1
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2025; 125:194-206. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20:2255-2269. [PMID: 35810466 PMCID: PMC9804390 DOI: 10.1111/jth.15817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.
Collapse
Affiliation(s)
- Haarin Chun
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James H. Kurasawa
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Biologics Engineering, R&D, AstraZeneca, GaithersburgMarylandUSA
| | - Philip Olivares
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ekaterina S. Marakasova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
(1) Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver SpringMarylandUSA
- Present address:
George Mason University, School of Systems Biology, FairfaxVirginiaUSA
| | - Svetlana A. Shestopal
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Gabriela U. Hassink
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
GSK‐Rockville Center for Vaccines Research, RockvilleMarylandUSA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mary Migliorini
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Juliet O. Obi
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ally K. Smith
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Patrick L. Wintrode
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Daniel Deredge
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrey G. Sarafanov
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
4
|
Arsiccio A, Beavis J, Raut S, Coxon CH. FVIII inhibitors display FV-neutralizing activity in the prothrombin time assay. J Thromb Haemost 2021; 19:1907-1913. [PMID: 33914406 PMCID: PMC8360109 DOI: 10.1111/jth.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The coagulation factors (F)V and VIII are homologous proteins that support hemostasis through their regulation of FX activity. Hemophilia A (HA) patients have reduced FVIII activity and a prolonged bleeding time that is corrected through the administration of exogenous FVIII. Around one-third of severe HA patients develop FVIII neutralizing antibodies, known as "inhibitors," which neutralize FVIII activity and preclude them from further FVIII therapy. OBJECTIVES We hypothesized that, based on the degree of homology between FV and FVIII (~40%), FVIII-neutralizing antibodies could cross react with FV. To test this hypothesis, a panel of recombinant, patient-derived, FVIII-neutralizing antibodies were screened for cross-reactivity against FV. METHODS Factor V and FVIII activity was measured using one-stage clotting assays; structural analysis was carried out using a structural approach. RESULTS We detected FV neutralizing activity with the anti-FVIII A2 domain antibody NB11B2. Because this antibody was derived from an HA inhibitor patient, FV-neutralizing activity was then evaluated in a number of HA inhibitor patient plasma samples; nine alloimmune samples had FV-neutralizing activity whereas no FV neutralizing activity was found in the two autoimmune samples available. We next examined the degree of surface homology between FV and FVIII and found that structural similarity could explain the cross reactivity of the anti-A2 antibody and likely accounts for the cross reactivity we observed in patient samples. CONCLUSIONS Although this novel observation is of interest, further work will be needed to determine whether FV neutralization in HA patient samples contributes to their bleeding diathesis.
Collapse
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
| | - James Beavis
- Oxford Haemophilia CentreChurchill HospitalOxfordUK
| | - Sanj Raut
- National Institute for Biological Standards and ControlPotters BarUK
| | - Carmen H. Coxon
- National Institute for Biological Standards and ControlPotters BarUK
| |
Collapse
|
5
|
Ronayne EK, Peters SC, Gish JS, Wilson C, Spencer HT, Doering CB, Lollar P, Spiegel PC, Childers KC. Structure of Blood Coagulation Factor VIII in Complex With an Anti-C2 Domain Non-Classical, Pathogenic Antibody Inhibitor. Front Immunol 2021; 12:697602. [PMID: 34177966 PMCID: PMC8223065 DOI: 10.3389/fimmu.2021.697602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023] Open
Abstract
Factor VIII (fVIII) is a procoagulant protein that binds to activated factor IX (fIXa) on platelet surfaces to form the intrinsic tenase complex. Due to the high immunogenicity of fVIII, generation of antibody inhibitors is a common occurrence in patients during hemophilia A treatment and spontaneously occurs in acquired hemophilia A patients. Non-classical antibody inhibitors, which block fVIII activation by thrombin and formation of the tenase complex, are the most common anti-C2 domain pathogenic inhibitors in hemophilia A murine models and have been identified in patient plasmas. In this study, we report on the X-ray crystal structure of a B domain-deleted bioengineered fVIII bound to the non-classical antibody inhibitor, G99. While binding to G99 does not disrupt the overall domain architecture of fVIII, the C2 domain undergoes an ~8 Å translocation that is concomitant with breaking multiple domain-domain interactions. Analysis of normalized B-factor values revealed several solvent-exposed loops in the C1 and C2 domains which experience a decrease in thermal motion in the presence of inhibitory antibodies. These results enhance our understanding on the structural nature of binding non-classical inhibitors and provide a structural dynamics-based rationale for cooperativity between anti-C1 and anti-C2 domain inhibitors.
Collapse
Affiliation(s)
- Estelle K Ronayne
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Joseph S Gish
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Celena Wilson
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
6
|
Coxon CH, Yu X, Beavis J, Diaz-Saez L, Riches-Duit A, Ball C, Diamond SL, Raut S. Characterisation and application of recombinant FVIII-neutralising antibodies from haemophilia A inhibitor patients. Br J Haematol 2021; 193:976-987. [PMID: 33973229 DOI: 10.1111/bjh.17227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
The development of anti-drug antibodies (ADAs) is a serious outcome of treatment strategies involving biological medicines. Coagulation factor VIII (FVIII) is used to treat haemophilia A patients, but its immunogenicity precludes a third of severe haemophiliac patients from receiving this treatment. The availability of patient-derived anti-drug antibodies can help us better understand drug immunogenicity and identify ways to overcome it. Thus, there were two aims to this work: (i) to develop and characterise a panel of recombinant, patient-derived, monoclonal antibodies covering a range of FVIII epitopes with varying potencies, kinetics and mechanism of action, and (ii) to demonstrate their applicability to assay development, evaluation of FVIII molecules and basic research. For the first objective we used recombinant antibodies to develop a rapid, sensitive, flexible and reproducible ex vivo assay that recapitulates inhibitor patient blood using blood from healthy volunteers. We also demonstrate how the panel can provide important information about the efficacy of FVIII products and reagents without the need for patient or animal material. These materials can be used as experimental exemplars or controls, as well as tools for rational, hypothesis-driven research and assay development in relation to FVIII immunogenicity and FVIII-related products.
Collapse
Affiliation(s)
- Carmen H Coxon
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | - Xinren Yu
- University of Pennsylvania, Philadelphia, PA, USA
| | - James Beavis
- Oxford Haemophilia Centre, Churchill Hospital, Oxford, UK
| | | | - Andrew Riches-Duit
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | - Chris Ball
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | | | - Sanj Raut
- National Institute for Biological Standards and Control, Hertfordshire, UK
| |
Collapse
|
7
|
Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood 2021; 137:2970-2980. [PMID: 33569592 DOI: 10.1182/blood.2020009197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Interaction of factor VIII (FVIII) with von Willebrand factor (VWF) is mediated by the VWF D'D3 domains and thrombin-mediated release is essential for hemostasis after vascular injury. VWF-D'D3 mutations resulting in loss of FVIII binding are the underlying cause of von Willebrand disease (VWD) type 2N. Furthermore, the FVIII-VWF interaction has significant implications for the development of therapeutics for bleeding disorders, particularly hemophilia A, in which endogenous VWF clearance imposes a half-life ceiling on replacement FVIII therapy. To understand the structural basis of FVIII engagement by VWF, we solved the structure of BIVV001 by cryo-electron microscopy to 2.9 Å resolution. BIVV001 is a bioengineered clinical-stage FVIII molecule for the treatment of hemophilia A. In BIVV001, VWF-D'D3 is covalently linked to an Fc domain of a B domain-deleted recombinant FVIII (rFVIII) Fc fusion protein, resulting in a stabilized rFVIII/VWF-D'D3 complex. Our rFVIII/VWF structure resolves BIVV001 architecture and provides a detailed spatial understanding of previous biochemical and clinical observations related to FVIII-VWF engagement. Notably, the FVIII acidic a3 peptide region (FVIII-a3), established as a critical determinant of FVIII/VWF complex formation, inserts into a basic groove formed at the VWF-D'/rFVIII interface. Our structure shows direct interaction of sulfated Y1680 in FVIII-a3 and VWF-R816 that, when mutated, leads to severe hemophilia A or VWD type 2N, respectively. These results provide insight on this key coagulation complex, explain the structural basis of many hemophilia A and VWD type 2N mutations, and inform studies to further elucidate how VWF dissociates rapidly from FVIII upon activation.
