1
|
Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies. Rev Physiol Biochem Pharmacol 2023; 184:69-120. [PMID: 35061104 DOI: 10.1007/112_2021_67] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Tang BY, Ge J, Wu Y, Wen J, Tang XH. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J Cardiovasc Transl Res 2022; 15:1283-1296. [PMID: 35648358 DOI: 10.1007/s12265-022-10275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Bai-Yi Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Ge
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yang Wu
- Department of Cardiology, Third Hospital of Changsha, 176 W. Laodong Road, Changsha, 410015, Hunan, China
| | - Juan Wen
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xiao-Hong Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Yu Y, Xue B, Irfan NM, Beltz T, Weiss RM, Johnson AK, Felder RB, Wei SG. Reducing brain TACE activity improves neuroinflammation and cardiac function in heart failure rats. Front Physiol 2022; 13:1052304. [PMID: 36439267 PMCID: PMC9682140 DOI: 10.3389/fphys.2022.1052304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Tumor necrosis factor (TNF)-α converting enzyme (TACE) is a key metalloprotease mediating ectodomain shedding of a variety of inflammatory mediators, substrates, and growth factors. We previously reported that TACE-mediated production of TNF-α in the hypothalamic paraventricular nucleus (PVN) contributes to sympathetic excitation in heart failure (HF). Here, we sought to determine whether central interventions in TACE activity attenuate neuroinflammation and improve cardiac function in heart failure. Myocardial infarction-induced HF or sham-operated (SHAM) rats were treated with bilateral paraventricular nucleus microinjection of a TACE siRNA or a 4-week intracerebroventricular (ICV) infusion of the TACE inhibitor TAPI-0. Compared with SHAM rats, scrambled siRNA-treated HF rats had higher TACE levels in the PVN along with increased mRNA levels of TNF-α, TNF-α receptor 1 and cyclooxygenase-2. The protein levels of TNF-α in cerebrospinal fluid and phosphorylated (p-) NF-κB p65 and extracellular signal-regulated protein kinase (ERK)1/2 in the PVN were also elevated in HF rats treated with scrambled siRNA. The expression of these inflammatory mediators and signaling molecules in the PVN of HF rats were significantly attenuated by TACE siRNA. Interestingly, the mRNA level of TNF-α receptor 2 in the PVN was increased in HF treated with TACE siRNA. Moreover, sympathetic excitation, left ventricular end-diastolic pressure, pulmonary congestion, and cardiac hypertrophy and fibrosis were reduced by PVN microinjection of TACE siRNA. A 4-week treatment with intracerebroventricular TAPI-0 had similar effects to ameliorate these variables in HF rats. These data indicate that interventions suppressing TACE activity in the brain mitigate neuroinflammation, sympathetic activation and cardiac dysfunction in HF rats.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Baojian Xue
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Nafis Md Irfan
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Terry Beltz
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
| | - Alan Kim Johnson
- Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- VA Medical Center, Iowa City, IA, United States
| |
Collapse
|
4
|
Edelmann J. NOTCH1 Signalling: A key pathway for the development of high-risk chronic lymphocytic leukaemia. Front Oncol 2022; 12:1019730. [DOI: 10.3389/fonc.2022.1019730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 is a cell surface receptor that releases its intracellular domain as transcription factor upon activation. With the advent of next-generation sequencing, the NOTCH1 gene was found recurrently mutated in chronic lymphocytic leukaemia (CLL). Here, virtually all NOTCH1 mutations affect the protein’s PEST-domain and impair inactivation and degradation of the released transcription factor, thus increasing NOTCH1 signalling strength. Besides sequence alterations directly affecting the NOTCH1 gene, multiple other genomic and non-genomic alterations have by now been identified in CLL cells that could promote an abnormally strong NOTCH1 signalling strength. This renders NOTCH1 one of the key signalling pathways in CLL pathophysiology. The frequency of genomic alterations affecting NOTCH1 signalling is rising over the CLL disease course culminating in the observation that besides TP53 loss, 8q gain and CDKN2A/B loss, NOTCH1 mutation is a hallmark genomic alteration associated with transformation of CLL into an aggressive lymphoma (Richter transformation). Both findings associate de-regulated NOTCH1 signalling with the development of high-risk CLL. This narrative review provides data on the role of NOTCH1 mutation for CLL development and progression, discusses the impact of NOTCH1 mutation on treatment response, gives insight into potential modes of NOTCH1 pathway activation and regulation, summarises alterations that have been discussed to contribute to a de-regulation of NOTCH1 signalling in CLL cells and provides a perspective on how to assess NOTCH1 signalling in CLL samples.
Collapse
|
5
|
Al-Salihi M, Bornikoel A, Zhuang Y, Stachura P, Scheller J, Lang KS, Lang PA. The role of ADAM17 during liver damage. Biol Chem 2021; 402:1115-1128. [PMID: 34192832 DOI: 10.1515/hsz-2021-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Anna Bornikoel
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Hamdan D, Robinson LA. Role of the CX 3CL1-CX 3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321:F121-F134. [PMID: 34121453 DOI: 10.1152/ajprenal.00059.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines comprises key drivers of this process. Fractalkine [chemokine (C-X3-C motif) ligand 1 (CX3CL1)] is one of two unique chemokines synthesized as a transmembrane protein that undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, chemokine (C-X3-C motif) receptor 1 (CX3CR1), CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.
Collapse
Affiliation(s)
- Diana Hamdan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Lora J, Weskamp G, Li TM, Maretzky T, Shola DTN, Monette S, Lichtenthaler SF, Lu TT, Yang C, Blobel CP. Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. J Biol Chem 2021; 296:100733. [PMID: 33957124 PMCID: PMC8191336 DOI: 10.1016/j.jbc.2021.100733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17−/− mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.
Collapse
Affiliation(s)
- Jose Lora
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dorjee T N Shola
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Technical University of Munich, Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Chingwen Yang
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Carl P Blobel
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany; Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Edelmann J, Dokal AD, Vilventhraraja E, Holzmann K, Britton D, Klymenko T, Döhner H, Cragg M, Braun A, Cutillas P, Gribben JG. Rituximab and obinutuzumab differentially hijack the B cell receptor and NOTCH1 signaling pathways. iScience 2021; 24:102089. [PMID: 33615197 PMCID: PMC7878992 DOI: 10.1016/j.isci.2021.102089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The anti-CD20 monoclonal antibodies rituximab and obinutuzumab differ in their mechanisms of action, with obinutuzumab evoking greater direct B cell death. To characterize the signaling processes responsible for improved B cell killing by obinutuzumab, we undertook a phosphoproteomics approach and demonstrate that rituximab and obinutuzumab differentially activate pathways downstream of the B cell receptor. Although both antibodies induce strong ERK and MYC activation sufficient to promote cell-cycle arrest and B cell death, obinutuzumab exceeds rituximab in supporting apoptosis induction by means of aberrant SYK phosphorylation. In contrast, rituximab elicits stronger anti-apoptotic signals by activating AKT, by impairing pro-apoptotic BAD, and by releasing membrane-bound NOTCH1 to up-regulate pro-survival target genes. As a consequence, rituximab appears to reinforce BCL2-mediated apoptosis resistance. The unexpected complexity and differences by which rituximab and obinutuzumab interfere with signaling pathways essential for lymphoma pathogenesis and treatment provide important impetus to optimize and personalize the application of different anti-CD20 treatments.
