activity. J Chem Inf Model 2014; 54:1997-2003. [PMID: 24855999 PMCID: PMC4114473 DOI: 10.1021/ci5002108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin (Ngb) promotes neuron survival under hypoxic/ischemic conditions. In vivo and in vitro assays provide evidence for redox-regulated functioning of Ngb. On the basis of X-ray crystal structures and our MD simulations, a mechanism for redox control of human Ngb (hNgb) activity via the influence of the CD loop on the active site is proposed. We provide evidence that the CD loop undergoes a strand-to-helix transition when the external environment becomes sufficiently oxidizing, and that this CD loop conformational transition causes critical restructuring of the active site. We postulate that the strand-to-helix mechanics of the CD loop allows hNgb to utilize the lability of Cys46/Cys55 disulfide bonding and of the Tyr44/His64/heme propionate interaction network for redox-controlled functioning of hNgb.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
32
|
Van Doorslaer S, Trandafir F, Harmer JR, Moens L, Dewilde S. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin. Biophys Chem 2014; 190-191:8-16. [DOI: 10.1016/j.bpc.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 02/05/2023]
|
33
|
Tong J, Zweier JR, Huskey RL, Ismail RS, Hemann C, Zweier JL, Liu X. Effect of temperature, pH and heme ligands on the reduction of Cygb(Fe(3+)) by ascorbate. Arch Biochem Biophys 2014; 554:1-5. [PMID: 24780244 DOI: 10.1016/j.abb.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
Cytoglobin (Cygb) plays a role in regulating vasodilation in response to changes in local oxygen concentration by altering the rate of nitric oxide (NO) metabolism. Because the reduction of Cygb(Fe(3+)) by a reductant is the control step for Cygb-mediated NO metabolism, we examined the effects of temperature, pH, and heme ligands on the Cygb(Fe(3+)) reduction by ascorbate (Asc) under anaerobic conditions. The standard enthalpy of Cygb(Fe(3+)) reduction by Asc was determined to be 42.4 ± 3.1 kJ/mol. The rate of Cygb(Fe(3+)) reduction increased ~6% per °C when temperature varied from 35°C to 40°C. The yield and the rate of Cygb(Fe(3+)) reduction significantly increases with pH (2-3 times per pH unit), paralleling the formation of the Asc ion (A(2-)) and the increased stability of reduced state of heme iron at high pH values. Heme ligand cyanide (CN(-)) decreased the yield and the rate of Cygb(Fe(3+)) reduction, but ligands CO and NO allowed the process of Cygb(Fe(3+)) reduction to continue to completion. Critical information is provided for modeling and prediction of the process of Cygb-mediated NO metabolism in vessels in a range of temperature and pH values.
Collapse
Affiliation(s)
- Jianjing Tong
- Emergency Department, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China; Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph R Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachael L Huskey
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Raed S Ismail
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Craig Hemann
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
35
|
Rahaman MM, Straub AC. The emerging roles of somatic globins in cardiovascular redox biology and beyond. Redox Biol 2013; 1:405-10. [PMID: 24191233 PMCID: PMC3814953 DOI: 10.1016/j.redox.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The vertebrate globins are a group of hemoproteins with the intrinsic capacity to regulate gaseous ligands and redox signaling required for cardiovascular biology. This graphical review will provide a comprehensive synopsis of somatic cardiovascular globins focusing on expression, function and redox signaling - an emerging area in both physiology and disease.
