1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Scotton E, Ziani PR, Wilges RLB, da Rosa Correa PH, Giordano LA, Goularte JF, Schons T, Almeida FB, Stein DJ, de Castro JM, de Bastiani MA, de Oliveira Soares EG, Paixão DB, da Silva CDG, Schneider PH, Colombo R, Rosa AR. Molecular signature underlying (R)-ketamine rapid antidepressant response on anhedonic-like behavior induced by sustained exposure to stress. Pharmacol Biochem Behav 2024; 245:173882. [PMID: 39488299 DOI: 10.1016/j.pbb.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Anhedonia induced by sustained stress exposure is a hallmark symptom of major depressive disorder (MDD) and in rodents, it can be accessed through the sucrose preference test (SPT). (R)-ketamine is a fast-acting antidepressant with less detrimental side effects and abuse liability compared to racemic ketamine. The present study combined high-throughput proteomics and network analysis to identify molecular mechanisms involved in chronic variable stress (CVS)-induced anhedonia and promising targets underlying (R)-ketamine rapid antidepressant response. Male Wistar rats were subjected to CVS for five weeks. Based on the SPT, animals were clustered into resilient or anhedonic-like (ANH) groups. ANH rats received a single dose of saline or (R)-ketamine (20 mg/kg, i.p.), which was proceeded by treatment response evaluation. After prefrontal cortex collection, proteomic analysis was performed to uncover the differentially expressed proteins (DEPs) related to both anhedonic-like behavior and pharmacological response. The behavioral assessment showed that the ANH animals had a significant decrease in SPT, and that (R)-ketamine responders showed a reversal of anhedonic-like behavior. On a molecular level, anhedonia-like behavior was associated with the downregulation of Neuronal Pentraxin Receptor (Nptxr) and Galectin-1 (Gal-1). These data reinforce a disruption in the inflammatory response, neurotransmitter receptor activity, and glutamatergic synapses in chronic stress-induced anhedonia. (R)-ketamine response-associated DEPs included novel potential targets involved in the modulation of oxidative stress, energetic metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, converging to biological themes extensively documented in MDD physiopathology. Our data provide valuable insights into the molecular mechanisms underlying the response to (R)-ketamine and highlight these pathways as potential therapeutic targets for anhedonia. By addressing proteins involved in oxidative stress, energy metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, we can target multiple key factors involved in the pathophysiology of MDD. Modulating these proteins could open avenues for novel therapeutic strategies and deepen our understanding of anhedonia, offering hope for improved outcomes in individuals facing this challenging condition. However, additional studies will be essential to validate these findings and further explore their therapeutic implications.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Henrique da Rosa Correa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Lucas Azambuja Giordano
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jéferson Ferraz Goularte
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Tainá Schons
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Felipe Borges Almeida
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Dirson João Stein
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Josimar Macedo de Castro
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; School of Medicine and Post-Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Marco Antônio de Bastiani
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Douglas Bernardo Paixão
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caren Daniele Galeano da Silva
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Henrique Schneider
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil..
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Zhang N, Gao S, Peng H, Wu J, Li H, Gibson C, Wu S, Zhu J, Zheng Q. Chemical Proteomic Profiling of Protein Dopaminylation in Colorectal Cancer Cells. J Proteome Res 2024; 23:2651-2660. [PMID: 38838187 DOI: 10.1021/acs.jproteome.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid of H3 (i.e., glutamine) and dopamine. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of its regulator, transglutaminase 2 (TGM2), in colon cancer cells. Due to the enzyme promiscuity of TGM2, nonhistone proteins have also been identified as dopaminylation targets; however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of dopaminylation sites were identified and attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that targeting these pathways may become a promising anticancer strategy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Forcella P, Ifflander N, Rolando C, Balta EA, Lampada A, Giachino C, Mukhtar T, Bock T, Taylor V. SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize Nfib mRNA. eLife 2024; 13:e74940. [PMID: 38722021 PMCID: PMC11149935 DOI: 10.7554/elife.74940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.
Collapse
Affiliation(s)
- Pascal Forcella
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | - Chiara Rolando
- Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Biosciences, University of MilanMilanItaly
| | - Elli-Anna Balta
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | | | - Tanzila Mukhtar
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of BaselBaselSwitzerland
| | - Verdon Taylor
- Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
5
|
Zhang N, Gao S, Peng H, Wu J, Li H, Gibson C, Wu S, Zhu J, Zheng Q. Chemical proteomic profiling of protein dopaminylation in colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591460. [PMID: 38712070 PMCID: PMC11071480 DOI: 10.1101/2024.04.27.591460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid residue of H3 ( i.e. , glutamine) and dopamine. In our previous studies, we discovered that the dynamics of this post-translational modification (including installation, removal, and replacement) were regulated by a single enzyme, transglutaminase 2 (TGM2), through reversible transamination. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of TGM2 in colon cancer cells. Due to the enzyme promiscuity of TGM2, non-histone proteins have also been identified as targets of dopaminylation on glutamine residues, however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of modification sites of these dopaminylated proteins were identified, attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that to block the installation of protein dopaminylation may become a promising anti-cancer strategy. TOC
Collapse
|
6
|
Raposo M, Hübener-Schmid J, Ferreira AF, Vieira Melo AR, Vasconcelos J, Pires P, Kay T, Garcia-Moreno H, Giunti P, Santana MM, Pereira de Almeida L, Infante J, van de Warrenburg BP, de Vries JJ, Faber J, Klockgether T, Casadei N, Admard J, Schöls L, Riess O, Lima M. Blood transcriptome sequencing identifies biomarkers able to track disease stages in spinocerebellar ataxia type 3. Brain 2023; 146:4132-4143. [PMID: 37071051 DOI: 10.1093/brain/awad128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.