Collapse
Affiliation(s)
- Jennifer Edelmann
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Internal Medicine III, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Arran D. Dokal
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Kinomica Limited, Biohub Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Emma Vilventhraraja
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Karlheinz Holzmann
- Center for Clinical Research, Genomics Core Facility, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - David Britton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Kinomica Limited, Biohub Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Tetyana Klymenko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Mark Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Kinomica Limited, Biohub Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - John G. Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
9
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
10
|
Pelullo M, Nardozza F, Zema S, Quaranta R, Nicoletti C, Besharat ZM, Felli MP, Cerbelli B, d'Amati G, Palermo R, Capalbo C, Talora C, Di Marcotullio L, Giannini G, Checquolo S, Screpanti I, Bellavia D. Kras/ADAM17-Dependent Jag1-ICD Reverse Signaling Sustains Colorectal Cancer Progression and Chemoresistance. Cancer Res 2019; 79:5575-5586. [PMID: 31506332 DOI: 10.1158/0008-5472.can-19-0145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
Colorectal cancer is characterized by well-known genetic defects and approximately 50% of cases harbor oncogenic Ras mutations. Increased expression of Notch ligand Jagged1 occurs in several human malignancies, including colorectal cancer, and correlates with cancer progression, poor prognosis, and recurrence. Herein, we demonstrated that Jagged1 was constitutively processed in colorectal cancer tumors with mutant Kras, which ultimately triggered intrinsic reverse signaling via its nuclear-targeted intracellular domain Jag1-ICD. This process occurred when Kras/Erk/ADAM17 signaling was switched on, demonstrating that Jagged1 is a novel target of the Kras signaling pathway. Notably, Jag1-ICD promoted tumor growth and epithelial-mesenchymal transition, enhancing colorectal cancer progression and chemoresistance both in vitro and in vivo. These data highlight a novel role for Jagged1 in colorectal cancer tumor biology that may go beyond its effect on canonical Notch activation and suggest that Jag1-ICD may behave as an oncogenic driver that is able to sustain tumor pathogenesis and to confer chemoresistance through a noncanonical mechanism. SIGNIFICANCE: These findings present a novel role of the transcriptionally active Jag1-ICD fragment to confer and mediate some of the activity of oncogenic KRAS.
Collapse
Affiliation(s)
- Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Roberta Quaranta
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy.
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
11
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
12
|
Pavlenko E, Cabron AS, Arnold P, Dobert JP, Rose-John S, Zunke F. Functional Characterization of Colon Cancer-Associated Mutations in ADAM17: Modifications in the Pro-Domain Interfere with Trafficking and Maturation. Int J Mol Sci 2019; 20:ijms20092198. [PMID: 31060243 PMCID: PMC6539446 DOI: 10.3390/ijms20092198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed malignancies in the Western world and is associated with elevated expression and activity of epidermal growth factor receptors (EGF-R). The metalloproteinase ADAM17 is involved in EGF-R activation by processing EGF-R ligands from membrane-bound pro-ligands. Underlining the link between colon cancer and ADAM17, genetic intestinal cancer models in ADAM17-deficient mice show a reduced tumor burden. In this study, we characterize point mutations within the ADAM17 gene found in the tissue of colon cancer patients. In order to shed light on the role of ADAM17 in cancer development, as well as into the mechanisms that regulate maturation and cellular trafficking of ADAM17, we here perform overexpression studies of four ADAM17 variants located in the pro-, membrane-proximal- and cytoplasmic-domain of the ADAM17 protein in ADAM10/17-deficient HEK cells. Interestingly, we found a cancer-associated point mutation within the pro-domain of ADAM17 (R177C) to be most impaired in its proteolytic activity and trafficking to the cell membrane. By comparing this variant to an ADAM17 construct lacking the entire pro-domain, we discovered similar functional limitations and propose a crucial role of the pro-domain for ADAM17 maturation, cellular trafficking and thus proteolytic activity.
Collapse
Affiliation(s)
- Egor Pavlenko
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Anne-Sophie Cabron
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| |
Collapse
|
13
|
Zhao Z, Kesti T, Uğurlu H, Baur AS, Fagerlund R, Saksela K. Tyrosine phosphorylation directs TACE into extracellular vesicles via unconventional secretion. Traffic 2019; 20:202-212. [PMID: 30569492 DOI: 10.1111/tra.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
When studying how HIV-1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor-α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase-regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)-dependent but was not associated with ER stress. These data indicate that Hck-activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom-dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andreas S Baur
- Department of Dermatology, Translational Research Center, University Hospital Erlangen, Erlangen, Germany
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Xing Z, Wei L, Jiang X, Conroy J, Glenn S, Bshara W, Yu T, Pao A, Tanaka S, Kawai A, Choi C, Wang J, Liu S, Morrison C, Yu YE. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget 2018; 9:36878-36888. [PMID: 30627328 PMCID: PMC6305143 DOI: 10.18632/oncotarget.26416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Synovial sarcoma is the most common pediatric non-rhabdomyosarcoma soft tissue sarcoma and accounts for about 8-10% of all soft tissue sarcoma in childhood and adolescence. The presence of a chromosomal translocation-associated SS18-SSX-fusion gene is causally linked to development of primary synovial sarcoma. Metastases occur in approximately 50-70% of synovial sarcoma cases with yet unknown mechanisms, which led to about 70-80% mortality rate in five years. To explore the possibilities to investigate metastatic mechanisms of synovial sarcoma, we carried out the first genome-wide search for potential genetic biomarkers and drivers associated with metastasis by comparative mutational profiling of 18 synovial sarcoma samples isolated from four patients carrying the primary tumors and another four patients carrying the metastatic tumors through whole exome sequencing. Selected from the candidates yielded from this effort, we examined the effect of the multiple missense mutations of ADAM17, which were identified solely in metastatic synovial sarcoma. The mutant alleles as well as the wild-type control were expressed in the mammalian cells harboring the SS18-SSX1 fusion gene. The ADAM17-P729H mutation was shown to enhance cell migration, a phenotype associated with metastasis. Therefore, like ADAM17-P729H, other mutations we identified solely in metastatic synovial sarcoma may also have the potential to serve as an entry point for unraveling the metastatic mechanisms of synovial sarcoma.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey Conroy
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Sean Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Christopher Choi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl Morrison