Collapse
|
8
|
van Galen J, Freato N, Przeradzka MA, Ebberink EHTM, Boon-Spijker M, van der Zwaan C, van den Biggelaar M, Meijer AB. Hydrogen-Deuterium Exchange Mass Spectrometry Identifies Activated Factor IX-Induced molecular Changes in Activated Factor VIII. Thromb Haemost 2020; 121:594-602. [PMID: 33302303 DOI: 10.1055/s-0040-1721422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was employed to gain insight into the changes in factor VIII (FVIII) that occur upon its activation and assembly with activated factor IX (FIXa) on phospholipid membranes. HDX-MS analysis of thrombin-activated FVIII (FVIIIa) revealed a marked increase in deuterium incorporation of amino acid residues along the A1-A2 and A2-A3 interface. Rapid dissociation of the A2 domain from FVIIIa can explain this observation. In the presence of FIXa, enhanced deuterium incorporation at the interface of FVIIIa was similar to that of FVIII. This is compatible with the previous finding that FIXa contributes to A2 domain retention in FVIIIa. A2 domain region Leu631-Tyr637, which is not part of the interface between the A domains, also showed a marked increase in deuterium incorporation in FVIIIa compared with FVIII. Deuterium uptake of this region was decreased in the presence of FIXa beyond that observed in FVIII. This implies that FIXa alters the conformation or directly interacts with this region in FVIIIa. Replacement of Val634 in FVIII by alanine using site-directed mutagenesis almost completely impaired the ability of the activated cofactor to enhance the activity of FIXa. Surface plasmon resonance analysis revealed that the rates of A2 domain dissociation from FVIIIa and FVIIIa-Val634Ala were indistinguishable. HDX-MS analysis showed, however, that FIXa was unable to retain the A2 domain in FVIIIa-Val634Ala. The combined results of this study suggest that the local structure of Leu631-Tyr637 is altered by FIXa and that this region contributes to the cofactor function of FVIII.
Collapse
Affiliation(s)
- Josse van Galen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Nadia Freato
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Małgorzata A Przeradzka
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Eduard H T M Ebberink
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Mariëtte Boon-Spijker
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | | | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Przeradzka MA, Freato N, Boon-Spijker M, van Galen J, van der Zwaan C, Mertens K, van den Biggelaar M, Meijer AB. Unique surface-exposed hydrophobic residues in the C1 domain of factor VIII contribute to cofactor function and von Willebrand factor binding. J Thromb Haemost 2020; 18:364-372. [PMID: 31675465 DOI: 10.1111/jth.14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The identity of the amino acid regions of factor VIII (FVIII) that contribute to factor IXa (FIXa) and von Willebrand factor (VWF) binding has not been fully resolved. Previously, we observed that replacing the FVIII C1 domain for the one of factor V (FV) markedly reduces VWF binding and cofactor function. Compared to the FV C1 domain, this implies that the FVIII C1 domain comprises unique surface-exposed elements involved in VWF and FIXa interaction. OBJECTIVE The aim of this study is to identify residues in the FVIII C1 domain that contribute to VWF and FIXa binding. METHODS Structures and primary sequences of FVIII and FV were compared to identify surface-exposed residues unique to the FVIII C1 domain. The identified residues were replaced with alanine residues to identify their role in FIXa and VWF interaction. This role was assessed employing surface plasmon resonance analysis studies and enzyme kinetic assays. RESULTS Five surface-exposed hydrophobic residues unique to the FVIII C1 domain, ie, F2035, F2068, F2127, V2130, I2139 were identified. Functional analysis indicated that residues F2068, V2130, and especially F2127 contribute to VWF and/or FIXa interaction. Substitution into alanine of the also surface-exposed V2125, which is spatially next to F2127, affected only VWF binding. CONCLUSION The surface-exposed hydrophobic residues in C1 domain contribute to cofactor function and VWF binding. These findings provide novel information on the fundamental role of the C1 domain in FVIII life cycle.
Collapse
Affiliation(s)
- Małgorzata A Przeradzka
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Nadia Freato
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Mariëtte Boon-Spijker
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Josse van Galen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Carmen van der Zwaan
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | - Koen Mertens
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | | | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Abstract
Damoctocog alfa pegol (Jivi®) is approved in the USA, EU, Japan and Canada for the treatment and prophylaxis of previously treated patients aged ≥ 12 years with haemophilia A. Formulated with a 60 kDa polyethylene glycol (PEG) moiety, damoctocog alfa pegol is an intravenously (IV) administered recombinant factor VIII (rFVIII) product with a longer terminal half-life than non-PEGylated FVIII and rFVIII products. In the multinational phase II/III PROTECT VIII trial, prophylaxis with damoctocog alfa pegol reduced the likelihood of bleeding in previously treated patients aged ≥ 12 years with severe haemophilia A, with dosing schedules ranging from twice weekly to once every 7 days. Interim data from the ongoing extension phase indicated that the reduced annualized bleeding rates (ABRs) were maintained for up to 5.2 years of prophylaxis with damoctocog alfa pegol. Damoctocog alfa pegol was also effective in treating bleeding episodes and in providing haemostatic control during surgery. Damoctocog alfa pegol was generally well tolerated in adult and adolescent patients with severe haemophilia A, with most adverse events considered to be unrelated to treatment. There were no new or confirmed cases of FVIII inhibitor development and anti-PEG antibodies, observed in some patients, were of low titre and transient. Damoctocog alfa pegol extends the available treatment options in previously treated adults and adolescents with haemophilia A, offering the possibility of up to once-weekly administration for suitable patients.
Collapse
Affiliation(s)
- Julia Paik
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Emma D Deeks
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
11
|
Bloem E, Karpf DM, Nørby PL, Johansen PB, Loftager M, Rahbek-Nielsen H, Petersen HH, Blouse GE, Thim L, Kjalke M, Bolt G. Factor VIII with a 237 amino acid B-domain has an extended half-life in F8-knockout mice. J Thromb Haemost 2019; 17:350-360. [PMID: 30525289 DOI: 10.1111/jth.14355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/30/2022]
Abstract
Essentials Factor (F)VIII with an intermediate-length B-domain showed higher levels in murine gene therapy. FVIII with different B-domain lengths were analysed. FVIII variants with B-domains between 186 and 240 amino acids (aa) have extended half-life in mice. Reduced cell binding of FVIII with a 237aa B-domain may explain the extended half-life. SUMMARY: Background Factor VIII consists of the A1-domain, A2-domain, B-domain, A3-domain, C1-domain, and C2-domain. FVIII with an intermediate-length B-domain of 226 amino acids (aa) has previously been evaluated in murine gene therapy studies. Objective To characterize FVIII with intermediate-length B-domains in vitro and in vivo in F8-knockout (KO) mice. Methods and results FVIII molecules with B-domains of 186-240aa had longer half-lives in F8-KO mice than FVIII molecules with shorter or longer B-domains. FVIII with a B-domain containing the 225 N-terminal aa fused to the 12 C-terminal aa of the wild-type B-domain (FVIII-237) had a 1.6-fold extended half-life in F8-KO mice as compared with FVIII with a 21aa B-domain (FVIII-21). The in vitro and in vivo activity of FVIII-237 were comparable to those of FVIII-21, as was binding to von Willebrand factor. Cell binding to LDL receptor-related protein 1 (LRP-1)-expressing cells was markedly reduced for FVIII-237 as compared with FVIII-21, whereas the affinity for LRP-1 was not reduced in surface plasmon resonance (SPR) studies. FVIII-21 cell binding and internalization could be inhibited by a fragment consisting of the 226 N-terminal aa of the FVIII B-domain, and SPR analysis suggested that this B-domain fragment might bind with weak affinity to FVIII-21. Conclusion Reduced cell binding of FVIII-237 might explain the observed extended half-life in F8-KO mice. This may contribute to the increased FVIII levels measured in murine gene therapy studies using FVIII constructs with similar B-domain lengths.