Collapse
Affiliation(s)
- Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72072 Tübingen, Germany
| | - Ana F Ferreira
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - João Vasconcelos
- Serviço de Neurologia, Hospital do Divino Espírito Santo, 9500-370 Ponta Delgada, Portugal
| | - Paula Pires
- Serviço de Neurologia, Hospital do Santo Espírito da Ilha Terceira, 9700-049 Angra do Heroísmo, Portugal
| | - Teresa Kay
- Serviço de Genética Clínica, Hospital D. Estefânia, 1169-045 Lisboa, Portugal
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Magda M Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3000-075, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3000-075, Portugal
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Bart P van de Warrenburg
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, 6525 EN Nijmegen, The Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Ludger Schöls
- Department for Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, 72016 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72016 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72072 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
7
|
Zhen H, Yao Y, Yang H. SAFB2 Inhibits the Progression of Breast Cancer by Suppressing the Wnt/β-Catenin Signaling Pathway via NFAT5. Mol Biotechnol 2023; 65:1465-1475. [PMID: 36652182 DOI: 10.1007/s12033-022-00649-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Aberrant scaffold attachment factor-B2 (SAFB2) expression is associated with several malignant tumors. In this study, we investigated how SAFB2 worked in the process of breast cancer as well as the underlying mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were used to investigate the expression of SAFB2 and nuclear factor of activated T cells 5 (NFAT5). Cellular proliferative ability was detected with cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) staining assays. Cell apoptosis was measured via flow cytometry and western blotting analysis. Wound healing, transwell assays, and western blotting analysis were executed to estimate cell migration and invasion. The relationship between SAFB2 and NFAT5 was verified by RNA immunoprecipitation (RIP) assay and NFAT5 mRNA stability was examined with actinomycin (Act) D assay. Western blotting analysis also tested the expression of Wnt/β-catenin signaling-associated proteins. As a result, SAFB2 was downregulated in breast cancer cell lines, while NFAT5 was highly expressed in most breast cancer cell lines. Overexpression of SAFB2 suppressed the proliferation, migration, and invasion while exacerbated the apoptosis of breast cancer cells. SAFB2 interacted with NFAT5 mRNA and declined the stability of NFAT5 mRNA. Overexpression of NFAT5 counteracted anti-proliferative, anti-metastatic and pro-apoptotic effects of SAFB2 in breast cancer cells. Mechanistically, SAFB2 overexpression inhibited the Wnt/β-catenin signaling pathway, while this effect was partially eliminated by NFAT5. Collectively, SAFB2 hindered breast cancer development and inactivated Wnt/β-catenin signaling via regulation of NFAT5, suggesting that SAFB2 might be a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Huifen Zhen
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Yarong Yao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Haibo Yang
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China.
| |
Collapse
|
8
|
Korn SM, Von Ehr J, Dhamotharan K, Tants JN, Abele R, Schlundt A. Insight into the Structural Basis for Dual Nucleic Acid-Recognition by the Scaffold Attachment Factor B2 Protein. Int J Mol Sci 2023; 24:ijms24043286. [PMID: 36834708 PMCID: PMC9958909 DOI: 10.3390/ijms24043286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.
Collapse
Affiliation(s)
- Sophie M. Korn
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Julian Von Ehr
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
9
|
Russi S, Marano L, Laurino S, Calice G, Scala D, Marino G, Sgambato A, Mazzone P, Carbone L, Napolitano G, Roviello F, Falco G, Zoppoli P. Gene Regulatory Network Characterization of Gastric Cancer's Histological Subtypes: Distinctive Biological and Clinically Relevant Master Regulators. Cancers (Basel) 2022; 14:4961. [PMID: 36230884 PMCID: PMC9563962 DOI: 10.3390/cancers14194961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer (GC) molecular heterogeneity represents a major determinant for clinical outcomes, and although new molecular classifications have been introduced, they are not easy to translate from bench to bedside. We explored the data from GC public databases by performing differential gene expression analysis (DEGs) and gene network reconstruction to identify master regulators (MRs), as well as a gene set analysis (GSA) to reveal their biological features. Moreover, we evaluated the association of MRs with clinicopathological parameters. According to the GSA, the Diffuse group was characterized by an epithelial-mesenchymal transition (EMT) and inflammatory response, while the Intestinal group was associated with a cell cycle and drug resistance pathways. In particular, the regulons of Diffuse MRs, such as Vgll3 and Ciita, overlapped with the EMT and interferon-gamma response, while the regulons Top2a and Foxm1 were shared with the cell cycle pathways in the Intestinal group. We also found a strict association between MR activity and several clinicopathological features, such as survival. Our approach led to the identification of genes and pathways differentially regulated in the Intestinal and Diffuse GC histotypes, highlighting biologically interesting MRs and subnetworks associated with clinical features and prognosis, suggesting putative actionable candidates.
Collapse
Affiliation(s)
- Sabino Russi
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Luigi Marano
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Simona Laurino
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Giovanni Calice
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Dario Scala
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Graziella Marino
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Alessandro Sgambato
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Pellegrino Mazzone
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Ludovico Carbone
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giuliana Napolitano
- Department of Biology, University of Naples ‘Federico II’, 80126 Naples, Italy
| | - Franco Roviello
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Geppino Falco
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
- Department of Biology, University of Naples ‘Federico II’, 80126 Naples, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Health Biotechnolgy, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
11
|
Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 2021; 35:e21621. [PMID: 33977573 DOI: 10.1096/fj.202002476rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.
Collapse
Affiliation(s)
- Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Vijay Anand
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute (TANUVAS), Orathanadu, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Manoj K Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Jai K Kaushik
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| |
Collapse
|
12
|
Onoguchi M, Zeng C, Matsumaru A, Hamada M. Binding patterns of RNA-binding proteins to repeat-derived RNA sequences reveal putative functional RNA elements. NAR Genom Bioinform 2021; 3:lqab055. [PMID: 34235430 PMCID: PMC8253551 DOI: 10.1093/nargab/lqab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recent reports have revealed that repeat-derived sequences embedded in introns or long noncoding RNAs (lncRNAs) are targets of RNA-binding proteins (RBPs) and contribute to biological processes such as RNA splicing or transcriptional regulation. These findings suggest that repeat-derived RNAs are important as scaffolds of RBPs and functional elements. However, the overall functional sequences of the repeat-derived RNAs are not fully understood. Here, we show the putative functional repeat-derived RNAs by analyzing the binding patterns of RBPs based on ENCODE eCLIP data. We mapped all eCLIP reads to repeat sequences and observed that 10.75 % and 7.04 % of reads on average were enriched (at least 2-fold over control) in the repeats in K562 and HepG2 cells, respectively. Using these data, we predicted functional RNA elements on the sense and antisense strands of long interspersed element 1 (LINE1) sequences. Furthermore, we found several new sets of RBPs on fragments derived from other transposable element (TE) families. Some of these fragments show specific and stable secondary structures and are found to be inserted into the introns of genes or lncRNAs. These results suggest that the repeat-derived RNA sequences are strong candidates for the functional RNA elements of endogenous noncoding RNAs.
Collapse
Affiliation(s)
- Masahiro Onoguchi
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ayako Matsumaru
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
13
|
Subcellular dynamics of estrogen-related receptors involved in transrepression through interactions with scaffold attachment factor B1. Histochem Cell Biol 2021; 156:239-251. [PMID: 34129097 DOI: 10.1007/s00418-021-01998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Estrogen-related receptor (ERR), a member of the nuclear receptor superfamily, consists of three subtypes (α, β, γ) and has strong homology with estrogen receptor. No endogenous ligands have been identified for ERRs, but they play key roles in metabolic, hormonal, and developmental processes as transcription factors without ligand binding. Although subnuclear dynamics are essential for nuclear events including nuclear receptor-mediated transcriptional regulation, the dynamics of ERRs are poorly understood. Here, we report that ERRs show subcellular kinetic changes in response to diethylstilbestrol (DES), a synthetic estrogen that represses the transactivity of all three ERR subtypes, using live-cell imaging with fluorescent protein labeling. Upon DES treatment, all ERR subtypes formed discrete clusters in the nucleus, with ERRγ also displaying nuclear export. Fluorescence recovery after photobleaching analyses revealed significant reductions in the intranuclear mobility of DES-bound ERRα and ERRβ, and a slight reduction in the intranuclear mobility of DES-bound ERRγ. After DES treatment, colocalization of all ERR subtypes with scaffold attachment factor B1 (SAFB1), a nuclear matrix-associated protein, was observed in dot-like subnuclear clusters, suggesting interactions of the ERRs with the nuclear matrix. Consistently, co-immunoprecipitation analyses confirmed enhanced interactions between ERRs and SAFB1 in the presence of DES. SAFB1 was clarified to repress the transactivity of all ERR subtypes through the ERR-response element. These results demonstrate ligand-dependent cluster formation of ERRs in the nucleus that is closely associated with SAFB1-mediated transrepression. Taken together, the present findings provide a new understanding of the pathophysiology regulated by ERR/SAFB1 signaling pathways and their subcellular dynamics.