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Phosphorylation of iRhom2 Controls Stimulated Proteolytic Shedding by the Metalloprotease ADAM17/TACE. Cell Rep 2018; 21:745-757. [PMID: 29045841 PMCID: PMC5656746 DOI: 10.1016/j.celrep.2017.09.074] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/12/2017] [Accepted: 09/22/2017] [Indexed: 12/02/2022] Open
Abstract
Cell surface metalloproteases coordinate signaling during development, tissue homeostasis, and disease. TACE (TNF-α-converting enzyme), is responsible for cleavage (“shedding”) of membrane-tethered signaling molecules, including the cytokine TNF, and activating ligands of the EGFR. The trafficking of TACE within the secretory pathway requires its binding to iRhom2, which mediates the exit of TACE from the endoplasmic reticulum. An important, but mechanistically unclear, feature of TACE biology is its ability to be stimulated rapidly on the cell surface by numerous inflammatory and growth-promoting agents. Here, we report a role for iRhom2 in TACE stimulation on the cell surface. TACE shedding stimuli trigger MAP kinase-dependent phosphorylation of iRhom2 N-terminal cytoplasmic tail. This recruits 14-3-3 proteins, enforcing the dissociation of TACE from complexes with iRhom2, promoting the cleavage of TACE substrates. Our data reveal that iRhom2 controls multiple aspects of TACE biology, including stimulated shedding on the cell surface. iRhom2 is phosphorylated in response to stimuli that activate the sheddase TACE Blocking iRhom phosphorylation represses TACE stimulated shedding Phosphorylated iRhom2 recruits 14-3-3 and dissociates from TACE, enabling shedding iRhom2 is thus a signal integrator and transducer of stimulated TACE shedding
Collapse
|
16
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
17
|
Xu J, Mukerjee S, Silva-Alves CRA, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, Lazartigues E, França-Silva MS. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems. Front Physiol 2016; 7:469. [PMID: 27803674 PMCID: PMC5067531 DOI: 10.3389/fphys.2016.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | - Josiane C Cruz
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Camille M Balarini
- Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Valdir A Braga
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
18
|
O'Sullivan SA, Gasparini F, Mir AK, Dev KK. Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J Neuroinflammation 2016; 13:189. [PMID: 27549131 PMCID: PMC4994207 DOI: 10.1186/s12974-016-0659-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Background The fractalkine (CX3CR1) ligand is expressed in astrocytes and reported to be neuroprotective. When cleaved from the membrane, soluble fractalkine (sCX3CL1) activates the receptor CX3CR1. Although somewhat controversial, CX3CR1 is reported to be expressed in neurons and microglia. The membrane-bound form of CX3CL1 additionally acts as an adhesion molecule for microglia and infiltrating white blood cells. Much research has been done on the role of fractalkine in neuronal cells; however, little is known about the regulation of the CX3CL1 ligand in astrocytes. Methods The mechanisms involved in the up-regulation and cleavage of CX3CL1 from human astrocytes were investigated using immunocytochemistry, Q-PCR and ELISA. All statistical analysis was performed using GraphPad Prism 5. Results A combination of ADAM17 (TACE) and ADAM10 protease inhibitors was found to attenuate IL-1β-, TNF-α- and IFN-γ-induced sCX3CL1 levels in astrocytes. A specific ADAM10 (but not ADAM17) inhibitor also attenuated these effects, suggesting ADAM10 proteases induce release of sCX3CL1 from stimulated human astrocytes. A p38 MAPK inhibitor also attenuated the levels of sCX3CL1 upon treatment with IL-1β, TNF-α or IFN-γ. In addition, an IKKβ inhibitor significantly reduced the levels of sCX3CL1 induced by IL-1β or TNF-α in a concentration-dependent manner, suggesting a role for the NF-kB pathway. Conclusions In conclusion, this study shows that the release of soluble astrocytic fractalkine is regulated by ADAM10 proteases with p38 MAPK also playing a role in the fractalkine shedding event. These findings are important for understanding the role of CX3CL1 in healthy and stimulated astrocytes and may benefit our understanding of this pathway in neuro-inflammatory and neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabrizio Gasparini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anis K Mir
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Zhang Y, Wang X, Loesch K, May LA, Davis GE, Jiang J, Frank SJ. TIMP3 Modulates GHR Abundance and GH Sensitivity. Mol Endocrinol 2016; 30:587-599. [PMID: 27075707 PMCID: PMC4884343 DOI: 10.1210/me.2015-1302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
GH receptor (GHR) binds GH at the cell surface via its extracellular domain and initiates intracellular signal transduction, resulting in important anabolic and metabolic actions. GH signaling is subject to dynamic regulation, which in part is exerted by modulation of cell surface GHR levels. Constitutive and inducible metalloprotease-mediated cleavage of GHR regulate GHR abundance and thereby modulate GH action. We previously demonstrated that GHR proteolysis is catalyzed by the TNF-α converting enzyme (TACE; ADAM17). Tissue inhibitors of metalloproteases-3 (TIMP3) is a natural specific inhibitor of TACE, although mechanisms underlying this inhibition are not yet fully understood. In the current study, we use two model cell lines to examine the relationships between cellular TACE, TIMP3 expression, GHR metalloproteolysis, and GH sensitivity. These two cell lines exhibited markedly different sensitivity to inducible GHR proteolysis, which correlated directly to their relative levels of mature TACE vs unprocessed TACE precursor and indirectly to their levels of cellular TIMP3. Our results implicate TIMP3 as a modulator of cell surface GHR abundance and the ability of GH to promote cellular signaling; these modulatory effects may be conferred by endogenous TIMP3 expression as well as exogenous TIMP3 exposure. Furthermore, our analysis suggests that TIMP3, in addition to regulating the activity of TACE, may also modulate the maturation of TACE, thereby affecting the abundance of the active form of the enzyme.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Xiangdong Wang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Kimberly Loesch
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Larry A May
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - George E Davis
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Jing Jiang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Stuart J Frank
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
20
|
Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2015; 93:186-99. [PMID: 26522853 DOI: 10.1016/j.yjmcc.2015.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Niu A, Wang B, Li YP. TNFα Shedding in Mechanically Stressed Cardiomyocytes is Mediated by Src Activation of TACE. J Cell Biochem 2015; 116:559-65. [DOI: 10.1002/jcb.25006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Airu Niu
- Department of Integrative Biology and Pharmacology; University of Texas Health Science Center; Houston Texas 77030
| | - Bin Wang
- Department of Integrative Biology and Pharmacology; University of Texas Health Science Center; Houston Texas 77030
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology; University of Texas Health Science Center; Houston Texas 77030
| |
Collapse
|
22
|
McClurg UL, Danjo K, King HO, Scott GB, Robinson PA, Crabtree JE. Epithelial cell ADAM17 activation by Helicobacter pylori: role of ADAM17 C-terminus and Threonine-735 phosphorylation. Microbes Infect 2014; 17:205-14. [PMID: 25499189 DOI: 10.1016/j.micinf.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/06/2014] [Accepted: 11/29/2014] [Indexed: 12/26/2022]
Abstract