Collapse
Affiliation(s)
- E Bloem
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - D M Karpf
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - P L Nørby
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - P B Johansen
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - M Loftager
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | - H H Petersen
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - G E Blouse
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - L Thim
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - M Kjalke
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - G Bolt
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| |
Collapse
|
12
|
Venous thromboembolism, factor VIII and chronic kidney disease. Thromb Res 2018; 170:10-19. [PMID: 30081388 DOI: 10.1016/j.thromres.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects 30 million Americans and is associated with approximately a two-fold increased risk of venous thromboembolism (VTE). There is a graded increased risk of VTE across declining kidney function, as measured by estimated glomerular filtration rate (eGFR) and albuminuria. When patients with end-stage kidney disease (ESKD) experience VTE they are more likely than the general population to be hospitalized and they have a higher mortality. The incidence and consequences of VTE may also differ depending on the cause of kidney disease. In addition, kidney transplant patients with VTE are at a greater risk for death and graft loss than transplant patients without VTE. The reasons that patients with CKD are at increased risk of VTE are not well understood, but recent data suggest that factor VIII is a mediator. Factor VIII is an essential cofactor in the coagulation cascade and a strong risk factor for VTE in general. It is inversely correlated with eGFR and prospective studies demonstrate that factor VIII activity predicts incident CKD and rapid eGFR decline. The etiology of CKD may also influence factor VIII levels. This review summarizes the epidemiology VTE in CKD and reviews the biochemistry of factor VIII and determinants of its levels, including von Willebrand factor and ABO blood group. We explore mechanisms by which the complications of CKD might give rise to higher factor VIII and suggests future research directions to understand how factor VIII and CKD are linked.
Collapse
|
13
|
Canis K, Anzengruber J, Garenaux E, Feichtinger M, Benamara K, Scheiflinger F, Savoy LA, Reipert BM, Malisauskas M. In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: from structure to clinical implications. J Thromb Haemost 2018; 16:S1538-7836(22)02223-1. [PMID: 29888865 DOI: 10.1111/jth.14204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Essentials Glycosylation heterogeneity of recombinant proteins affects pharmacokinetics and immunogenicity. N-glycomics/glycoproteomics of plasma-derived Factor VIII and 6 recombinant FVIIIs were compared. Depending on cell line, significant differences to plasma-derived FVIII were observed. Recombinant FVIIIs expressed distinct and immunologically relevant epitopes. SUMMARY Background/Objective Human factor VIII (FVIII) is a plasma glycoprotein, defects of which result in hemophilia A. Current substitution therapy uses FVIII products purified from human plasma or from various cell lines (recombinant FVIII) with different levels of B-domain deletion. Glycosylation is a post-translational protein modification in FVIII that has a substantial influence on its physical, functional and antigenic properties. Variation in glycosylation is likely to be the reason that FVIII products differ in their pharmacokinetics, pharmacodynamics and immunogenicity. However, the literature on FVIII glycosylation is inconsistent, preventing assembly into a coherent model. Seeking to better understand the glycosylation mechanisms underlying FVIII biology, we studied the N-glycosylation of human plasma-derived (pd)FVIII and six rFVIII products expressed in CHO, BHK or HEK cell lines. Methods FVIII samples were subjected to head-to-head detailed glycomic and glycoproteomic characterization using a combination of MALDI-MS and MS/MS, GC-MS and UPLC-UV-MSE technologies. Results/Conclusion The results of our study detail the N-glycan repertoire of pdFVIII to an unprecedented level, and for the first time, provide evidence of N-glycolylneuraminic acid (NeuGc) found on pdFVIII. Although site-specific glycosylation of rFVIII proved consistent with pdFVIII regardless of the expression system, the entire N-glycan content of each sample appeared significantly different. Although the proportion of biologically important epitopes common to all samples (i.e. sialylation and high-mannose) varied between samples, some recombinant products expressed distinct and immunologically relevant epitopes, such as LacdiNAc (LDN), fucosylated LacdiNAc (FucLDN), NeuGc, LewisX/Y and Galα1,3 Gal epitopes. rFVIII expressed in HEK cells showed the greatest glycomic differences to human pdFVIII.
Collapse
Affiliation(s)
- K Canis
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - E Garenaux
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - K Benamara
- Research & Development, Shire, Vienna, Austria
| | | | - L-A Savoy
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | - B M Reipert
- Research & Development, Shire, Vienna, Austria
| | | |
Collapse
|
14
|
Castro-Núñez L, Koornneef JM, Rondaij MG, Bloem E, van der Zwaan C, Mertens K, Meijer AB, Meems H. Cellular uptake of coagulation factor VIII: Elusive role of the membrane-binding spikes in the C1 domain. Int J Biochem Cell Biol 2017; 89:34-41. [DOI: 10.1016/j.biocel.2017.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
15
|
Young PA, Migliorini M, Strickland DK. Evidence That Factor VIII Forms a Bivalent Complex with the Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1): IDENTIFICATION OF CLUSTER IV ON LRP1 AS THE MAJOR BINDING SITE. J Biol Chem 2016; 291:26035-26044. [PMID: 27794518 DOI: 10.1074/jbc.m116.754622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hemophilia A is a bleeding disorder caused by a deficiency in coagulation factor VIII (fVIII) that affects 1 in 5,000 males. Current prophylactic replacement therapy, although effective, is difficult to maintain due to the cost and frequency of injections. Hepatic clearance of fVIII is mediated by the LDL receptor-related protein 1 (LRP1), a member of the LDL receptor family. Although it is well established that fVIII binds LRP1, the molecular details of this interaction are unclear as most of the studies have been performed using fragments of fVIII and LRP1. In the current investigation, we examine the binding of intact fVIII to full-length LRP1 to gain insight into the molecular interaction. Chemical modification studies confirm the requirement for lysine residues in the interaction of fVIII with LRP1. Examination of the ionic strength dependence of the interaction of fVIII with LRP1 resulted in a Debye-Hückel plot with a slope of 1.8 ± 0.5, suggesting the involvement of two critical charged residues in the interaction of fVIII with LRP1. Kinetic studies utilizing surface plasmon resonance techniques reveal that the high affinity of fVIII for LRP1 results from avidity effects mediated by the interactions of two sites in fVIII with complementary sites on LRP1 to form a bivalent fVIII·LRP1 complex. Furthermore, although fVIII bound avidly to soluble forms of clusters II and IV from LRP1, only soluble cluster IV competed with the binding of fVIII to full-length LRP1, revealing that cluster IV represents the major fVIII binding site in LRP1.
Collapse
Affiliation(s)
- Patricia A Young
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Migliorini
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
16
|
Doherty CM, Visse R, Dinakarpandian D, Strickland DK, Nagase H, Troeberg L. Engineered Tissue Inhibitor of Metalloproteinases-3 Variants Resistant to Endocytosis Have Prolonged Chondroprotective Activity. J Biol Chem 2016; 291:22160-22172. [PMID: 27582494 PMCID: PMC5063997 DOI: 10.1074/jbc.m116.733261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a central inhibitor of matrix-degrading and sheddase families of metalloproteinases. Extracellular levels of the inhibitor are regulated by the balance between its retention on the extracellular matrix and its endocytic clearance by the scavenger receptor low density lipoprotein receptor-related protein 1 (LRP1). Here, we used molecular modeling to predict TIMP-3 residues potentially involved in binding to LRP1 based on the proposed LRP1 binding motif of 2 lysine residues separated by about 21 Å and mutated the candidate lysine residues to alanine individually and in pairs. Of the 22 mutants generated, 13 displayed a reduced rate of uptake by HTB94 chondrosarcoma cells. The two mutants (TIMP-3 K26A/K45A and K42A/K110A) with lowest rates of uptake were further evaluated and found to display reduced binding to LRP1 and unaltered inhibitory activity against prototypic metalloproteinases. TIMP-3 K26A/K45A retained higher affinity for sulfated glycosaminoglycans than K42A/K110A and exhibited increased affinity for ADAMTS-5 in the presence of heparin. Both mutants inhibited metalloproteinase-mediated degradation of cartilage at lower concentrations and for longer than wild-type TIMP-3, indicating that their increased half-lives improved their ability to protect cartilage. These mutants may be useful in treating connective tissue diseases associated with increased metalloproteinase activity.