Collapse
|
14
|
Fang W, Bartel DP. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Mol Cell 2020; 78:289-302.e6. [PMID: 32302541 PMCID: PMC7243034 DOI: 10.1016/j.molcel.2020.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Microprocessor initiates the processing of microRNAs (miRNAs) from the hairpin regions of primary transcripts (pri-miRNAs). Pri-miRNAs often contain multiple miRNA hairpins, and this clustered arrangement can assist in the processing of otherwise defective hairpins. We find that miR-451, which derives from a hairpin with a suboptimal terminal loop and a suboptimal stem length, accumulates to 40-fold higher levels when clustered with a helper hairpin. This phenomenon tolerates changes in hairpin order, linker lengths, and the identities of the helper hairpin, the recipient hairpin, the linker-sequence, and the RNA polymerase that transcribes the hairpins. It can act reciprocally and need not occur co-transcriptionally. It requires Microprocessor recognition of the helper hairpin and linkage of the two hairpins, yet predominantly manifests after helper-hairpin processing. It also requires enhancer of rudimentary homolog (ERH), which copurifies with Microprocessor and can dimerize and interact with other proteins that can dimerize, suggesting a model in which one Microprocessor recruits another Microprocessor.
Collapse
Affiliation(s)
- Wenwen Fang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Legøy TA, Ghila L, Vethe H, Abadpour S, Mathisen AF, Paulo JA, Scholz H, Ræder H, Chera S. In vivo hyperglycaemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiol (Oxf) 2020; 228:e13433. [PMID: 31872528 DOI: 10.1111/apha.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
AIM The loss of insulin-secreting β-cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. METHODS To rigorously study the effect of hyperglycaemia, in vitro differentiated human-induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)-diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1-week or 1-month exposure to overt hyperglycaemia and analysed by large-scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP-DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute β-cell ablation property in the absence of inflammation or other organ toxicity. RESULTS Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. CONCLUSION Hyperglycaemia exposure induced distinct, period-dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival.
Collapse
Affiliation(s)
- Thomas A. Legøy
- Department of Clinical Science University of Bergen Bergen Norway
| | - Luiza Ghila
- Department of Clinical Science University of Bergen Bergen Norway
| | - Heidrun Vethe
- Department of Clinical Science University of Bergen Bergen Norway
| | - Shadab Abadpour
- Hybrid Technology Hub‐Centre of Excellence Faculty of Medicine University of Oslo Oslo Norway
- Institute for Surgical Research and Department of Transplant Medicine Oslo University Hospital Oslo Norway
| | | | - Joao A. Paulo
- Department of Cell Biology Harvard Medical School Boston MA USA
| | - Hanne Scholz
- Hybrid Technology Hub‐Centre of Excellence Faculty of Medicine University of Oslo Oslo Norway
- Institute for Surgical Research and Department of Transplant Medicine Oslo University Hospital Oslo Norway
| | - Helge Ræder
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Pediatrics Haukeland University Hospital Bergen Norway
| | - Simona Chera
- Department of Clinical Science University of Bergen Bergen Norway
| |
Collapse
|
16
|
Scaffold attachment factor B: distribution and interaction with ERα in the rat brain. Histochem Cell Biol 2020; 153:323-338. [PMID: 32086573 DOI: 10.1007/s00418-020-01853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Scaffold attachment factor (SAFB) 1 and its homologue SAFB2 are multifunctional proteins that are involved in various cellular mechanisms, including chromatin organization and transcriptional regulation, and are also corepressors of estrogen receptor alpha (ERα). Both SAFBs are expressed at high levels in the brain. However, the distributions of SAFB1 and SAFB2 have yet to be characterized in detail and it is unclear whether both proteins interact with ERα in the brain. In this study, we investigated the expression and distribution of both SAFBs and their interaction with ERα in adult male rat brain. Immunohistochemical staining showed that SAFB1 and SAFB2 have a similar distribution pattern and are widely expressed throughout the brain. Double-fluorescence immunohistochemical and immunocytochemical analyses in primary cultures showed that the two SAFB proteins are localized in nuclei of neurons, astrocytes, and oligodendrocytes. Of note, SAFB2 was also found in cytoplasmic regions in these cell lineages. Both SAFB proteins were also expressed in ERα-positive cells in the medial preoptic area (MPOA) and arcuate and ventromedial hypothalamic nuclei. Co-immunoprecipitation experiments revealed that both SAFB proteins from the MPOA reciprocally interact with endogenous ERα. These results indicate that, in addition to a role in basal cellular function in the brain, the SAFB proteins may serve as ERα corepressors in hormone-sensitive regions.
Collapse
|
17
|
Nassa G, Giurato G, Salvati A, Gigantino V, Pecoraro G, Lamberti J, Rizzo F, Nyman TA, Tarallo R, Weisz A. The RNA-mediated estrogen receptor α interactome of hormone-dependent human breast cancer cell nuclei. Sci Data 2019; 6:173. [PMID: 31527615 PMCID: PMC6746822 DOI: 10.1038/s41597-019-0179-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023] Open
Abstract
Estrogen Receptor alpha (ERα) is a ligand-inducible transcription factor that mediates estrogen signaling in hormone-responsive cells, where it controls key cellular functions by assembling in gene-regulatory multiprotein complexes. For this reason, interaction proteomics has been shown to represent a useful tool to investigate the molecular mechanisms underlying ERα action in target cells. RNAs have emerged as bridging molecules, involved in both assembly and activity of transcription regulatory protein complexes. By applying Tandem Affinity Purification (TAP) coupled to mass spectrometry (MS) before and after RNase digestion in vitro, we generated a dataset of nuclear ERα molecular partners whose association with the receptor involves RNAs. These data provide a useful resource to elucidate the combined role of nuclear RNAs and the proteins identified here in ERα signaling to the genome in breast cancer and other cell types.