Helicobacter pylori transactivates the epidermal growth factor receptor (EGFR) on gastric epithelial cells via a signalling cascade involving a disintegrin and metalloprotease 17 (ADAM17) cleavage of membrane bound heparin binding-epidermal growth factor (HB-EGF). The effects of H. pylori on ADAM17 C-terminus in epithelial cells have been examined. Total cellular ADAM17 and surface expression of ADAM17 were significantly increased by H. pylori in AGS gastric epithelial cells. These changes were associated with ADAM17 C-terminal phosphorylation at T375 and S791. AGS cells lacking the ADAM17 C-terminal domain induced significantly attenuated cleavage of HB-EGF and were also unable to upregulate HB-EGF and EGFR transcripts to the same extent as cells expressing full length ADAM17. In mitotic unstimulated AGS and ADAM17 over-expressing AGS cells, ADAM17 was highly T735 phosphorylated indicating ADAM17 T735 phosphorylation is modified during the cell cycle. In conclusion, H. pylori induced ADAM17 C-terminal T735 and/or S791 phosphorylation in gastric epithelial cells are likely to be an important trigger inducing ADAM17 activation and shedding of HB-EGF leading to EGFR transactivation. ADAM17 over-expression in gastric cancer represents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Urszula L McClurg
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Kazuma Danjo
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Harry O King
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Gina B Scott
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Philip A Robinson
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jean E Crabtree
- Leeds Institute, Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
23
|
Sisto M, Lisi S. New Insights Into ADAMs Regulation of the GRO-α/CXCR2 System: Focus on Sjögren's Syndrome. Int Rev Immunol 2014; 34:486-99. [DOI: 10.3109/08830185.2014.975892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc Natl Acad Sci U S A 2014; 111:15987-92. [PMID: 25349418 DOI: 10.1073/pnas.1409354111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered protein regions are widely distributed in the cytoplasmic domains of many transmembrane receptors. The cytoplasmic domain of a disintegrin and metalloprotease (ADAM)10, a transmembrane metalloprotease mediating ectodomain shedding of diverse membrane proteins, was recently suggested to mediate the homodimerization of ADAM10. Here we show that a recombinant cytoplasmic domain of ADAM10 (A10Cp) is unstructured as judged by its susceptibility to limited trypsin digestion and its circular dichroism spectrum. In comparison, recombinant transmembrane-cytoplasmic domain of ADAM10 (A10TmCp) reconstituted in dodecylphosphocholine (DPC) micelles exhibits much greater resistance to trypsin digestion, with its cytoplasmic domain taking on a significant ordered structure. FRET analysis demonstrates that, although A10Cp remains monomeric, A10TmCp forms a tight homodimer (K(d) ∼ 7 nM) in DPC micelles. Phospholipid-conjugated A10Cp dose-dependently inhibits formation of A10TmCp homodimer, whereas A10Cp achieves only limited inhibition. Placing the transmembrane and cytoplasmic domains of ADAM10, but not the transmembrane domain alone, in their native orientation in the inner membrane of Escherichia coli produces specific and strong dimerization signal in the AraC-based transcriptional reporter assay. A chimeric construct containing the otherwise monomeric transmembrane domain of L-selectin and the cytoplasmic domain of ADAM10 produces a similar dimerization signal. Overall, these results demonstrate that a transmembrane domain imparts a stable structure to the adjacent and intrinsically disordered cytoplasmic domain of ADAM10 to form a homodimer in the membrane. This finding advances our understanding of the regulatory mechanism of ADAMs and has general implications for membrane-protein interactions in the process of transmembrane signaling.
Collapse
|
25
|
Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat Commun 2014; 5:4806. [PMID: 25254944 DOI: 10.1038/ncomms5806] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1(+)/ALDH1(+) cells or S1PR3(+)/ALDH1(+) cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer.
Collapse
|
26
|
Prakasam HS, Gallo LI, Li H, Ruiz WG, Hallows KR, Apodaca G. A1 adenosine receptor-stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation. Mol Biol Cell 2014; 25:3798-812. [PMID: 25232008 PMCID: PMC4230785 DOI: 10.1091/mbc.e14-03-0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of phosphorylation in ADAM17-dependent shedding is controversial. We show that the A1 adenosine receptor stimulates exocytosis in umbrella cells by a pathway that requires phosphorylation of ADAM17–Ser-811, followed by HB-EGF shedding and EGF receptor transactivation. Preventing ADAM17 phosphorylation blocks these downstream events. Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain.
Collapse
Affiliation(s)
- H Sandeep Prakasam
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Luciana I Gallo
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hui Li
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kenneth R Hallows
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
27
|
Lisi S, D'Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunol Lett 2014; 162:159-69. [PMID: 25171914 DOI: 10.1016/j.imlet.2014.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
The discovery of the disintegrin and metalloproteinase 17 (ADAM17), originally identified as tumor necrosis factor-a converting enzyme (TACE) for its ability as sheddase of TNF-α inspired scientists to attempt to elucidate the molecular mechanisms underlying ADAM17 implication in diseased conditions. In recent years, it has become evident that this protease can modify many non matrix substrates, such as cytokines (e.g. TNF-α), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGF-α and amphiregulin) and adhesion proteins (e.g. Lselectin and ICAM-1). Several recent studies have described experimental model system to better understand the role of specific signaling molecules, the interplay of different signals and tissue interactions in regulating ADAM17-dependent cleavage of most relevant substrates in inflammatory diseases. The central question is whether ADAM17 can influence the outcome of inflammation and if so, how it performs this regulation in autoimmunity, since inflammatory autoimmune diseases are often characterized by deregulated metalloproteinase activities. This review will explore the latest research on the influence of ADAM17 on the progression of inflammatory processes linked to autoimmunity and its role as modulator of inflammation.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | - Massimo D'Amore
- Department of Interdisciplinary Medicine, Section of Rheumatology, University of Bari Medical School, Bari, Italy
| | - Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
28
|
Li YP, Niu A, Wen Y. Regulation of myogenic activation of p38 MAPK by TACE-mediated TNFα release. Front Cell Dev Biol 2014; 2:21. [PMID: 25364728 PMCID: PMC4207040 DOI: 10.3389/fcell.2014.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/07/2014] [Indexed: 11/24/2022] Open
Abstract
The activation of p38 MAPK in myogenic precursor cells (MPCs) is a key signal for their exit of cell cycle and entry of the myogenic differentiation program. Therefore, identification of the signaling mechanism that activates p38 MAPK during this process is important for the understanding of the regulatory mechanism of muscle regeneration. This article reviews recent findings regarding the role of inflammatory cytokine tumor necrosis factor-α (TNFα) as a key activator of p38 MAPK during myogenesis in an autocrine/paracrine fashion, and the signaling mechanisms that converge upon TNFα converting enzyme (TACE) to release TNFα from differentiating MPCs in response to diverse regenerative stimuli.