Collapse
Affiliation(s)
- Mizanur M. Rahaman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C. Straub
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Correspondence to: University of Pittsburgh School of Medicine, Vascular Medicine Institute, E1254 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15216, USA. Tel.: +1 412 648 7097; fax: +1 412 648 5980.
| |
Collapse
|
36
|
Singh S, Zhuo M, Gorgun FM, Englander EW. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons. Nitric Oxide 2013; 32:21-8. [PMID: 23587847 PMCID: PMC3816961 DOI: 10.1016/j.niox.2013.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Surges of nitric oxide compromise mitochondrial respiration primarily by competitive inhibition of oxygen binding to cytochrome c oxidase (complex IV) and are particularly injurious in neurons, which rely on oxidative phosphorylation for all their energy needs. Here, we show that transgenic overexpression of the neuronal globin protein, neuroglobin, helps diminish protein nitration, preserve mitochondrial function and sustain ATP content of primary cortical neurons challenged by extended nitric oxide exposure. Specifically, in transgenic neurons, elevated neuroglobin curtailed nitric oxide-induced alterations in mitochondrial oxygen consumption rates, including baseline oxygen consumption, consumption coupled with ATP synthesis, proton leak and spare respiratory capacity. Concomitantly, activation of genes involved in sensing and responding to oxidative/nitrosative stress, including the early-immediate c-Fos gene and the phase II antioxidant enzyme, heme oxygenase-1, was diminished in neuroglobin-overexpressing compared to wild-type neurons. Taken together, these differences reflect a lesser insult produced by similar concentrations of nitric oxide in neuroglobin-overexpressing compared to wild-type neurons, suggesting that abundant neuroglobin buffers nitric oxide and raises the threshold of nitric oxide-mediated injury in neurons.
Collapse
Affiliation(s)
- Shilpee Singh
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Globins, such as hemoglobin, serve as oxygen sensors. Neuroglobin is the globin in brain. It is induced by ischemia and is protective in modeled stroke. Here, Haines et al. describe an additional property of neuroglobin, its expression in progenitor cell populations in brain during development. A physiologic role is offered but other data show progenitor cells response to injury and their neurotropic properties in ischemic brain.
Collapse
|
38
|
Mitochondrial mechanisms of neuroglobin's neuroprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:756989. [PMID: 23634236 PMCID: PMC3619637 DOI: 10.1155/2013/756989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/24/2012] [Accepted: 02/21/2013] [Indexed: 01/18/2023]
Abstract
Neuroglobin (Ngb) is an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke and related neurological disorders. However, the underlying mechanisms of Ngb's neuroprotection remain largely undefined. Mitochondria play critical roles in multiple physiological pathways including cell respiration, energy production, free radical generation, and cellular homeostasis and apoptosis. Mitochondrial dysfunction is widely involved in the pathogenesis of stroke and neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Accumulating evidence showed that elevated Ngb level is associated with preserved mitochondrial function, suggesting that Ngb may play neuroprotective roles through mitochondria-mediated pathways. In this paper we briefly discuss the mitochondria-related mechanisms in Ngb's neuroprotection, especially those involved in ATP production, ROS generation and scavenging, and mitochondria-mediated cell death signaling pathways.
Collapse
|
39
|
Ascenzi P, Pesce A, Nardini M, Bolognesi M, Ciaccio C, Coletta M, Dewilde S. Reductive nitrosylation of Methanosarcina acetivorans protoglobin: A comparative study. Biochem Biophys Res Commun 2013; 430:1301-5. [DOI: 10.1016/j.bbrc.2012.11.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 11/16/2022]
|
40
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Conformational dynamics in human neuroglobin: effect of His64, Val68, and Cys120 on ligand migration. Biochemistry 2012; 51:9984-94. [PMID: 23176629 DOI: 10.1021/bi301016u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroglobin belongs to the family of hexacoordinate hemoglobins and has been implicated in the protection of neuronal tissue under hypoxic and ischemic conditions. Here we present transient absorption and photoacoustic calorimetry studies of CO photodissociation and bimolecular rebinding to neuroglobin focusing on the ligand migration process and the role of distal pocket residues (His64 and Val68) and two Cys residues (Cys55 and Cys120). Our results indicate that His64 has a minor impact on the migration of CO between the distal heme pocket and protein exterior, whereas the Val68 side chain regulates the transition of the photodissociated ligand between the distal pocket and internal hydrophobic cavities, which is evident from the increased geminate quantum yield in this mutated protein (Φ(gem) = 0.32 for WT and His64Gln, and Φ(gem) = 0.85 for Val68Phe). The interface between helix G and the A-B loop provides an escape pathway for the photodissociated ligand, which is evident from a decrease in the reaction enthalpy for the transition between the CO-bound hNgb and five-coordinate hNgb in the Cys120Ser mutant (ΔH = -3 ± 4 kcal mol(-1)) compared to that of the WT protein (ΔH = 20 ± 4 kcal mol(-1)). The extensive electrostatic/hydrogen binding network that includes heme propionate groups, Lys67, His64, and Tyr44 not only restricts the heme binding but also modulates the energetics of binding of CO to the five-coordinate hNgb as substitution of His64 with Gln leads to an endothermic association of CO with the five-coordinate hNgb (ΔH = 6 ± 3 kcal mol(-1)).