Collapse
Affiliation(s)
- Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372, Oslo, Norway
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
18
|
Matsuda KI, Hashimoto T, Kawata M. Intranuclear Mobility of Estrogen Receptor: Implication for Transcriptional Regulation. Acta Histochem Cytochem 2018; 51:129-136. [PMID: 30279614 PMCID: PMC6160615 DOI: 10.1267/ahc.18023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor that has two subtypes: ERα and ERβ. ERs regulate transcription of estrogen-responsive genes through interactions with multiple intranuclear components, such as cofactors and the nuclear matrix. Live cell imaging using fluorescent protein-labeled ERs has revealed that ligand-activated ERs are highly mobile in the nucleus, with transient association with the DNA and nuclear matrix. Scaffold attachment factor B (SAFB) 1 and its paralogue, SAFB2, are nuclear matrix-binding proteins that negatively modulate ERα-mediated transcription. Expression of SAFB1 and SAFB2 reduces the mobility of ERα in the presence of ligand. This regulatory machinery is emerging as an epigenetic-like mechanism that alters transcriptional activity through control of intranuclear molecular mobility.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takashi Hashimoto
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences
| | | |
Collapse
|
19
|
Stephenson SEM, Aumann TD, Taylor JM, Riseley JR, Li R, Mann JR, Tomas D, Lockhart PJ. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line. Sci Rep 2018; 8:7528. [PMID: 29760428 PMCID: PMC5951884 DOI: 10.1038/s41598-018-25766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022] Open
Abstract
Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.
Collapse
Affiliation(s)
- Sarah E M Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Juliet M Taylor
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica R Riseley
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Ruili Li
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Surgical Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Jeffrey R Mann
- Monash Genome Modification Platform, Monash University, Clayton, Victoria, Australia
| | - Doris Tomas
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, Burge CB, Wang ET, Gertler FB. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons. Neuron 2017; 95:608-622.e5. [PMID: 28735747 DOI: 10.1016/j.neuron.2017.06.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation.
Collapse
Affiliation(s)
- Marina Vidaki
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Frauke Drees
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanvi Saxena
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erwin Lanslots
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antonios Tatarakis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric T Wang
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
22
|
Légaré S, Basik M. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Mol Endocrinol 2016; 30:965-76. [PMID: 27581354 DOI: 10.1210/me.2016-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| | - Mark Basik
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|
23
|
Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, Phylactou L, Curk T, Campbell C, Ule J, Norman M, Uney JB. iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function. BMC Biol 2015; 13:111. [PMID: 26694817 PMCID: PMC4689037 DOI: 10.1186/s12915-015-0220-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level. Results iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3’ and 5’ untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9–10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion. Conclusions iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0220-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Rivers
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jalilah Idris
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Helen Scott
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Mark Rogers
- Intelligent Systems Laboratory, Department of Engineering & Mathematics, Merchant Venturers Building, University of Bristol, Bristol, BS8 1UB, UK.
| | - Youn-Bok Lee
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.
| | - Jessica Gaunt
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Leonidas Phylactou
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001, Ljubljana, Slovenia.
| | - Tomaz Curk
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus.
| | - Colin Campbell
- Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Michael Norman
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - James B Uney
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
24
|
Jiang S, Katz TA, Garee JP, DeMayo FJ, Lee AV, Oesterreich S. Scaffold attachment factor B2 (SAFB2)-null mice reveal non-redundant functions of SAFB2 compared with its paralog, SAFB1. Dis Model Mech 2015; 8:1121-7. [PMID: 26092125 PMCID: PMC4582101 DOI: 10.1242/dmm.019885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Scaffold attachment factors SAFB1 and SAFB2 are multifunctional proteins that share >70% sequence similarity. SAFB1-knockout (SAFB1(-/-)) mice display a high degree of lethality, severe growth retardation, and infertility in male mice. To assess the in vivo role of SAFB2, and to identify unique functions of the two paralogs, we generated SAFB2(-/-) mice. In stark contrast to SAFB1(-/-), SAFB2(-/-) offspring were born at expected Mendelian ratios and did not show any obvious defects in growth or fertility. Generation of paralog-specific antibodies allowed extensive expression analysis of SAFB1 and SAFB2 in mouse tissues, showing high expression of both SAFB1 and SAFB2 in the immune system, and in hormonally controlled tissues, with especially high expression of SAFB2 in the male reproductive tract. Further analysis showed a significantly increased testis weight in SAFB2(-/-) mice, which was associated with an increased number of Sertoli cells. Our data suggest that this is at least in part caused by alterations in androgen-receptor function and expression upon deletion of SAFB2. Thus, despite a high degree of sequence similarity, SAFB1(-/-) and SAFB2(-/-) mice do not totally phenocopy each other. SAFB2(-/-) mice are viable, and do not show any major defects, and our data suggest a role for SAFB2 in the differentiation and activity of Sertoli cells that deserves further study.
Collapse
Affiliation(s)
- Shiming Jiang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany A Katz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jason P Garee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adrian V Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Steffi Oesterreich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
25
|
Tassano E, De Santis LR, Corona MF, Parmigiani S, Zanetti D, Porta S, Gimelli G, Cuoco C. Concomitant deletion of chromosome 16p13.11 and triplication of chromosome 19p13.3 in a child with developmental disorders, intellectual disability, and epilepsy. Mol Cytogenet 2015; 8:9. [PMID: 25705258 PMCID: PMC4335438 DOI: 10.1186/s13039-015-0115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 04/09/2024] Open
Abstract
Background Rare copy number variations (CNVs) are today recognized as an important cause of various neurodevelopmental disorders, including mental retardation and epilepsy. In some cases, a second CNV may contribute to a more severe clinical presentation. Results Here we describe a patient with epilepsy, mental retardation, developmental disorders, and dysmorphic features, who inherited a deletion of 16p13.11 and a triplication of 19p13.3 from his father and mother, respectively. The mother presented mild mental retardation and language delay too. Conclusions We discuss the phenotypic consequences of the two CNVs and suggest that their synergistic effect is likely responsible for the complicated clinical features observed in our patient.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | | | | | | | - Dalila Zanetti
- SSD Genetica Medica, Ospedale S. Andrea, La Spezia, Italy
| | - Simona Porta
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | - Cristina Cuoco
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
26
|
Zheng B, Zhou Q, Guo Y, Shao B, Zhou T, Wang L, Zhou Z, Sha J, Guo X, Huang X. Establishment of a proteomic profile associated with gonocyte and spermatogonial stem cell maturation and differentiation in neonatal mice. Proteomics 2014; 14:274-85. [DOI: 10.1002/pmic.201300395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/08/2013] [Accepted: 12/01/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Quan Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Binbin Shao
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Lei Wang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
27
|
Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2. Oncogene 2013; 33:3235-45. [PMID: 23893242 DOI: 10.1038/onc.2013.294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022]
Abstract
The androgen receptor (AR) is a transcription factor that employs many diverse interactions with coregulatory proteins in normal physiology and in prostate cancer (PCa). The AR mediates cellular responses in association with chromatin complexes and kinase cascades. Here we report that the nuclear matrix protein, scaffold attachment factor B1 (SAFB1), regulates AR activity and AR levels in a manner that suggests its involvement in PCa. SAFB1 mRNA expression was lower in PCa in comparison with normal prostate tissue in a majority of publicly available RNA expression data sets. SAFB1 protein levels were also reduced with disease progression in a cohort of human PCa that included metastatic tumors. SAFB1 bound to AR and was phosphorylated by the MST1 (Hippo homolog) serine-threonine kinase, previously shown to be an AR repressor, and MST1 localization to AR-dependent promoters was inhibited by SAFB1 depletion. Knockdown of SAFB1 in androgen-dependent LNCaP PCa cells increased AR and prostate-specific antigen (PSA) levels, stimulated growth of cultured cells and subcutaneous xenografts and promoted a more aggressive phenotype, consistent with a repressive AR regulatory function. SAFB1 formed a complex with the histone methyltransferase EZH2 at AR-interacting chromatin sites in association with other polycomb repressive complex 2 (PRC2) proteins. We conclude that SAFB1 acts as a novel AR co-regulator at gene loci where signals from the MST1/Hippo and EZH2 pathways converge.