Collapse
Affiliation(s)
- Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| | - Airu Niu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| | - Yefei Wen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| |
Collapse
|
29
|
Dentelli P, Traversa M, Rosso A, Togliatto G, Olgasi C, Marchiò C, Provero P, Lembo A, Bon G, Annaratone L, Sapino A, Falcioni R, Brizzi MF. miR-221/222 control luminal breast cancer tumor progression by regulating different targets. Cell Cycle 2014; 13:1811-26. [PMID: 24736554 DOI: 10.4161/cc.28758] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
α6β4 integrin is an adhesion molecule for laminin receptors involved in tumor progression. We present a link between β4 integrin expression and miR-221/222 in the most prevalent human mammary tumor: luminal invasive carcinomas (Lum-ICs). Using human primary tumors that display different β4 integrin expression and grade, we show that miR-221/222 expression inversely correlates with tumor proliferating index, Ki67. Interestingly, most high-grade tumors express β4 integrin and low miR-221/222 levels. We ectopically transfected miR-221/222 into a human-derived mammary tumor cell line that recapitulates the luminal subtype to investigate whether miR-221/222 regulates β4 expression. We demonstrate that miR-221/222 overexpression results in β4 expression downregulation, breast cancer cell proliferation, and invasion inhibition. The role of miR-221/222 in driving β4 integrin expression is also confirmed via mutating the miR-221/222 seed sequence for β4 integrin 3'UTR. Furthermore, we show that these 2 miRNAs are also key breast cancer cell proliferation and invasion regulators, via the post-transcriptional regulation of signal transducer and activator of transcription 5A (STAT5A) and of a disintegrin and metalloprotease-17 (ADAM-17). We further confirm these data by silencing ADAM-17, using a dominant-negative or an activated STAT5A form. miR-221/222-driven β4 integrin, STAT5A, and ADAM-17 did not occur in MCF-10A cells, denoted "normal" breast epithelial cells, indicating that the mechanism is cancer cell-specific. These results provide the first evidence of a post-transcriptional mechanism that regulates β4 integrin, STAT5A, and ADAM-17 expression, thus controlling breast cancer cell proliferation and invasion. Pre-miR-221/222 use in the aggressive luminal subtype may be a powerful therapeutic anti-cancer strategy.
Collapse
Affiliation(s)
| | - Matteo Traversa
- Department of Medical Sciences; University of Torino; Torino, Italy
| | - Arturo Rosso
- Department of Medical Sciences; University of Torino; Torino, Italy
| | | | - Cristina Olgasi
- Department of Medical Sciences; University of Torino; Torino, Italy
| | - Caterina Marchiò
- Department of Medical Sciences; University of Torino; Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino, Italy; Center for Translational Genomics and Bioinformatics; San Raffaele Scientific Institute; Milan, Italy
| | - Antonio Lembo
- Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino, Italy; Center for Translational Genomics and Bioinformatics; San Raffaele Scientific Institute; Milan, Italy
| | - Giulia Bon
- Department of Experimental Oncology; Regina Elena National Cancer Institute; Rome, Italy
| | - Laura Annaratone
- Department of Medical Sciences; University of Torino; Torino, Italy
| | - Anna Sapino
- Department of Medical Sciences; University of Torino; Torino, Italy
| | - Rita Falcioni
- Department of Experimental Oncology; Regina Elena National Cancer Institute; Rome, Italy
| | | |
Collapse
|
30
|
Xiao F, Zimpelmann J, Agaybi S, Gurley SB, Puente L, Burns KD. Characterization of angiotensin-converting enzyme 2 ectodomain shedding from mouse proximal tubular cells. PLoS One 2014; 9:e85958. [PMID: 24454948 PMCID: PMC3893316 DOI: 10.1371/journal.pone.0085958] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/02/2013] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney proximal tubule, where it cleaves angiotensin (Ang) II to Ang-(1-7). Urinary ACE2 levels increase in diabetes, suggesting that ACE2 may be shed from tubular cells. The aim of this study was to determine if ACE2 is shed from proximal tubular cells, to characterize ACE2 fragments, and to study pathways for shedding. Studies involved primary cultures of mouse proximal tubular cells, with ACE2 activity measured using a synthetic substrate, and analysis of ACE2 fragments by immunoblots and mass spectrometry. The culture media from mouse proximal tubular cells demonstrated a time-dependent increase in ACE2 activity, suggesting constitutive ACE2 shedding. ACE2 was detected in media as two bands at ∼90 kDa and ∼70 kDa on immunoblots. By contrast, full-length ACE2 appeared at ∼100 kDa in cell lysates or mouse kidney cortex. Mass spectrometry of the two deglycosylated fragments identified peptides matching mouse ACE2 at positions 18-706 and 18-577, respectively. The C-terminus of the 18-706 peptide fragment contained a non-tryptic site, suggesting that Met706 is a candidate ACE2 cleavage site. Incubation of cells in high D-glucose (25 mM) (and to a lesser extent Ang II) for 48–72 h increased ACE2 activity in the media (p<0.001), an effect blocked by inhibition of a disintegrin and metalloproteinase (ADAM)17. High D-glucose increased ADAM17 activity in cell lysates (p<0.05). These data indicate that two glycosylated ACE2 fragments are constitutively shed from mouse proximal tubular cells. ACE2 shedding is stimulated by high D-glucose, at least partly via an ADAM17-mediated pathway. The results suggest that proximal tubular shedding of ACE2 may increase in diabetes, which could enhance degradation of Ang II in the tubular lumen, and increase levels of Ang-(1-7).
Collapse
Affiliation(s)
- Fengxia Xiao
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Samih Agaybi
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Lawrence Puente
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin D. Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 2014; 6:6/1/a008995. [PMID: 24384567 DOI: 10.1101/cshperspect.a008995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
32
|
Niu A, Wen Y, Liu H, Zhan M, Jin B, Li YP. Src mediates the mechanical activation of myogenesis by activating TNFα-converting enzyme. J Cell Sci 2013; 126:4349-57. [PMID: 23868980 DOI: 10.1242/jcs.125328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mechanical stimulation affects many biological aspects in living cells through mechanotransduction. In myogenic precursor cells (MPCs), mechanical stimulation activates p38 mitogen-activated protein kinase (MAPK), a key regulator of myogenesis, via activating TNFα-converting enzyme (TACE, also known as ADAM17), to release autocrine TNFα. However, the signaling mechanism of mechanical activation of TACE is unknown. Because TACE possesses the structural features of substrates of the non-receptor tyrosine kinase Src, we tested the hypothesis that Src mediates mechanical activation of TACE in MPCs. We observed that mechanical stretch of C2C12 or primary rat myoblasts rapidly activates Src, which in turn interacts and colocalizes with TACE, resulting in tyrosine phosphorylation and activation of TACE. Particularly, Src activates TACE via the phosphorylation of amino acid residue Tyr702 in the intracellular tail of TACE, resulting in increased TNFα release and p38 activation. Src inhibition or deficiency blocks stretch activation of the TACE-p38-MAPK signaling, resulting in impaired myogenic gene expression. In response to functional overloading, Src and TACE are activated in mouse soleus muscle. Further, overloading-induced myogenesis and regeneration are impaired in the soleus of Src(+/-) mice. Therefore, Src mediates mechano-activation of TACE and myogenesis.