Collapse
Affiliation(s)
- Christine M Doherty
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Robert Visse
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Deendayal Dinakarpandian
- the School of Computing and Engineering, University of Missouri, Kansas City, Missouri 64111, and
| | | | - Hideaki Nagase
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- From the Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom,
| |
Collapse
|
17
|
A novel chemical footprinting approach identifies critical lysine residues involved in the binding of receptor-associated protein to cluster II of LDL receptor-related protein. Biochem J 2015; 468:65-72. [PMID: 25728577 DOI: 10.1042/bj20140977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tandem mass tags (TMTs) were utilized in a novel chemical footprinting approach to identify lysine residues that mediate the interaction of receptor-associated protein (RAP) with cluster II of LDL (low-density lipoprotein) receptor (LDLR)-related protein (LRP). The isolated RAP D3 domain was modified with TMT-126 and the D3 domain-cluster II complex with TMT-127. Nano-LC-MS analysis revealed reduced modification with TMT-127 of peptides including Lys(256), Lys(270) and Lys(305)-Lys(306) suggesting that these residues contribute to cluster II binding. This agrees with previous findings that Lys(256) and Lys(270) are critical for binding cluster II sub-domains [Fisher, Beglova and Blacklow (2006) Mol. Cell 22, 277-283]. Cluster II-binding studies utilizing D3 domain variants K(256)A, K(305)A and K(306)A now showed that Lys(306) contributes to cluster II binding as well. For full-length RAP, we observed that peptides including Lys(60), Lys(191), Lys(256), Lys(270) and Lys(305)-Lys(306) exhibited reduced modification with TMT in the RAP-cluster II complex. Notably, Lys(60) has previously been implicated to mediate D1 domain interaction with cluster II. Our results suggest that also Lys(191) of the D2 domain contributes to cluster II binding. Binding studies employing the RAP variants K(191)A, K(256)A, K(305)A and K(306)A, however, revealed a modest reduction in cluster II binding for the K(256)A variant only. This suggests that the other lysine residues can compensate for the absence of a single lysine residue for effective complex assembly. Collectively, novel insight has been obtained into the contribution of lysine residues of RAP to cluster II binding. In addition, we propose that TMTs can be utilized to identify lysine residues critical for protein complex formation.
Collapse
|
18
|
van den Biggelaar M, Madsen JJ, Faber JH, Zuurveld MG, van der Zwaan C, Olsen OH, Stennicke HR, Mertens K, Meijer AB. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues. J Biol Chem 2015; 290:16463-76. [PMID: 25903134 DOI: 10.1074/jbc.m115.650911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/06/2022] Open
Abstract
Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule.
Collapse
Affiliation(s)
- Maartje van den Biggelaar
- From the Department of Plasma Proteins, Sanquin Blood Supply Foundation, 1066 CX Amsterdam, The Netherlands,
| | - Jesper J Madsen
- Global Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark, and
| | - Johan H Faber
- Global Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark, and
| | - Marleen G Zuurveld
- From the Department of Plasma Proteins, Sanquin Blood Supply Foundation, 1066 CX Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- From the Department of Plasma Proteins, Sanquin Blood Supply Foundation, 1066 CX Amsterdam, The Netherlands
| | - Ole H Olsen
- Global Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark, and
| | | | - Koen Mertens
- From the Department of Plasma Proteins, Sanquin Blood Supply Foundation, 1066 CX Amsterdam, The Netherlands, the Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Alexander B Meijer
- From the Department of Plasma Proteins, Sanquin Blood Supply Foundation, 1066 CX Amsterdam, The Netherlands, the Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| |
Collapse
|
19
|
Genetic variations in sites of affinity between FVIII and LRP1 are not associated with high FVIII levels in venous thromboembolism. Sci Rep 2015; 5:9246. [PMID: 25782371 PMCID: PMC4363825 DOI: 10.1038/srep09246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/09/2022] Open
Abstract
Increased factor VIII (FVIII) levels are a prevalent and independent risk factor for venous thromboembolism (VTE). The low density lipoprotein receptor-related protein 1 (LRP1) has been associated with FVIII catabolism. After a median of 10 years of the first thrombotic episode, we evaluated FVIII activity levels in 75 patients with VTE and high FVIII levels and in 74 healthy controls. Subsequently, we evaluated the regions of F8 and LRP1 genes coding sites of affinity between these proteins, with the objective of determining genetic alterations associated with plasma FVIII levels. After a median time of 10 years after the VTE episode, FVIII levels were significantly higher in patients when compared to controls (158.6 IU/dL vs. 125.8 IU/dL; P ≤ 0.001]. Despite the fact that we found 14 genetic variations in F8 and LRP1 genes, no relationship was found between FVIII levels with these variations. We demonstrated a persistent increase of FVIII levels in patients with VTE, but in a much lower magnitude after 10 years when compared to 3-years after the episode. Moreover, we observed no relationship of genetic variations in the gene regions coding affinity sites between LRP1 and FVIII with FVIII levels.
Collapse
|
20
|
Kurasawa JH, Shestopal SA, Woodle SA, Ovanesov MV, Lee TK, Sarafanov AG. Cluster III of low-density lipoprotein receptor-related protein 1 binds activated blood coagulation factor VIII. Biochemistry 2014; 54:481-9. [PMID: 25486042 DOI: 10.1021/bi5011688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP) mediates clearance of blood coagulation factor VIII (FVIII). In LRP, FVIII binds the complement-type repeats (CRs) of clusters II and IV, which also bind a majority of other LRP ligands. No ligand is known for LRP cluster I, and only three ligands, including the LRP chaperone alpha-2 macroglobulin receptor-associated protein (RAP), bind cluster III. Using surface plasmon resonance, we found that in addition to clusters II and IV, activated FVIII (FVIIIa) binds cluster III. The specificity of this interaction was confirmed using an anti-FVIII antibody fragment, which inhibited the binding. Recombinant fragments of cluster III and its site-directed mutagenesis were used to localize the cluster's site for binding FVIIIa to CR.14-19. The interactive site of FVIIIa was localized within its A1/A3'-C1-C2 heterodimer (HDa), which is a major physiological remnant of FVIIIa. In mice, the clearance of HDa was faster than that of FVIII and prolonged in the presence of RAP, which is known to inhibit interactions of LRP with its ligands. In accordance with this, the cluster III site for RAP (CR.15-19) was found to overlap that for FVIIIa. Altogether, our findings support the involvement of LRP in FVIIIa catabolism and suggest a greater significance of the biological role of cluster III compared to that previously known.