Collapse
|
28
|
Davidson S, Macpherson N, Mitchell JA. Nuclear organization of RNA polymerase II transcription. Biochem Cell Biol 2013; 91:22-30. [PMID: 23442138 DOI: 10.1139/bcb-2012-0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription occurs at distinct nuclear compartments termed transcription factories that are specialized for transcription by 1 of the 3 polymerase complexes (I, II, or III). Protein-coding genes appear to move in and out of RNA polymerase II (RNAPII) compartments as they are expressed and silenced. In addition, transcription factories are sites where several transcription units, either from the same chromosome or different chromosomes, are transcribed. Chromosomes occupy distinct territories in the interphase nucleus with active genes preferentially positioned on the periphery or even looped out of the territory. These chromosome territories have been observed to intermingle in the nucleus, and multiple interactions among different chromosomes have been identified in genome-wide studies. Deep sequencing of the transcriptome and RNAPII associated on DNA obtained by chromatin immunoprecipitation have revealed a plethora of noncoding transcription and intergenic accumulations of RNAPII that must also be considered in models of genome function. The organization of transcription into distinct regions of the nucleus has changed the way we view transcription with the evolving model for silencing or activation of gene expression involving physical relocation of the transcription unit to a silencing or activation compartment, thus, highlighting the need to consider the process of transcription in the 3-dimensional nuclear space.
Collapse
Affiliation(s)
- Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
29
|
Soldi M, Bonaldi T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol Cell Proteomics 2013; 12:764-80. [PMID: 23319141 PMCID: PMC3591667 DOI: 10.1074/mcp.m112.024307] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, Milan, Italy
| | | |
Collapse
|
30
|
Abstract
SAFB1 (scaffold attachment factor B1) and a second family member SAFB2, are multifunctional proteins implicated in a variety of cellular processes including cell growth, apoptosis and stress response. Their potential function as tumour suppressors has been proposed based on well-described roles in tran-scriptional repression. The present review summarizes the current knowledge of SAFB1 and SAFB2 proteins in transcriptional repression with relevance to cancer.
Collapse
|
31
|
Hashimoto T, Matsuda KI, Kawata M. Scaffold attachment factor B (SAFB)1 and SAFB2 cooperatively inhibit the intranuclear mobility and function of ERα. J Cell Biochem 2012; 113:3039-50. [PMID: 22566185 DOI: 10.1002/jcb.24182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estrogen receptor alpha (ERα) plays a key role in physiological and pathophysiological processes as a ligand-activated transcriptional factor that is regulated by cofactors. ERα-mediated transcriptional regulation is closely correlated with the mobility of ERα in the nucleus in association with the nuclear matrix, the framework for nuclear events including transcription. However, the relationship between ERα mobility and the cofactors of ERα is unclear. Scaffold attachment factor B1 (SAFB1) and its paralog SAFB2 are nuclear matrix binding proteins that have been characterized as ERα corepressors. Here, using chimeric fluorescent proteins (FPs), we show that SAFB1 and SAFB2 colocalize with ERα in the nucleus of living cells after 17β-estradiol (E2) treatment. Co-immunoprecipitation (co-IP) experiments indicated that ERα interacts with both SAFB1 and SAFB2 in the presence of E2. Fluorescence recovery after photobleaching analysis revealed that SAFB1 and SAFB2 each decrease ERα mobility, and interestingly, coexpression of SAFB1 and SAFB2 causes a synergistic reduction in ERα dynamics under E2 treatment. In accordance with these mobility changes, ERα-mediated transcription and proliferation are cooperatively inhibited by SAFB1 and SAFB2. These results indicate that SAFB1 and SAFB2 are crucial repressors for ERα dynamics in association with the nuclear matrix and that their synergistic regulation of ERα mobility is sufficient for inhibiting ERα function.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
32
|
Song M, Hakala K, Weintraub ST, Shiio Y. Quantitative proteomic identification of the BRCA1 ubiquitination substrates. J Proteome Res 2011; 10:5191-8. [PMID: 21950761 DOI: 10.1021/pr200662b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutation of the BRCA1 tumor suppressor gene predisposes women to hereditary breast and ovarian cancers. BRCA1 forms a heterodimer with BARD1. The BRCA1/BARD1 heterodimer has ubiquitin ligase activity, considered to play crucial roles in tumor suppression and DNA damage response. Nevertheless, relevant BRCA1 substrates are poorly defined. We have developed a new approach to systematically identify the substrates of ubiquitin ligases by identifying proteins that display an enhanced incorporation of His-tagged ubiquitin upon ligase coexpression; using this method, we identified several candidate substrates for BRCA1. These include scaffold attachment factor B2 (SAFB2) and Tel2 as well as BARD1. BRCA1 was found to enhance SAFB protein expression and induce Tel2 nuclear translocation. Identification of the ubiquitination substrates has been a major obstacle to understanding the functions of ubiquitin ligases. The quantitative proteomics approach we devised for the identification of BRCA1 substrates will facilitate the identification of ubiquitin ligase-substrate pairs.
Collapse
Affiliation(s)
- Meihua Song
- Department of Biochemistry, The University of Texas Health Science Center , San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
33
|
Farber DB, Theendakara VP, Akhmedov NB, Saghizadeh M. ZBED4, a novel retinal protein expressed in cones and Müller cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 664:79-87. [PMID: 20238005 DOI: 10.1007/978-1-4419-1399-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To identify genes expressed in cone photoreceptors, we previously carried out subtractive hybridization and microarrays of retinal mRNAs from normal and cd (cone degeneration) dogs. One of the isolated genes encoded ZBED4, a novel protein that in human retina is localized to cone photoreceptors and glial Müller cells. ZBED4 is distributed between nuclear and cytoplasmic fractions of the retina and it readily forms homodimers, probably as a consequence of its hATC dimerization domain. In addition, the ZBED4 sequence has several domains that suggest it may function as part of a co-activator complex facilitating the activation of nuclear receptors and other factors (BED finger domains) or as a co-activator/co-repressor of nuclear hormone receptors (LXXLL motifs). We have identified several putative ZBED4-interacting proteins and one of them is precisely a co-repressor of the estrogen receptor alpha.