Collapse
Affiliation(s)
- Airu Niu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Aragão AZB, Nogueira MLC, Granato DC, Simabuco FM, Honorato RV, Hoffman Z, Yokoo S, Laurindo FRM, Squina FM, Zeri ACM, Oliveira PSL, Sherman NE, Paes Leme AF. Identification of novel interaction between ADAM17 (a disintegrin and metalloprotease 17) and thioredoxin-1. J Biol Chem 2012; 287:43071-82. [PMID: 23105116 PMCID: PMC3522302 DOI: 10.1074/jbc.m112.364513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/24/2012] [Indexed: 12/31/2022] Open
Abstract
ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.
Collapse
Affiliation(s)
- Annelize Z. B. Aragão
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Maria Luiza C. Nogueira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Daniela C. Granato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Fernando M. Simabuco
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Rodrigo V. Honorato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Zaira Hoffman
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Sami Yokoo
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | | | - Fabio M. Squina
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Ana Carolina M. Zeri
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Paulo S. L. Oliveira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Nicholas E. Sherman
- the W. M. Keck Biomedical Mass Spectrometry Lab, University of Virginia, Charlottesville, Virginia 22908
| | - Adriana F. Paes Leme
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| |
Collapse
|
34
|
Pore-forming bacterial toxins and antimicrobial peptides as modulators of ADAM function. Med Microbiol Immunol 2012; 201:419-26. [PMID: 22972233 DOI: 10.1007/s00430-012-0260-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023]
Abstract
Membrane-perturbating proteins and peptides are widespread agents in biology. Pore-forming bacterial toxins represent major virulence factors of pathogenic microorganisms. Membrane-damaging peptides constitute important antimicrobial effectors of innate immunity. Membrane perturbation can incur multiple responses in mammalian cells. The present discussion will focus on the interplay between membrane-damaging agents and the function of cell-bound metalloproteinases of the ADAM family. These transmembrane enzymes have emerged as the major proteinase family that mediate the proteolytic release of membrane-associated proteins, a process designated as "shedding". They liberate a large spectrum of functionally active molecules including inflammatory cytokines, growth factor receptors and cell adhesion molecules, thereby regulating such vital cellular functions as cell-cell adhesion, cell proliferation and cell migration. ADAM activation may constitute part of the cellular recovery machinery on the one hand, but likely also promotes inflammatory processes on the other. The mechanisms underlying ADAM activation and the functional consequences thereof are currently the subject of intensive research. Attention here is drawn to the possible involvement of purinergic receptors and ceramide generation in the context of ADAM activation following membrane perturbation by membrane-active agents.
Collapse
|
35
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
36
|
Hurst LA, Bunning RAD, Sharrack B, Woodroofe MN. siRNA knockdown of ADAM-10, but not ADAM-17, significantly reduces fractalkine shedding following pro-inflammatory cytokine treatment in a human adult brain endothelial cell line. Neurosci Lett 2012; 521:52-6. [PMID: 22641052 DOI: 10.1016/j.neulet.2012.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/24/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Fractalkine shedding is believed to occur constitutively and following induction via the activity of two membrane-bound enzymes, ADAM-10 and ADAM-17. However, our previous work suggested that ADAM-17 is not involved in the proteolytic release of fractalkine under TNF treatment of a human adult brain endothelial cell line, hCMEC/D3. The pro-inflammatory cytokine, TNF, has previously been shown to be expressed in the perivascular cuffs in multiple sclerosis. Here we sought to identify, using siRNAs to silence the expression of ADAM-10 and ADAM-17, whether ADAM-10 is responsible for TNF-induced shedding of fractalkine from the cell membrane in hCMEC/D3. Our findings suggest that ADAM-10, and not ADAM-17, is the major protease involved in fractalkine release under pro-inflammatory conditions in this human adult brain endothelial cell model.
Collapse
Affiliation(s)
- Louise A Hurst
- Biomedical Research Centre, Sheffield Hallam University, Howard St., Sheffield S1 1WB, UK
| | | | | | | |
Collapse
|
37
|
Xu P, Liu J, Sakaki-Yumoto M, Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012; 5:ra34. [PMID: 22550340 DOI: 10.1126/scisignal.2002689] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectodomain shedding mediated by tumor necrosis factor-α (TNF-α)-converting enzyme [TACE; also known as ADAM17 (a disintegrin and metalloproteinase 17)] provides an important switch in regulating cell proliferation, inflammation, and cancer progression. TACE-mediated ectodomain cleavage is activated by signaling of the mitogen-activated protein kinases (MAPKs) p38 and ERK (extracellular signal-regulated kinase). Here, we found that under basal conditions, TACE was predominantly present as dimers at the cell surface, which required its cytoplasmic domain and enabled efficient association with tissue inhibitor of metalloproteinase-3 (TIMP3) and silencing of TACE activity. Upon activation of the ERK or p38 MAPK pathway, the balance shifted from TACE dimers to monomers, and this shift was associated with increased cell surface presentation of TACE and decreased TIMP3 association, which relieved the inhibition of TACE by TIMP3 and increased TACE-mediated proteolysis of transforming growth factor-α. Thus, cell signaling altered the dimer-monomer equilibrium and inhibitor association to promote activation of TACE-mediated ectodomain shedding, a regulatory mechanism that may extend to other ADAM proteases.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
38
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Gooz P, Dang Y, Higashiyama S, Twal WO, Haycraft CJ, Gooz M. A disintegrin and metalloenzyme (ADAM) 17 activation is regulated by α5β1 integrin in kidney mesangial cells. PLoS One 2012; 7:e33350. [PMID: 22413019 PMCID: PMC3297637 DOI: 10.1371/journal.pone.0033350] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/14/2012] [Indexed: 12/31/2022] Open
Abstract
Background The disintegrin and metalloenzyme ADAM17 participates in numerous inflammatory and proliferative diseases, and its pathophysiological role was implicated in kidney fibrosis, polycystic kidney disease and other chronic kidney diseases. At present, we have little understanding how the enzyme activity is regulated. In this study we wanted to characterize the role of α5β1 integrin in ADAM17 activity regulation during G protein-coupled receptor (GPCR) stimulation. Methodology/Principal Findings We showed previously that the profibrotic GPCR agonist serotonin (5-HT) induced kidney mesangial cell proliferation through ADAM17 activation and heparin-binding epidermal growth factor (HB-EGF) shedding. In the present studies we observed that in unstimulated mesangial cell lysates α5β1 integrin co-precipitated with ADAM17 and that 5-HT treatment of the cells induced dissociation of α5β1 integrin from ADAM17. Using fluorescence immunostaining and in situ proximity ligation assay, we identified the perinuclear region as the localization of the ADAM17/α5β1 integrin interaction. In cell-free assays, we showed that purified α5β1 integrin and β1 integrin dose-dependently bound to and inhibited activity of recombinant ADAM17. We provided evidence that the conformation of the integrin determines its ADAM17-binding ability. To study the effect of β1 integrin on ADAM17 sheddase activity, we employed alkaline phosphatase-tagged HB-EGF. Overexpression of β1 integrin lead to complete inhibition of 5-HT-induced HB-EGF shedding and silencing β1 integrin by siRNA significantly increased mesangial cells ADAM17 responsiveness to 5-HT. Conclusions/Significance Our data show for the first time that β1 integrin has an important physiological role in ADAM17 activity regulation. We suggest that regulating α5β1 integrin binding to ADAM17 could be an attractive therapeutic target in chronic kidney diseases.