Collapse
Affiliation(s)
- James H Kurasawa
- Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993-0002, United States
| | | | | | | | | | | |
Collapse
|
21
|
Kosloski MP, Shetty KA, Wakabayashi H, Fay PJ, Balu-Iyer SV. Effects of replacement of factor VIII amino acids Asp519 and Glu665 with Val on plasma survival and efficacy in vivo. AAPS JOURNAL 2014; 16:1038-45. [PMID: 24934295 DOI: 10.1208/s12248-014-9627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Proteolytic cleavage of factor VIII (FVIII) to activated FVIIIa is required for participation in the coagulation cascade. The A2 domain is no longer covalently bound in the resulting activated heterotrimer and is highly unstable. Aspartic acid (D) 519 and glutamic acid (E) 665 at the A1-A2 and A2-A3 domain interfaces were identified as acidic residues in local hydrophobic pockets. Replacement with hydrophobic valine (V; D519V/E665V) improved the stability and activity of the mutant FVIII over the wild-type (WT) protein in several in vitro assays. In the current study, we examined the impact of mutations on secondary and tertiary structure as well as in vivo stability, pharmacokinetics (PK), efficacy, and immunogenicity in a murine model of Hemophilia A (HA). Biophysical characterization was performed with far-UV circular dichroism (CD) and fluorescence emission studies. PK and efficacy of FVIII was studied following i.v. bolus doses of 4, 10 and 40 IU/kg with chromogenic and tail clip assays. Immunogenicity was measured with the Bethesda assay and ELISA after a series of i.v. injections. Native secondary and tertiary structure was unaltered between variants. PK profiles were similar at higher doses, but at 4 IU/kg plasma survival of D519V/E665V was improved. Hemostasis at low concentrations was improved for the mutant. Immune response was similar between variants. Overall, these results demonstrate that stabilizing mutations in the A2 domain of FVIII can improve HA therapy in vivo.
Collapse
Affiliation(s)
- Matthew P Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, 359 Kapoor Hall, Buffalo, New York, 14214, USA
| | | | | | | | | |
Collapse
|
22
|
Bloem E, Meems H, van den Biggelaar M, Mertens K, Meijer AB. A3 domain region 1803-1818 contributes to the stability of activated factor VIII and includes a binding site for activated factor IX. J Biol Chem 2013; 288:26105-26111. [PMID: 23884417 DOI: 10.1074/jbc.m113.500884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recent chemical footprinting study in our laboratory suggested that region 1803-1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803-1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803-1810 and 1811-1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811-1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811-1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803-1810 and FVIII/FV 1811-1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811-1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811-1818 contributes to FIXa binding. Both regions 1803-1810 and 1811-1818 contribute to FVIIIa stability.
Collapse
Affiliation(s)
- Esther Bloem
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | - Henriet Meems
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | | | - Koen Mertens
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and; Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 1066 CX Amsterdam, The Netherlands
| | - Alexander B Meijer
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and; Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Kurasawa JH, Shestopal SA, Karnaukhova E, Struble EB, Lee TK, Sarafanov AG. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. J Biol Chem 2013; 288:22033-41. [PMID: 23754288 DOI: 10.1074/jbc.m113.468108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor (LDLR) was shown to mediate clearance of blood coagulation factor VIII (FVIII) from the circulation. To elucidate the mechanism of interaction of LDLR and FVIII, our objective was to identify the region of the receptor necessary for binding FVIII. Using surface plasmon resonance, we found that LDLR exodomain and its cluster of complement-type repeats (CRs) bind FVIII in the same mode. This indicated that the LDLR site for FVIII is located within the LDLR cluster. Similar results were obtained for another ligand of LDLR, α-2-macroglobulin receptor-associated protein (RAP), a common ligand of receptors from the LDLR family. We further generated a set of recombinant fragments of the LDLR cluster and assessed their structural integrity by binding to RAP and by circular dichroism. A number of fragments overlapping CR.2-5 of the cluster were positive for binding RAP and FVIII. The specificity of these interactions was tested by site-directed mutagenesis of conserved tryptophans within the LDLR fragments. For FVIII, the specificity was also tested using a single-chain variable antibody fragment directed against the FVIII light chain as a competitor. Both cases resulted in decreased binding, thus confirming its specificity. The mutagenic study also showed an importance of the conserved tryptophans in LDLR for both ligands, and the competitive binding results showed an involvement of the light chain of FVIII in its interaction with LDLR. In conclusion, the region of CR.2-5 of LDLR was defined as the binding site for FVIII and RAP.
Collapse
Affiliation(s)
- James H Kurasawa
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
24
|
Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain. J Allergy Clin Immunol 2012; 129:501-9, 509.e1-5. [DOI: 10.1016/j.jaci.2011.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 07/13/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022]
|
25
|
Peng A, Kosloski MP, Nakamura G, Ding H, Balu-Iyer SV. PEGylation of a factor VIII-phosphatidylinositol complex: pharmacokinetics and immunogenicity in hemophilia A mice. AAPS JOURNAL 2011; 14:35-42. [PMID: 22173945 DOI: 10.1208/s12248-011-9309-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
Abstract
Hemophilia A is an X-linked bleeding disorder caused by the deficiency of factor VIII (FVIII). Exogenous FVIII is administered therapeutically, and due to a short half-life, frequent infusions are often required. Fifteen to thirty-five percent of severe hemophilia A patients develop inhibitory antibodies toward FVIII that complicate clinical management of the disease. Previously, we used phosphatidylinositol (PI) containing lipidic nanoparticles to improve the therapeutic efficacy of recombinant FVIII by reducing immunogenicity and prolonging the circulating half-life. The objective of this study is to investigate further improvements in the FVIII-PI formulation resulting from the addition of polyethylene glycol (PEG) to the particle. PEGylation was achieved by passive transfer of PEG conjugated lipid into the FVIII-PI complex. PEGylated FVIII-PI (FVIII-PI/PEG) was generated with high association efficiency. Reduced activity in vitro and improved retention of activity in the presence of antibodies suggested strong shielding of FVIII by the particle; thus, in vivo studies were conducted in hemophilia A mice. Following intravenous administration, the apparent terminal half-life was improved versus both free FVIII and FVIII-PI, but exposure determined by area under the curve was reduced. The formation of inhibitory antibodies after subcutaneous immunization with FVIII-PI/PEG was lower than free FVIII but resulted in a significant increase in inhibitors following intravenous administration. Passive transfer of PEG onto the FVIII-PI complex does not provide any therapeutic benefit.
Collapse
Affiliation(s)
- Aaron Peng
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, 14260, USA
| | | | | | | | | |
Collapse
|
26
|
Epstein J, Xiong Y, Woo P, Li-McLeod J, Spotts G. Retrospective analysis of differences in annual factor VIII utilization among haemophilia A patients. Haemophilia 2011; 18:187-92. [DOI: 10.1111/j.1365-2516.2011.02636.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J Epstein
- Baxter Healthcare, One Baxter Way, Westlake Village, CA 91362, USA.
| | | | | | | | | |
Collapse
|
27
|
Meems H, van den Biggelaar M, Rondaij M, van der Zwaan C, Mertens K, Meijer AB. C1 domain residues Lys 2092 and Phe 2093 are of major importance for the endocytic uptake of coagulation factor VIII. Int J Biochem Cell Biol 2011; 43:1114-21. [DOI: 10.1016/j.biocel.2011.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/23/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
28
|
Franchini M, Montagnana M. Low-density lipoprotein receptor-related protein 1: new functions for an old molecule. Clin Chem Lab Med 2011; 49:967-70. [PMID: 21391865 DOI: 10.1515/cclm.2011.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor member of the low-density lipoprotein (LDL)-receptor family. As LRP1 plays an important role in endocytosis and regulation of signalling pathways, it is implicated in a number of physiologic processes, including the regulation of lipid metabolism, the proliferation of vascular smooth muscle cells and in neuro-development. More recently, LRP1 has been implicated in the catabolism of factor VIII and regulation of its plasma concentrations. The pathophysiology of the role of LRP1 in hemostasis will be summarized in this review.