Collapse
Affiliation(s)
- Debora B Farber
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095-7000, USA.
| | | | | | | |
Collapse
|
34
|
Garee JP, Meyer R, Oesterreich S. Co-repressor activity of scaffold attachment factor B1 requires sumoylation. Biochem Biophys Res Commun 2011; 408:516-22. [PMID: 21527249 PMCID: PMC3955274 DOI: 10.1016/j.bbrc.2011.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/08/2011] [Indexed: 01/14/2023]
Abstract
Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.
Collapse
Affiliation(s)
- Jason P Garee
- Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Rene Meyer
- Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Systems Biology of Signal Transduction, German Cancer Research Center (DFKZ), INF 280, 69120 Heidelberg, Germany
| | - Steffi Oesterreich
- Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Peidis P, Voukkalis N, Aggelidou E, Georgatsou E, Hadzopoulou-Cladaras M, Scott RE, Nikolakaki E, Giannakouros T. SAFB1 interacts with and suppresses the transcriptional activity of p53. FEBS Lett 2010; 585:78-84. [DOI: 10.1016/j.febslet.2010.11.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023]
|
36
|
Lalevée S, Bour G, Quinternet M, Samarut E, Kessler P, Vitorino M, Bruck N, Delsuc MA, Vonesch JL, Kieffer B, Rochette-Egly C. Vinexinß, an atypical "sensor" of retinoic acid receptor gamma signaling: union and sequestration, separation, and phosphorylation. FASEB J 2010; 24:4523-34. [PMID: 20634350 DOI: 10.1096/fj.10-160572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The transcriptional activity of nuclear retinoic acid receptors (RARs) relies on the association/dissociation of coregulators at the ligand-binding domain. However, we determined that the N-terminal domain (NTD) also plays a role through its phosphorylation, and we isolated vinexinβ, a cytoskeleton protein with three SH3 domains, as a new partner of the RARγ NTD. Here we deciphered the mechanism of the interaction and its role in RARγ-mediated transcription. By combining molecular and biophysical (surface plasmon resonance, NMR, and fluorescence resonance energy transfer) approaches, we demonstrated that the third SH3 domain of vinexinβ interacts with a proline-rich domain (PRD) located in RARγ NTD and that phosphorylation at a serine located in the PRD abrogates the interaction. The affinity of the interaction was also evaluated. In vivo, vinexinβ represses RARγ-mediated transcription and we dissected the underlying mechanism in chromatin immunoprecipitation experiments performed with F9 cells expressing RARγ wild type or mutated at the phosphorylation site. In the absence of retinoic acid (RA), vinexinβ does not occupy RARγ target gene promoters and sequesters nonphosphorylated RARγ out of promoters. In response to RA, RARγ becomes phosphorylated and dissociates from vinexinβ. This separation allows RARγ to occupy promoters. This is the first report of an RAR corepressor association/dissociation out of promoters and regulated by phosphorylation.
Collapse
Affiliation(s)
- Sébastien Lalevée
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U596, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Garee JP, Oesterreich S. SAFB1's multiple functions in biological control-lots still to be done! J Cell Biochem 2010; 109:312-9. [PMID: 20014070 DOI: 10.1002/jcb.22420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The examination of scaffold attachment factor B1 (SAFB1) and its multiple functions and tasks in cellular processes provides insight into its role in diseases, such as cancer. SAFB1 is a large multi-domain protein with well-described functions in transcriptional repression, and RNA splicing. It is ubiquitously expressed, and has been shown to be important in numerous cellular processes including cell growth, stress response, and apoptosis. SAFB1 is part of a protein family with at least two other family members, SAFB2 and the SAFB-like transcriptional modulator SLTM. The goal of this prospect article is to summarize known functions of SAFB1, and its roles in cellular processes, but also to speculate on less well described, novel attributes of SAFB1, such as a potential role in chromatin organization. This timely review shows aspects of SAFB1, which are proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jason P Garee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
38
|
Alfonso-Parra C, Maggert KA. Drosophila SAF-B links the nuclear matrix, chromosomes, and transcriptional activity. PLoS One 2010; 5:e10248. [PMID: 20422039 PMCID: PMC2857882 DOI: 10.1371/journal.pone.0010248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/26/2010] [Indexed: 02/06/2023] Open
Abstract
Induction of gene expression is correlated with alterations in nuclear organization, including proximity to other active genes, to the nuclear cortex, and to cytologically distinct domains of the nucleus. Chromosomes are tethered to the insoluble nuclear scaffold/matrix through interaction with Scaffold/Matrix Attachment Region (SAR/MAR) binding proteins. Identification and characterization of proteins involved in establishing or maintaining chromosome-scaffold interactions is necessary to understand how the nucleus is organized and how dynamic changes in attachment are correlated with alterations in gene expression. We identified and characterized one such scaffold attachment factor, a Drosophila homolog of mammalian SAF-B. The large nuclei and chromosomes of Drosophila have allowed us to show that SAF-B inhabits distinct subnuclear compartments, forms weblike continua in nuclei of salivary glands, and interacts with discrete chromosomal loci in interphase nuclei. These interactions appear mediated either by DNA-protein interactions, or through RNA-protein interactions that can be altered during changes in gene expression programs. Extraction of soluble nuclear proteins and DNA leaves SAF-B intact, showing that this scaffold/matrix-attachment protein is a durable component of the nuclear matrix. Together, we have shown that SAF-B links the nuclear scaffold, chromosomes, and transcriptional activity.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Keith A. Maggert
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Peidis P, Giannakouros T, Burow ME, Williams RW, Scott RE. Systems genetics analyses predict a transcription role for P2P-R: molecular confirmation that P2P-R is a transcriptional co-repressor. BMC SYSTEMS BIOLOGY 2010; 4:14. [PMID: 20184719 PMCID: PMC2843647 DOI: 10.1186/1752-0509-4-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
Background The 250 kDa P2P-R protein (also known as PACT and Rbbp6) was cloned over a decade ago and was found to bind both the p53 and Rb1 tumor suppressor proteins. In addition, P2P-R has been associated with multiple biological functions, such as mitosis, mRNA processing, translation and ubiquitination. In the current studies, the online GeneNetwork system was employed to further probe P2P-R biological functions. Molecular studies were then performed to confirm the GeneNetwork evaluations. Results GeneNetwork and associated gene ontology links were used to investigate the coexpression of P2P-R with distinct functional sets of genes in an adipocyte genetic reference panel of HXB/BXH recombinant strains of rats and an eye genetic reference panel of BXD recombinant inbred strains of mice. The results establish that biological networks of 75 and 135 transcription-associated gene products that include P2P-R are co-expressed in a genetically-defined manner in rat adipocytes and in the mouse eye, respectively. Of this large set of transcription-associated genes, >10% are associated with hormone-mediated transcription. Since it has been previously reported that P2P-R can bind the SRC-1 transcription co-regulatory factor (steroid receptor co-activator 1, [Ncoa1]), the possible effects of P2P-R on estrogen-induced transcription were evaluated. Estrogen-induced transcription was repressed 50-70% by the transient transfection of P2P-R plasmid constructs into four different cell types. In addition, knockdown of P2P-R expression using an antisense oligonucleotide increased estrogen-mediated transcription. Co-immunoprecipitation assays confirmed that P2P-R interacts with SRC-1 and also demonstrated that P2P-R interacts with estrogen receptor α. Conclusions The findings presented in this study provide strong support for the value of systems genetics, especially GeneNetwork, in discovering new functions of genes that can be confirmed by molecular analysis. More specifically, these data provide evidence that the expression of P2P-R co-varies in a genetically-defined manner with large transcription networks and that P2P-R can function as a co-repressor of estrogen-dependent transcription.