Collapse
Affiliation(s)
- Pal Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Hall KC, Blobel CP. Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 2012; 7:e31600. [PMID: 22384041 PMCID: PMC3288042 DOI: 10.1371/journal.pone.0031600] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/16/2012] [Indexed: 12/15/2022] Open
Abstract
ADAM17 (a disintegrin and metalloproteinase) is a membrane-anchored metalloproteinase that regulates the release of EGFR-ligands, TNFα and other membrane proteins from cells. ADAM17 can be rapidly activated by a variety of signaling pathways, yet little is known about the underlying mechanism. Several studies have demonstrated that the cytoplasmic domain of ADAM17 is not required for its rapid activation by a variety of stimuli, including phorbol esters, tyrosine kinases and some G-protein coupled receptors. However, phosphorylation of cytoplasmic residue T735 was recently reported as a crucial step for activation of ADAM17 by IL-1β and by the p38 MAP-kinase pathway. One possible mechanism to reconcile these results would be that T735 has an inhibitory role and that it must be phosphorylated as a pre-requisite for the activation of ADAM17, which would then proceed via a mechanism that is independent of its cytoplasmic domain. To test this hypothesis, we performed rescue experiments of Adam17−/− cells with wild type and mutant forms of ADAM17. However, these experiments showed that an inactivating mutation (T735A) or an activating mutation (T735D) of cytoplasmic residue T735 or the removal of the cytoplasmic domain of ADAM17 did not significantly affect the stimulation of ADAM17 by IL-1β or by activation of MAP-kinase with anisomycin. Moreover, we found that the MAP-kinase inhibitor SB203580 blocked activation of cytoplasmic tail-deficient ADAM17 and of the T735A mutant by IL-1β or by anisomycin, providing further support for a model in which the activation mechanism of ADAM17 does not rely on its cytoplasmic domain or phosphorylation of T735.
Collapse
Affiliation(s)
- Katherine C. Hall
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Medicine and Physiology, Biophysics and Systems Biology Program, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Li X, Pérez L, Fan H. Inhibitory role of TACE/ADAM17 cytotail in protein ectodomain shedding. World J Biol Chem 2011; 2:246-51. [PMID: 22125668 PMCID: PMC3224872 DOI: 10.4331/wjbc.v2.i11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE; ADAM17) controls protein ectodomain shedding.
METHODS: Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracellular, cysteine-rich disintegrin domain (CRD) and/or deleted cytotail, along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry.
RESULTS: Consistent with published data, a single point mutation (C600Y) in the CRD led to shedding deficiency. However, removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.
CONCLUSION: The cytotail plays an inhibitory role, which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.
Collapse
Affiliation(s)
- Xiaojin Li
- Xiaojin Li, Liliana Pérez, Huizhou Fan, Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, United States
| | | | | |
Collapse
|
42
|
Yáñez-Mó M, Gutiérrez-López MD, Cabañas C. Functional interplay between tetraspanins and proteases. Cell Mol Life Sci 2011; 68:3323-35. [PMID: 21687991 PMCID: PMC11114976 DOI: 10.1007/s00018-011-0746-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/04/2011] [Accepted: 05/30/2011] [Indexed: 12/14/2022]
Abstract
Several recent publications have described examples of physical and functional interations between tetraspanins and specific membrane proteases belonging to the TM-MMP and α-(ADAMs) and γ-secretases families. Collectively, these examples constitute an emerging body of evidence supporting the notion that tetraspanin-enriched microdomains (TEMs) represent functional platforms for the regulation of key cellular processes including the release of surface protein ectodomains ("shedding"), regulated intramembrane proteolysis ("RIPing") and matrix degradation and assembly. These cellular processes in turn play a crucial role in an array of physiological and pathological phenomena. Thus, TEMs may represent new therapeutical targets that may simultaneously affect the proteolytic activity of different enzymes and their substrates. Agonistic or antagonistic antibodies and blocking soluble peptides corresponding to tetraspanin functional regions may offer new opportunities in the treatment of pathologies such as chronic inflammation, cancer, or Alzheimer's disease. In this review article, we will discuss all these aspects of functional regulation of protease activities by tetraspanins.
Collapse
Affiliation(s)
- María Yáñez-Mó
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | | | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
- Facultad de Medicina, Departamento de Microbiología I (Inmunología), UCM, 28040 Madrid, Spain
| |
Collapse
|
43
|
Scott AJ, O'Dea KP, O'Callaghan D, Williams L, Dokpesi JO, Tatton L, Handy JM, Hogg PJ, Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286:35466-35476. [PMID: 21865167 DOI: 10.1074/jbc.m111.277434] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Alasdair J Scott
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - David O'Callaghan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Justina O Dokpesi
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Louise Tatton
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Jonathan M Handy
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Philip J Hogg
- Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| |
Collapse
|
44
|
Cisse M, Braun U, Leitges M, Fisher A, Pages G, Checler F, Vincent B. ERK1-independent α-secretase cut of β-amyloid precursor protein via M1 muscarinic receptors and PKCα/ε. Mol Cell Neurosci 2011; 47:223-32. [PMID: 21570469 DOI: 10.1016/j.mcn.2011.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/17/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022] Open
|
45
|
Abstract
TEMs (tetraspanin-enriched microdomains) are specialized platforms in the plasma membrane that include adhesion receptors and enzymes. Insertion into TEMs dictates the local concentration of these molecules, regulates their internalization rate, their interaction and cross-talk with other receptors at the plasma membrane and provides links with certain signalling pathways. We focus on the associations described for tetraspanins with membrane proteases and their substrates, reviewing the emerging evidence in the literature that suggests that TEMs might be essential platforms for regulating protein shedding, RIP (regulated intramembrane proteolysis) and matrix degradation and assembly.