Collapse
Affiliation(s)
- Massimo Franchini
- Servizio di Immunoematologia e Medicina Trasfusionale, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | |
Collapse
|
29
|
Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 2010; 116:270-9. [PMID: 20194895 DOI: 10.1182/blood-2009-11-254755] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A long-acting factor VIII (FVIII) as a replacement therapy for hemophilia A would significantly improve treatment options for patients with hemophilia A. To develop a FVIII with an extended circulating half-life, but without a reduction in activity, we have engineered 23 FVIII variants with introduced surface-exposed cysteines to which a polyethylene glycol (PEG) polymer was specifically conjugated. Screening of variant expression level, PEGylation yield, and functional assay identified several conjugates retaining full in vitro coagulation activity and von Willebrand factor (VWF) binding.PEGylated FVIII variants exhibited improved pharmacokinetics in hemophilic mice and rabbits. In addition, pharmacokinetic studies in VWF knockout mice indicated that larger molecular weight PEG may substitute for VWF in protecting PEGylated FVIII from clearance in vivo. In bleeding models of hemophilic mice, PEGylated FVIII not only exhibited prolonged efficacy that is consistent with the improved pharmacokinetics but also showed efficacy in stopping acute bleeds comparable with that of unmodified rFVIII. In summary site-specifically PEGylated FVIII has the potential to be a long-acting prophylactic treatment while being fully efficacious for on-demand treatment for patients with hemophilia A.
Collapse
|
30
|
Abstract
Unravelling the structure, function and molecular interactions of factor VIII (FVIII) throughout its life cycle from biosynthesis to clearance has advanced our understanding of the molecular mechanisms of haemophilia and the development of effective treatment strategies including recombinant replacement therapy. These insights are now influencing bioengineering strategies toward novel therapeutics. Whereas available molecular models and crystal structures have helped elucidate the structure and function of the A and C domains of FVIII, these models have not included detailed structural information of the B domain. Therefore, insights into the role of the FVIII B domain have come primarily from expression studies in heterologous systems, biochemical studies on bioengineered FVIII variants and clinical studies with B domain-deleted FVIII. This manuscript reviews the available data on the potential functional roles of the FVIII B domain. A detailed literature search was performed, and the data extracted were qualitatively summarized. Intriguing emerging evidence suggests that the FVIII B domain is involved in intracellular interactions that regulate quality control and secretion, as well as potential regulatory roles within plasma during activation, platelet binding, inactivation and clearance.
Collapse
Affiliation(s)
- S W Pipe
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Nogami K, Nishiya K, Saenko EL, Takeyama M, Ogiwara K, Yoshioka A, Shima M. Identification of plasmin-interactive sites in the light chain of factor VIII responsible for proteolytic cleavage at Lys36. J Biol Chem 2009; 284:6934-45. [PMID: 19126539 DOI: 10.1074/jbc.m802224200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that plasmin likely associates with the factor VIII light chain to proteolyze at Lys36 within the A1 domain. In this study, we determined that the rate of plasmin-catalyzed inactivation on the forms of factor VIIIa containing A1-(1-336) and 1722A3C1C2, reflecting Lys36 cleavage, was reduced by approximately 60%, compared with those containing 1649A3C1C2 and 1690A3C1C2. SDS-PAGE analysis revealed that Lys36 cleavage of factor VIIIa with 1722A3C1C2 was markedly slower than those with 1649A3C1C2 and 1690A3C1C2. Surface plasmon resonance-based assays, using active site-modified anhydro-plasmin (Ah-plasmin) showed that 1722A3C1C2 bound to Ah-plasmin with an approximately 3-fold lower affinity than 1649A3C1C2 or 1690A3C1C2 (Kd, 176, 68.2, and 60.3 nM, respectively). Recombinant A3 bound to Ah-plasmin (Kd, 44.2 nM), whereas C2 failed to bind, confirming the presence of a plasmin-binding site within N terminus of A3. Furthermore, the Glu-Gly-Arg active site-modified factor IXa also blocked 1722A3C1C2 binding to Ah-plasmin by approximately 95%, supporting the presence of another plasmin-binding site overlapping the factor IXa-binding site in A3. In keeping with a major contribution of the lysine-binding sites in plasmin for interaction with the factor VIII light chain, analysis of the A3 sequence revealed two regions involving clustered lysine residues in 1690-1705 and 1804-1818. Two peptides based on these regions blocked 1649A3C1C2 binding to Ah-plasmin by approximately 60% and plasmin-catalyzed Lys36 cleavage of factor VIIIa with A1-(1-336) by approximately 80%. Our findings indicate that an extended surface, centered on residues 1690-1705 and 1804-1818 within the A3 domain, contributes to a unique plasmin-interactive site that promotes plasmin docking during cofactor inactivation by cleavage at Lys36.
Collapse
Affiliation(s)
- Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The immune response to factor VIII and the development of inhibitory antibodies is a complex multi-factorial process involving a variety of immune regulatory genes and cells, several of which have the potential to determine risk. A better understanding of the mechanisms involved will increase the likelihood of development of new therapeutic options for patients with hemophilia. This review summarizes genetic and non-genetic risk factors currently under evaluation, and the potential modulative effect of the von Willebrand factor on factor VIII immuno- and antigenicity. In addition, the role of T-regulatory cells in the pathogenicity of inhibitors will be discussed.
Collapse
Affiliation(s)
- J Astermark
- Department for Coagulation Disorders, Malmö University Hospital, Malmö, Sweden.
| | | | | |
Collapse
|
33
|
|
34
|
Interaction of coagulation factor VIII with members of the low-density lipoprotein receptor family follows common mechanism and involves consensus residues within the A2 binding site 484–509. Blood Coagul Fibrinolysis 2008; 19:543-55. [DOI: 10.1097/mbc.0b013e3283068859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
The binding sites for the very low density lipoprotein receptor and low-density lipoprotein receptor-related protein are shared within coagulation factor VIII. Blood Coagul Fibrinolysis 2008; 19:166-77. [PMID: 18277139 DOI: 10.1097/mbc.0b013e3282f5457b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coagulation factor VIII (FVIII) is a ligand for two members of the low-density lipoprotein receptor family, low-density lipoprotein receptor-related protein (LRP) and low-density lipoprotein receptor, which cooperate in regulating clearance of FVIII from the circulation. This study was aimed to explore the mechanism of interaction of FVIII with very low density lipoprotein receptor (VLDLR), another member of the family, and map receptor-binding sites. Binding of plasma-derived FVIII and its fragments to recombinant soluble ectodomain of VLDLR (sVLDLR) was studied in solid-phase and surface plasmon resonance assays. Full-length FVIII and its light chain bound to sVLDLR with similar affinities (KD = 114 +/- 14 and 95 +/- 11 nmol/l, respectively); in contrast, exposure of high-affinity VLDLR-binding site within the heavy chain (KD = 30 +/- 2 nmol/l) required proteolytic cleavage by thrombin. The VLDLR-binding sites within heavy and light chains were mapped to the A2 domain residues 484-509 and the A3-C1 fragment, based on the inhibitory effects of anti-A2 monoclonal antibody 413 and anti-A3-C1 antibody fragment scFv KM33, respectively, previously shown to inhibit FVIII/LRP interaction. Soluble ligand-binding fragment of VLDLR inhibited activation of factor X by the intrinsic Xase in purified system. In cell culture, a higher Xase activity was associated with wild-type human embryonic kidney cells compared with transfected cells that express VLDLR on the cell surface. We conclude that the binding sites for VLDLR and LRP within FVIII overlap and the A2 site becomes exposed upon physiological activation of FVIII. A functional role of FVIII/VLDLR interaction may be related to regulation of intrinsic Xase activity.
Collapse
|
36
|
Abstract
Factor VIII (fVIII) is a serum protein in the coagulation cascade that nucleates the assembly of a membrane-bound protease complex on the surface of activated platelets at the site of a vascular injury. Hemophilia A is caused by a variety of mutations in the factor VIII gene and typically requires replacement therapy with purified protein. We have determined the structure of a fully active, recombinant form of factor VIII (r-fVIII), which consists of a heterodimer of peptides, respectively containing the A1-A2 and A3-C1-C2 domains. The structure permits unambiguous modeling of the relative orientations of the 5 domains of r-fVIII. Comparison of the structures of fVIII, fV, and ceruloplasmin indicates that the location of bound metal ions and of glycosylation, both of which are critical for domain stabilization and association, overlap at some positions but have diverged at others.