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
41
|
Brittain T. The anti-apoptotic role of neuroglobin. Cells 2012; 1:1133-55. [PMID: 24710547 PMCID: PMC3901133 DOI: 10.3390/cells1041133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
The small heme-protein neuroglobin is expressed at high concentrations in certain brain neurons and in the rod cells of the retina. This paper reviews the many studies which have recently identified a protective role for neuroglobin, in a wide range of situations involving apoptotic cell death. The origins of this protective mechanism are discussed in terms of both experimental results and computational modeling of the intrinsic pathway of apoptosis, which shows that neuroglobin can intervene in this process by a reaction with released mitochondrial cytochrome c. An integrated model, based on the various molecular actions of both neuroglobin and cytochrome c, is developed, which accounts for the cellular distribution of neuroglobin.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, Centre for Brain Research, University of Auckland, 3a Symonds Street, Auckland,1142, New Zealand.
| |
Collapse
|
42
|
Liu X, Follmer D, Zweier JR, Huang X, Hemann C, Liu K, Druhan LJ, Zweier JL. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochemistry 2012; 51:5072-82. [PMID: 22577939 DOI: 10.1021/bi300291h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an O(2)-dependent manner. This regulates NO levels in the vascular wall; however, the underlying molecular basis of this O(2)-dependent NO consumption remains unclear. While cytoglobin (Cygb) was discovered a decade ago, its physiological function remains uncertain. Cygb is expressed in the vascular wall and can consume NO in an O(2)-dependent manner. Therefore, we characterize the process of the O(2)-dependent consumption of NO by Cygb in the presence of the cellular reductants and reducing systems ascorbate (Asc) and cytochrome P(450) reductase (CPR), measure rate constants of Cygb reduction by Asc and CPR, and propose a reaction mechanism and derive a related kinetic model for this O(2)-dependent NO consumption involving Cygb(Fe(3+)) as the main intermediate reduced back to ferrous Cygb by cellular reductants. This kinetic model expresses the relationship between the rate of O(2)-dependent consumption of NO by Cygb and rate constants of the molecular reactions involved. The predicted rate of O(2)-dependent consumption of NO by Cygb is consistent with experimental results supporting the validity of the kinetic model. Simulations based on this kinetic model suggest that the high efficiency of Cygb in regulating the NO consumption rate is due to the rapid reduction of Cygb by cellular reductants, which greatly increases the rate of consumption of NO at higher O(2) concentrations, and binding of NO to Cygb, which reduces the rate of consumption of NO at lower O(2) concentrations. Thus, the coexistence of Cygb with efficient reductants in tissues allows Cygb to function as an O(2)-dependent regulator of NO decay.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 473 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu Z, Liu N, Liu J, Yang K, Wang X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int J Mol Sci 2012; 13:6995-7014. [PMID: 22837676 PMCID: PMC3397508 DOI: 10.3390/ijms13066995] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022] Open
Abstract
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as a more promising and hopeful strategy for development of therapeutics against stroke and neurodegenerative disorders. Neuroglobin (Ngb) is an oxygen-binding globin protein that is highly and specifically expressed in brain neurons. Accumulating evidence have clearly demonstrated that Ngb is an endogenous neuroprotective molecule against hypoxic/ischemic and oxidative stress-related insults in cultured neurons and animals, as well as neurodegenerative disorders such as Alzheimer’s disease, thus any pharmacological strategy that can up-regulate endogenous Ngb expression may lead to novel therapeutics against these brain disorders. In this review, we summarize recent studies about the biological function, regulation of gene expression, and neuroprotective mechanisms of Ngb. Furthermore, strategies for identification of chemical compounds that can up-regulate endogenous Ngb expression for neuroprotection against stroke and neurodegenerative disorders are discussed.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Jianxiang Liu