Collapse
Affiliation(s)
- Philippos Peidis
- Laboratory of Biochemistry, Department of Chemistry, The Aristotle University, 54124 Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
40
|
Abstract
The functional significance of changes in nuclear structure and organization in transformed cells remains one of the most enigmatic questions in cancer biology. In this review, we discuss relationships between nuclear organization and transcription in terms of the three-dimensional arrangement of genes in the interphase cancer nucleus and the regulatory functions of nuclear matrix proteins. We also analyse the role of nuclear topology in the generation of gene fusions. We speculate that this type of multi-layered analysis will one day provide a framework for a more comprehensive understanding of the genetic origins of cancer and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Elliott Lever
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | | |
Collapse
|
41
|
Hammerich-Hille S, Kaipparettu BA, Tsimelzon A, Creighton CJ, Jiang S, Polo JM, Melnick A, Meyer R, Oesterreich S. SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells. J Biol Chem 2010; 285:3608-3616. [PMID: 19901029 PMCID: PMC2823501 DOI: 10.1074/jbc.m109.066431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/04/2009] [Indexed: 12/18/2022] Open
Abstract
The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes.
Collapse
Affiliation(s)
- Stephanie Hammerich-Hille
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Benny A Kaipparettu
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Anna Tsimelzon
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Chad J Creighton
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Shiming Jiang
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030
| | - Jose M Polo
- the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ari Melnick
- the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rene Meyer
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Houston, Texas 77030 and
| | - Steffi Oesterreich
- From the Lester and Sue Smith Breast Center, Department of Medicine and Molecular and Cellular Biology, Texas Children's Cancer Center, Houston, Texas 77030; Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Houston, Texas 77030 and.
| |
Collapse
|
42
|
Abstract
Activation of estrogen receptor alpha (ERalpha) results in both induction and repression of gene transcription; while mechanistic details of estrogen induction are well described, details of repression remain largely unknown. We characterized several ERalpha-repressed targets and examined in detail the mechanism for estrogen repression of Reprimo (RPRM), a cell cycle inhibitor. Estrogen repression of RPRM is rapid and robust and requires a tripartite interaction between ERalpha, histone deacetylase 7 (HDAC7), and FoxA1. HDAC7 is the critical HDAC needed for repression of RPRM; it can bind to ERalpha and represses ERalpha's transcriptional activity--this repression does not require HDAC7's deacetylase activity. We further show that the chromatin pioneer factor FoxA1, well known for its role in estrogen induction of genes, is recruited to the RPRM promoter, is necessary for repression of RPRM, and interacts with HDAC7. Like other FoxA1 recruitment sites, the RPRM promoter is characterized by H3K4me1/me2. Estrogen treatment causes decreases in H3K4me1/me2 and release of RNA polymerase II (Pol II) from the RPRM proximal promoter. Overall, these data implicate a novel role for HDAC7 and FoxA1 in estrogen repression of RPRM, a mechanism which could potentially be generalized to many more estrogen-repressed genes and hence be important in both normal physiology and pathological processes.
Collapse
|
43
|
Tsianou D, Nikolakaki E, Tzitzira A, Bonanou S, Giannakouros T, Georgatsou E. The enzymatic activity of SR protein kinases 1 and 1a is negatively affected by interaction with scaffold attachment factors B1 and 2. FEBS J 2009; 276:5212-27. [PMID: 19674106 DOI: 10.1111/j.1742-4658.2009.07217.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SR protein kinases (SRPKs) phosphorylate Ser/Arg dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. Phosphorylation by SRPKs constitutes a major way of regulating such cellular mechanisms. In the past, we have shown that SRPK1a interacts with the nuclear matrix protein scaffold attachment factor B1 (SAFB1) via its unique N-terminal domain, which differentiates it from SRPK1. In this study, we show that SAFB1 inhibits the activity of both SRPK1a and SRPK1 in vitro and that its RE-rich region is redundant for the observed inhibition. We demonstrate that kinase activity inhibition is caused by direct binding of SAFB1 to SRPK1a and SRPK1, and we also present evidence for the in vitro binding of SAFB2 to the two kinases, albeit with different affinity. Moreover, we show that both SR protein kinases can form complexes with both scaffold attachment factors B in living cells and that this interaction is capable of inhibiting their activity, depending on the tenacity of the complex formed. Finally, we present data demonstrating that SRPK/SAFB complexes are present in the nucleus of HeLa cells and that the enzymatic activity of the nuclear matrixlocalized SRPK1 is repressed. These results suggest a new role for SAFB proteins as regulators of SRPK activity and underline the importance of the assembly of transient intranuclear complexes in cellular regulation.
Collapse
Affiliation(s)
- Dora Tsianou
- Department of Medicine, University of Thessaly, Mezourlo, 41110 Larissa, Greece
| | | | | | | | | | | |
Collapse
|
44
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|
45
|
Low SAFB levels are associated with worse outcome in breast cancer patients. Breast Cancer Res Treat 2009; 121:503-9. [PMID: 19137425 DOI: 10.1007/s10549-008-0297-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
The scaffold attachment factors SAFB1 and SAFB2 have been shown to function as estrogen receptor (ERalpha) co-repressors in breast cancer cells, and to affect many cellular processes such as stress response, RNA processing, and apoptosis. SAFB1 and SAFB2 have also been implicated in breast tumorigenesis: Their shared chromosomal locus at 19p13 is frequently lost in breast cancer, mutations have been identified, and overexpression results in growth inhibition. The purpose of this study was to determine SAFB1/SAFB2 protein expression in human breast tumors, to correlate their expression with either natural progression ("prognostic factor") or with response to Tamoxifen ("predictive factor"), and to analyze potential correlations with tumor characteristics. SAFB1/SAFB2 protein were measured by immunoblotting using a pan-SAFB antibody in tumor extracts from patients with long-term clinical follow-up (n = 289), a subset of whom had received no adjuvant systemic therapy after breast cancer surgery (n = 117) and another subset of whom were treated with adjuvant Tamoxifen (n = 172). SAFB levels were correlated with clinico-pathological variables and patient outcome. SAFB levels varied widely, with 25 tumors not expressing detectable levels of SAFB. SAFB expression was significantly correlated with ERalpha, HER-2, bcl-2 and with expression of other ERalpha coregulators such as SRC-3. There was no association between SAFB expression and disease free survival, however, low SAFB expression was significantly associated with worse overall survival in patients who did not receive adjuvant therapy. This study shows that low SAFB protein levels predict poor prognosis of breast cancer patients, suggesting critical functions of SAFB1 and SAFB2 in breast cancer cells.