Collapse
|
37
|
Lenting PJ, VAN Schooten CJM, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost 2007; 5:1353-60. [PMID: 17425686 DOI: 10.1111/j.1538-7836.2007.02572.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P J Lenting
- Department of Clinical Chemistry and Haematology, Laboratory for Thrombosis and Haemostasis, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
38
|
Meijer AB, Rohlena J, van der Zwaan C, van Zonneveld AJ, Boertjes RC, Lenting PJ, Mertens K. Functional duplication of ligand-binding domains within low-density lipoprotein receptor-related protein for interaction with receptor associated protein, alpha2-macroglobulin, factor IXa and factor VIII. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:714-22. [PMID: 17512806 DOI: 10.1016/j.bbapap.2007.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/01/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP) binds a range of proteins including receptor associated protein (RAP), activated alpha2-macroglobulin (alpha2M*), factor IXa (FIXa), and factor VIII (FVIII) light chain. The binding is mediated by the complement-type repeats, which are clustered in four distinct regions within LRP. Cluster II of 8 repeats (CR3-10) and cluster IV of 11 repeats (CR21-31) have been implicated in ligand-binding. Previous studies have aimed to identify the cluster II repeats involved in binding alpha2M* and RAP. We now evaluated the binding to RAP, alpha2M*, FIXa and FVIII light chain of triplicate repeat-fragments of not only clusters II but also of cluster IV. Employing surface plasmon resonance analysis, we found that most efficient ligand-binding was displayed by the repeats within region CR4-8 of cluster II and within region CR24-28 of cluster IV. Whereas the binding to RAP could be attributed to two consecutive repeats (CR5-6, CR26-27), combinations of three repeats showed most efficient binding to FIXa (CR6-8, CR26-28), FVIII light chain (CR5-7, CR6-8, CR24-26), and alpha2M* (CR4-6, CR24-26). The results imply that there is an internal functional duplication of complement-type repeats within LRP resulting in two clusters that bind the same ligands.
Collapse
Affiliation(s)
- Alexander B Meijer
- Sanquin Research, Department of Plasma Proteins, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In this article, we provide a summary of the generally accepted approaches to the design and analysis of studies examining the pharmacokinetic (PK) profile of an infused coagulation factor in patients with a deficiency of one or more of these factors. Furthermore, we briefly review the known PK results for various commercially available coagulation factor preparations under single and continuous infusion.
Collapse
Affiliation(s)
- M Lee
- UCLA School of Public Health, Los Angeles, CA 91604, USA.
| | | | | | | |
Collapse
|
40
|
Fang H, Wang L, Wang H. The protein structure and effect of factor VIII. Thromb Res 2007; 119:1-13. [PMID: 16487577 DOI: 10.1016/j.thromres.2005.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 11/06/2005] [Accepted: 12/26/2005] [Indexed: 11/23/2022]
Abstract
Factor VIII (FVIII) is a key component of the fluid phase of the blood coagulation system. The proteases efficiently cleave FVIII at three sites, two within the heavy and one within the light chain resulting in alteration of its covalent structure and conformation and yielding the active cofactor, FVIIIa. FVIIIa is a trimer composed of A1, A2 and A3-C1-C2 subunits. The role of FVIIIa is to markedly increase the catalytic efficiency of factor IXa in the activation of factor X. Variants of these factors frequently also lead to severe bleeding disorders.
Collapse
Affiliation(s)
- Hong Fang
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | |
Collapse
|
41
|
SAENKO EL, ANANYEVA NM. Receptor-mediated clearance of factor VIII: implications for pharmacokinetic studies in individuals with haemophilia. Haemophilia 2006. [DOI: 10.1111/j.1365-2516.2006.01329.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
MORFINI M. Pharmacokinetic studies: international guidelines for the conduct and interpretation of such studies. Haemophilia 2006. [DOI: 10.1111/j.1365-2516.2006.01327.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Bovenschen N, van Stempvoort G, Voorberg J, Mertens K, Meijer AB. Proteolytic cleavage of factor VIII heavy chain is required to expose the binding-site for low-density lipoprotein receptor-related protein within the A2 domain. J Thromb Haemost 2006; 4:1487-93. [PMID: 16839343 DOI: 10.1111/j.1538-7836.2006.01965.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that contributes to the clearance of coagulation factor (F) VIII from the circulation. Previously, we have demonstrated that region Glu(1811)-Lys(1818) within FVIII light chain constitutes an important binding region for this receptor. We have further found that FVIII light chain and intact FVIII are indistinguishable in their LRP-binding affinities. In apparent contrast to these observations, a second LRP-binding region has been identified within A2 domain region Arg(484)-Phe(509) of FVIII heavy chain. OBJECTIVE In this study, we addressed the relative contribution of FVIII heavy chain in binding LRP. METHODS AND RESULTS Surface plasmon resonance analysis unexpectedly showed that FVIII heavy chain poorly associated to the receptor. The binding to LRP was, however, markedly enhanced upon cleavage of the heavy chain by thrombin. The A2 domain, purified from thrombin-activated FVIII, also showed efficient binding to LRP. Competition studies employing a recombinant antibody fragment demonstrated that region Arg(484)-Phe(509) mediates the enhanced LRP binding after thrombin cleavage. CONCLUSIONS We propose that LRP binding of non-activated FVIII is mediated via the FVIII light chain while in activated FVIII both the heavy and light chain contribute to LRP binding.
Collapse
Affiliation(s)
- N Bovenschen
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Abstract
The reduced mortality, improved joint outcomes and enhanced quality of life, which have been witnessed in the developed world for patients with haemophilia, have been an outstanding achievement. Advancements in biotechnology contributed significantly through the development of improved pathogen screening, viral inactivation techniques and the development of recombinant clotting factors. These were partnered with enhanced delivery of care through comprehensive haemophilia centres, adoption of home therapy and most recently effective prophylaxis. This came at great costs to governments, medical insurers and patients' families. In addition, barriers persist limiting the adoption and adherence of effective prophylactic therapy. Biotechnology has been successful at overcoming similar barriers in other disease states. Long-acting biological therapeutics are an incremental advance towards overcoming some of these barriers. Strategies that have been successful for other therapeutic proteins are now being applied to factor VIII (FVIII) and include modifications such as the addition of polyethylene glycol (PEG) polymers and polysialic acids and alternative formulation with PEG-modified liposomes. In addition, insight into FVIII structure and function has allowed targeted modifications of the protein to increase the duration of its cofactor activity and reduce its clearance in vivo. The potential advantages and disadvantages of these approaches will be discussed.