- National Institute for Radiological Protection, China Center for Disease Control and Prevention, Beijing 100088, China; E-Mail:
| | - Kevin Yang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| |
Collapse
|
44
|
Neuroglobin: A Novel Target for Endogenous Neuroprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
45
|
Tsai AL, Berka V, Martin E, Olson JS. A "sliding scale rule" for selectivity among NO, CO, and O₂ by heme protein sensors. Biochemistry 2011; 51:172-86. [PMID: 22111978 DOI: 10.1021/bi2015629] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectivity among NO, CO, and O₂ is crucial for the physiological function of most heme proteins. Although there is a million-fold variation in equilibrium dissociation constants (K(D)), the ratios for NO:CO:O₂ binding stay roughly the same, 1:~10(3):~10(6), when the proximal ligand is a histidine and the distal site is apolar. For these proteins, there is a "sliding scale rule" for plots of log(K(D)) versus ligand type that allows predictions of K(D) values if one or two are missing. The predicted K(D) for binding of O₂to Ns H-NOX coincides with the value determined experimentally at high pressures. Active site hydrogen bond donors break the rule and selectively increase O₂ affinity with little effect on CO and NO binding. Strong field proximal ligands such as thiolate, tyrosinate, and imidazolate exert a "leveling" effect on ligand binding affinity. The reported picomolar K(D) for binding of NO to sGC deviates even more dramatically from the sliding scale rule, showing a NO:CO K(D) ratio of 1:~10(8). This deviation is explained by a complex, multistep process, in which an initial low-affinity hexacoordinate NO complex with a measured K(D) of ≈54 nM, matching that predicted from the sliding scale rule, is formed initially and then is converted to a high-affinity pentacoordinate complex. This multistep six-coordinate to five-coordinate mechanism appears to be common to all NO sensors that exclude O₂ binding to capture a lower level of cellular NO and prevent its consumption by dioxygenation.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|
46
|
Sturms R, DiSpirito AA, Hargrove MS. Plant and Cyanobacterial Hemoglobins Reduce Nitrite to Nitric Oxide under Anoxic Conditions. Biochemistry 2011; 50:3873-8. [DOI: 10.1021/bi2004312] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan Sturms
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Alan A. DiSpirito
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
47
|
Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT. Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 2011; 286:18277-89. [PMID: 21296891 DOI: 10.1074/jbc.m110.159541] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.
Collapse
Affiliation(s)
- Mauro Tiso
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ioanitescu AI, Doorslaer SV, Dewilde S, Endeward B, Moens L. Probing the heme-pocket structure of the paramagnetic forms of cytoglobin and a distal histidine mutant using electron paramagnetic resonance. Mol Phys 2010. [DOI: 10.1080/00268970701616030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Xu J, Yin G, Du W. Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation. Proteins 2010; 79:191-202. [DOI: 10.1002/prot.22872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 2010; 152:1-14. [PMID: 20933319 DOI: 10.1016/j.bpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/20/2010] [Accepted: 08/21/2010] [Indexed: 01/07/2023]
Abstract
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.
Collapse
|