Collapse
|
46
|
No germline mutations in supposed tumour suppressor genes SAFB1 and SAFB2 in familial breast cancer with linkage to 19p. BMC MEDICAL GENETICS 2008; 9:108. [PMID: 19077293 PMCID: PMC2635354 DOI: 10.1186/1471-2350-9-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 12/13/2008] [Indexed: 01/12/2023]
Abstract
Background The scaffold attachment factor B1 and B2 genes, SAFB1/SAFB2 (both located on chromosome 19p13.3) have recently been suggested as tumour suppressor genes involved in breast cancer development. The assumption was based on functional properties of the two genes and loss of heterozygosity of intragenic markers in breast tumours further strengthened the postulated hypothesis. In addition, linkage studies in Swedish breast cancer families also indicate the presence of a susceptibility gene for breast cancer at the 19p locus. Somatic mutations in SAFB1/SAFB2 have been detected in breast tumours, but to our knowledge no studies on germline mutations have been reported. In this study we investigated the possible involvement of SAFB1/SAFB2 on familiar breast cancer by inherited mutations in either of the two genes. Results Mutation analysis in families showing linkage to the SAFB1/2 locus was performed by DNA sequencing. The complete coding sequence of the two genes SAFB1 and SAFB2 was analyzed in germline DNA from 31 affected women. No missense or frameshift mutations were detected. One polymorphism was found in SAFB1 and eight polymorphisms were detected in SAFB2. MLPA-anlysis showed that both alleles of the two genes were preserved which excludes gene inactivation by large deletions. Conclusion SAFB1 and SAFB2 are not likely to be causative of the hereditary breast cancer syndrome in west Swedish breast cancer families.
Collapse
|
47
|
Kaipparettu BA, Malik S, Konduri SD, Liu W, Rokavec M, van der Kuip H, Hoppe R, Hammerich-Hille S, Fritz P, Schroth W, Abele I, Das GM, Oesterreich S, Brauch H. Estrogen-mediated downregulation of CD24 in breast cancer cells. Int J Cancer 2008; 123:66-72. [PMID: 18404683 PMCID: PMC2587263 DOI: 10.1002/ijc.23480] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously reported on the relevance of the prevalence of CD44(+)/CD24(-/low) cells in primary breast tumors. To study regulation of CD24, we queried a number of publicly available expression array studies in breast cancer cells and found that CD24 was downregulated upon estrogen treatment. We confirmed this estrogen-mediated repression of CD24 mRNA by quantitative real-time PCR in MCF7, T47D and ZR75-1 cells. Repression was also seen at the protein level as measured by flow cytometry. CD24 was not downregulated in the ER alpha negative MDA-MB-231 cells suggesting that ER alpha was necessary. This was further confirmed by ER alpha silencing in MCF7 cells resulting in increased CD24 levels and by reintroduction of ER alpha into C4-12 cells resulting in decreased CD24 levels. Estrogen treatment did not alter half-life of CD24 mRNA and new protein synthesis was not essential for repression, suggesting a primary transcriptional effect. Histone deacetylase inhibition by Trichostatin A completely abolished the repression, but decrease of the ER alpha corepressors NCoR, LCoR, RIP140, silencing mediator of retinoid and thyroid hormone receptors, SAFB1 and SAFB2 by siRNA or overexpression of SAFB2, NCoR and silencing mediator of retinoid and thyroid hormone receptors had no effect. In silico promoter analyses led to the identification of two estrogen responsive elements in the CD24 promoter, one of which was able to bind ER alpha as shown by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Together, our results show that CD24 is repressed by estrogen and that this repression is a direct transcriptional effect depending on ER alpha and histone deacetylases.
Collapse
Affiliation(s)
- Benny Abraham Kaipparettu
- Division of Molecular Mechanisms of Origin and Treatment of Breast Cancer, Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Higgins KJ, Liu S, Abdelrahim M, Vanderlaag K, Liu X, Porter W, Metz R, Safe S. Vascular endothelial growth factor receptor-2 expression is down-regulated by 17beta-estradiol in MCF-7 breast cancer cells by estrogen receptor alpha/Sp proteins. Mol Endocrinol 2008; 22:388-402. [PMID: 18006642 PMCID: PMC2234589 DOI: 10.1210/me.2007-0319] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/05/2007] [Indexed: 02/08/2023] Open
Abstract
17beta-Estradiol (E2) induces and represses gene expression in breast cancer cells; however, the mechanisms of gene repression are not well understood. In this study, we show that E2 decreases vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in MCF-7 cells, and this gene was used as a model for investigating pathways associated with E2-dependent gene repression. Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich motifs at -58 and -44 are critical for the E2-dependent decreased response in MCF-7 cells. Mutation or deletion of these GC-rich elements results in loss of hormone responsiveness and shows that the -60 to -37 region of the VEGFR2 promoter is critical for both basal and hormone-dependent decreased VEGFR2 expression in MCF-7 cells. Western blot, immunofluorescent staining, RNA interference, and EMSAs support a role for Sp proteins in hormone-dependent down-regulation of VEGFR2 in MCF-7 cells, primarily through estrogen receptor (ER)alpha/Sp1 and ERalpha/Sp3 interactions with the VEGFR2 promoter. Using chromatin immuno-precipitation and transient transfection/RNA interference assays we show that the ERalpha/Sp protein-promoter interactions are accompanied by recruitment of the co-repressors SMRT (silencing mediator of retinoid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) to the promoter and that SMRT and NCoR knockdown reverse E2-mediated down-regulation of VEGFR2 expression in MCF-7 cells. This study illustrates that both SMRT and NCoR are involved in E2-dependent repression of VEGFR2 in MCF-7 cells.
Collapse
Affiliation(s)
- Kelly J Higgins
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dynamic associations of transcription factors with the rat liver nuclear matrix are functionally related to differential alpha-2-macroglobulin gene expression. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0803355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Participation of the nuclear matrix in regulation of alpha-2-macroglobulin (?2M) gene transcription during rat liver development and the acute-phase (AP) response are examined. DNA affinity chromatography of fetal and adult liver internal nuclear matrix proteins under basal and AP conditions with the ?2M gene promoter (-852/+12) and immunoblot analysis revealed diverse patterns of association of transcription factors with the nuclear matrix. HNF-6, C/EBP?, and STAT5b were involved in basal and C/EBP?, STAT1, and STAT3 in AP-stimulated ?2M expression. These findings support the assumption that transcription factor-nuclear matrix interactions serve to channel gene regulatory proteins to DNA sequences.
Collapse
|
50
|
Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 2008; 107:195-210. [PMID: 17377839 DOI: 10.1007/s10549-007-9552-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include--albeit not limited to--subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|