Collapse
Affiliation(s)
- E L Saenko
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Strickland DK, Medved L. Low-density lipoprotein receptor-related protein (LRP)-mediated clearance of activated blood coagulation co-factors and proteases: clearance mechanism or regulation? J Thromb Haemost 2006; 4:1484-6. [PMID: 16839342 DOI: 10.1111/j.1538-7836.2006.01987.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
46
|
Sarafanov AG, Makogonenko EM, Pechik IV, Radtke KP, Khrenov AV, Ananyeva NM, Strickland DK, Saenko EL. Identification of Coagulation Factor VIII A2 Domain Residues Forming the Binding Epitope for Low-Density Lipoprotein Receptor-Related Protein,. Biochemistry 2006; 45:1829-40. [PMID: 16460029 DOI: 10.1021/bi0520380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of the coagulation factor VIII (fVIII) level in circulation involves a hepatic receptor low-density lipoprotein receptor-related protein (LRP). One of two major LRP binding sites in fVIII is located within the A2 domain (A2), likely exposed within the fVIII complex with von Willebrand factor and contributing to regulation of fVIII via LRP. This work aimed to identify A2 residues forming its LRP-binding site, previously shown to involve residues 484-509. Isolated A2 was subjected to alanine-scanning mutagenesis followed by expression of a set of mutants in a baculovirus system. In competition and surface plasmon resonance assays, affinities of A2 mutants K466A, R471A, R484A, S488A, R489A, R490A, H497A, and K499A for LRP were found to be decreased by 2-4-fold. This correlated with 1.3-1.5-fold decreases in the degree of LRP-mediated internalization of the mutants in cell culture. Combining these mutations into pairs led to cumulative effects, i.e., 7-13-fold decrease in affinity for LRP and 1.6-2.2-fold decrease in the degree of LRP-mediated internalization in cell culture. We conclude that the residues mentioned above play a key role in formation of the A2 binding epitope for LRP. Experiments in mice revealed an approximately 4.5 times shorter half-life for A2 in the circulation in comparison with that of fVIII. The half-lives of A2 mutant R471A/R484A or A2 co-injected with receptor-associated protein, a classical ligand of LRP, were prolonged by approximately 1.9 and approximately 3.5 times, respectively, compared to that of A2. This further confirms the importance of the mutated residues for interaction of A2 with LRP and suggests the existence of an LRP-dependent mechanism for removing A2 as a product of dissociation of activated fVIII from the circulation.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Boekhorst J, Verbruggen B, Lavergne JM, Costa JM, Schoormans SCM, Brons PPT, van Kraaij MGJ, Nováková IRO, van Heerde WL. Thirteen novel mutations in the factor VIII gene in the Nijmegen haemophilia A patient population. Br J Haematol 2005; 131:109-17. [PMID: 16173970 DOI: 10.1111/j.1365-2141.2005.05737.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of neutralising antibodies to factor VIII (FVIII) is a major complication of haemophilia A (HA) therapy. We aimed to construct an individual risk profile for the development of inhibitors in HA and started by screening for the causative mutation in our HA patient population. A total of 109 patients and 28 carriers were screened. The analysis revealed 38 different mutations in the FVIII gene, of which 13 have not been described on the Haemophilia A Mutation, Search, Test and Resource Site (HAMSTeRS). Twenty-five mutations have been reported previously and all except two had a similar phenotype to what has been described. Three novel mutations were associated with severe HA: one non-missense mutation, a small insertion in the A2 domain, and two missense mutations, a H256R mutation in the A1 domain and a L2025P substitution in the C1 domain. One novel mutation, Y156C, was associated with moderate HA. Nine novel mutations caused mild HA. The P130R, D167E and V278M mutations are located in the A1 domain. R439C, Y511H, A544G and Q645H in the A2 domain, L1758F in the A3 domain and a S2157R mutation in the C1 domain. In conclusion, the genotypic profile of our HA population was not different from others described and is suitable to study inhibitor formation.
Collapse
Affiliation(s)
- Jorien Boekhorst
- Department of Haematology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Autin L, Miteva MA, Lee WH, Mertens K, Radtke KP, Villoutreix BO. Molecular models of the procoagulant factor VIIIa-factor IXa complex. J Thromb Haemost 2005; 3:2044-56. [PMID: 16102111 DOI: 10.1111/j.1538-7836.2005.01527.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Formation of the intrinsic tenase complex is an essential event in the procoagulant reactions that lead to clot formation. The tenase complex is formed when the activated serine protease, Factor IXa (FIXa), and its cofactor Factor VIIIa (FVIIIa) assemble on a phospholipid surface to proteolytically convert the zymogen Factor X (FX) into its active form FXa. The physiological relevance of the tenase complex is evident in hemophilia A or B patients who present with bleeding disorders. OBJECTIVES The purpose of this study was to establish three-dimensional (3D) models of the FVIIIa-FIXa complex. METHODS First, we built two new theoretical models of FVIIIa via homology modeling, inter-domain docking and loop simulation algorithms as well as a model for FIXa. This was followed by pseudo-Brownian protein-protein docking in internal coordinates with the ICM (Internal Coordinates Mechanics) program between the two FVIIIa and the FIXa structures. RESULTS Ten representative models of this complex are presented based on agreements with known experimental data and according to structural criteria. CONCLUSIONS These novel 3D models will help guide future site directed mutagenesis aimed at improving the functionality of FVIIIa and/or FIXa and will contribute to a better understanding of the role of this macromolecular complex in the blood coagulation cascade.
Collapse
Affiliation(s)
- L Autin
- Inserm U648, Paris 5 University, 4 Ave de l'Observatoire, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Bovenschen N, Mertens K, Hu L, Havekes LM, van Vlijmen BJM. LDL receptor cooperates with LDL receptor–related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood 2005; 106:906-12. [PMID: 15840700 DOI: 10.1182/blood-2004-11-4230] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractLow-density lipoprotein (LDL) receptor (LDLR) and LDLR-related protein (LRP) are members of the LDLR family of endocytic receptors. LRP recognizes a wide spectrum of structurally and functionally unrelated ligands, including coagulation factor VIII (FVIII). In contrast, the ligand specificity of LDLR is restricted to apolipoproteins E and B-100. Ligand binding to the LDLR family is inhibited by receptor-associated protein (RAP). We have previously reported that, apart from LRP, other RAP-sensitive mechanisms contribute to the regulation of FVIII in vivo. In the present study, we showed that the extracellular ligand-binding domain of LDLR interacts with FVIII in vitro and that binding was inhibited by RAP. The physiologic relevance of the FVIII–LDLR interaction was addressed using mouse models of LDLR or hepatic LRP deficiency. In the absence of hepatic LRP, LDLR played a dominant role in the regulation and clearance of FVIII in vivo. Furthermore, FVIII clearance was accelerated after adenovirus-mediated gene transfer of LDLR. The role of LDLR in FVIII catabolism was not secondary to increased plasma lipoproteins or to changes in lipoprotein profiles. We propose that LDLR acts in concert with LRP in regulating plasma levels of FVIII in vivo. This represents a previously unrecognized link between LDLR and hemostasis.
Collapse
Affiliation(s)
- Niels Bovenschen
- Department of Plasma Proteins, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJM, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 2005; 3:1257-65. [PMID: 15946216 DOI: 10.1111/j.1538-7836.2005.01389.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Coagulation factor VIII (FVIII) is a heavily glycosylated heterodimeric plasma protein that consists of a heavy (domains A1-A2-B) and light chain (domains A3-C1-C2). It has been well established that the clearance of FVIII from the circulation involves mechanisms that are sensitive to the low-density lipoprotein receptor (LDLR) family antagonist receptor-associated protein (RAP), including LDLR-related protein. Because FVIII clearance in the presence of a bolus injection of RAP still occurs fairly efficient, also RAP-independent mechanisms are likely to be involved. OBJECTIVES In the present study, we investigated the interaction of FVIII with the endocytic lectin asialoglycoprotein receptor (ASGPR) and the physiological relevance thereof. METHODS AND RESULTS Surface plasmon resonance studies demonstrated that FVIII dose-dependently bound to ASGPR with high affinity (Kd approximately 2 nM). FVIII subunits were different in that only the heavy chain displayed high-affinity binding to ASGPR. Studies employing a FVIII variant that lacks the B domain revealed that FVIII-ASGPR complex assembly is driven by structure elements within the B domain of the heavy chain. The FVIII heavy chain-ASGPR interaction required calcium ions and was inhibited by soluble D-galactose. Furthermore, deglycosylation of the FVIII heavy chain by endoglycosidase F completely abrogated the interaction with ASGPR. In clearance experiments in mice, the FVIII mean residence time was prolonged by the ASGPR-antagonist asialo-orosomucoid (ASOR). CONCLUSIONS We conclude that asparagine-linked oligosaccharide structures of the FVIII B domain recognize the carbohydrate recognition domains of ASGPR and that an ASOR-sensitive mechanism, most likely ASGPR, contributes to the catabolism of coagulation FVIII in vivo.
Collapse
Affiliation(s)
- N Bovenschen
- Department of Plasma Proteins, Sanquin Research at CLB, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|