Collapse
|
46
|
Lemjabbar-Alaoui H, Sidhu SS, Mengistab A, Gallup M, Basbaum C. TACE/ADAM-17 phosphorylation by PKC-epsilon mediates premalignant changes in tobacco smoke-exposed lung cells. PLoS One 2011; 6:e17489. [PMID: 21423656 PMCID: PMC3057966 DOI: 10.1371/journal.pone.0017489] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/05/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tobacco smoke predisposes humans and animals to develop lung tumors, but the molecular events responsible for this are poorly understood. We recently showed that signaling mechanisms triggered by smoke in lung cells could lead to the activation of a growth factor signaling pathway, thereby promoting hyperproliferation of lung epithelial cells. Hyperproliferation is considered a premalignant change in the lung, in that increased rates of DNA synthesis are associated with an increased number of DNA copying errors, events that are exacerbated in the presence of tobacco smoke carcinogens. Despite the existence of DNA repair mechanisms, a small percentage of these errors go unrepaired and can lead to tumorigenic mutations. The results of our previous study showed that an early event following smoke exposure was the generation of oxygen radicals through the activation of NADPH oxidase. Although it was clear that these radicals transduced signals through the epidermal growth factor receptor (EGFR), and that this was mediated by TACE-dependent cleavage of amphiregulin, it remained uncertain how oxygen radicals were able to activate TACE. PRINCIPAL FINDINGS In the present study, we demonstrate for the first time that phosphorylation of TACE at serine/threonine residues by tobacco smoke induces amphiregulin release and EGFR activation. TACE phosphorylation is triggered in smoke-exposed lung cells by the ROS-induced activation of PKC through the action of SRC kinase. Furthermore, we identified PKCε as the PKC isoform involved in smoke-induced TACE activation and hyperproliferation of lung cells. CONCLUSIONS Our data elucidate new signaling paradigms by which tobacco smoke promotes TACE activation and hyperproliferation of lung cells.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | |
Collapse
|
47
|
Le Gall SM, Maretzky T, Issuree PDA, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010; 123:3913-22. [PMID: 20980382 DOI: 10.1242/jcs.069997] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein ectodomain shedding is crucial for cell-cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to these stimuli and the mechanisms underlying their activation. Here, we demonstrate that the membrane-anchored metalloproteinase ADAM17, but not ADAM10, is the sheddase that rapidly responds to the physiological signaling pathways stimulated by thrombin, EGF, lysophosphatidic acid and TNFα. Stimulation of ADAM17 is swift and quickly reversible, and does not depend on removal of its inhibitory pro-domain by pro-protein convertases, or on dissociation of an endogenous inhibitor, TIMP3. Moreover, activation of ADAM17 by physiological stimuli requires its transmembrane domain, but not its cytoplasmic domain, arguing against inside-out signaling via cytoplasmic phosphorylation as the underlying mechanism. Finally, experiments with the tight binding hydroxamate inhibitor DPC333, used here to probe the accessibility of the active site of ADAM17, demonstrate that this inhibitor can quickly bind to ADAM17 in stimulated, but not quiescent cells. These findings support the concept that activation of ADAM17 involves a rapid and reversible exposure of its catalytic site.
Collapse
Affiliation(s)
- Sylvain M Le Gall
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu H, Chen SE, Jin B, Carson JA, Niu A, Durham W, Lai JY, Li YP. TIMP3: a physiological regulator of adult myogenesis. J Cell Sci 2010; 123:2914-21. [PMID: 20682640 DOI: 10.1242/jcs.057620] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myogenic differentiation in adult muscle is normally suppressed and can be activated by myogenic cues in a subset of activated satellite cells. The switch mechanism that turns myogenesis on and off is not defined. In the present study, we demonstrate that tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of TNFalpha-converting enzyme (TACE), acts as an on-off switch for myogenic differentiation by regulating autocrine TNFalpha release. We observed that constitutively expressed TIMP3 is transiently downregulated in the satellite cells of regenerating mouse hindlimb muscles and differentiating C2C12 myoblasts. In C2C12 myoblasts, perturbing TIMP3 downregulation by overexpressing TIMP3 blocks TNFalpha release, p38 MAPK activation, myogenic gene expression and myotube formation. TNFalpha supplementation at a physiological concentration rescues myoblast differentiation. Similarly, in the regenerating soleus, overexpression of TIMP3 impairs release of TNFalpha and myogenic gene expression, and delays the formation of new fibers. In addition, downregulation of TIMP3 is mediated by the myogenesis-promoting microRNA miR-206. Thus, TIMP3 is a physiological regulator of myogenic differentiation.
Collapse
Affiliation(s)
- Huijie Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
50
|
Tole S, Durkan AM, Huang YW, Liu GY, Leung A, Jones LL, Taylor JA, Robinson LA. Thromboxane prostanoid receptor stimulation induces shedding of the transmembrane chemokine CX3CL1 yet enhances CX3CL1-dependent leukocyte adhesion. Am J Physiol Cell Physiol 2010; 298:C1469-80. [DOI: 10.1152/ajpcell.00380.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In atherosclerosis, chemokines recruit circulating mononuclear leukocytes to the vascular wall. A key factor is CX3CL1, a chemokine with soluble and transmembrane species that acts as both a chemoattractant and an adhesion molecule. Thromboxane A2 and its receptor, TP, are also critical to atherogenesis by promoting vascular inflammation and consequent leukocyte recruitment. We examined the effects of TP stimulation on processing and function of CX3CL1, using CX3CL1-expressing human ECV-304 cells and primary human vascular endothelial cells. TP agonists promoted rapid shedding of cell surface CX3CL1, which was inhibited by pharmacological inhibitors or specific small interfering RNA targeting tumor necrosis factor-α-converting enzyme (TACE). Because it reduced cell surface CX3CL1, we predicted that TP stimulation would inhibit adhesion of leukocytes expressing the CX3CL1 cognate receptor but, paradoxically, saw enhanced adhesion. We questioned whether the enhanced ability of the remaining membrane-associated CX3CL1 to bind targets was caused by changes in its lateral mobility. Using fluorescence recovery after photobleaching, we found that plasmalemmal CX3CL1 was initially tethered but ultimately mobilized by TP agonists. TP stimulation provoked clustering of transmembrane CX3CL1 at sites of contact with adherent leukocytes. These data demonstrate that TP stimulation induces two distinct effects: a rapid cleavage of surface CX3CL1, thereby releasing the soluble chemoattractant, plus mobilization of the remaining transmembrane CX3CL1 to enhance the avidity of interactions with adherent leukocytes. The dual effect of TP allows CX3CL1 to recruit leukocytes to sites of vascular inflammation while enhancing their adhesion once recruited.
Collapse
Affiliation(s)
- Soumitra Tole
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Anne M. Durkan
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Yi-Wei Huang
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Guang Ying Liu
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexander Leung
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Laura L. Jones
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jasmine A. Taylor
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lisa A. Robinson
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|