1
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
2
|
Gobert AP, Boutaud O, Asim M, Zagol-Ikapitte IA, Delgado AG, Latour YL, Finley JL, Singh K, Verriere TG, Allaman MM, Barry DP, McNamara KM, Sierra JC, Amarnath V, Tantawy MN, Bimczok D, Piazuelo MB, Washington MK, Zhao S, Coburn LA, Wilson KT. Dicarbonyl Electrophiles Mediate Inflammation-Induced Gastrointestinal Carcinogenesis. Gastroenterology 2021; 160:1256-1268.e9. [PMID: 33189701 PMCID: PMC7956217 DOI: 10.1053/j.gastro.2020.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas G Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Venkataraman Amarnath
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
3
|
Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr -/- mice. Nat Commun 2020; 11:4084. [PMID: 32796843 PMCID: PMC7429830 DOI: 10.1038/s41467-020-17915-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr−/− mice, a model of FH. Compared to hypercholesterolemic Ldlr−/− mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr−/− mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease. Hypercholesterolemia is associated with lipid peroxidation induced reactive dicarbonyl adducts. Here the authors show that the dicarbonyl scavenger, 2-hydroxybenzylamine(2-HOBA), decreases reactive dicarbonyl modifications of LDL and HDL, improves HDL function, reduces atherosclerosis and promotes features of stable plaques in a mouse model of hypercholestrolemia.
Collapse
|
4
|
Davies SS, May-Zhang LS, Boutaud O, Amarnath V, Kirabo A, Harrison DG. Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. Pharmacol Ther 2019; 205:107418. [PMID: 31629006 DOI: 10.1016/j.pharmthera.2019.107418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Products of lipid peroxidation include a number of reactive lipid aldehydes such as malondialdehyde, 4-hydroxy-nonenal, 4-oxo-nonenal, and isolevuglandins (IsoLGs). Although these all contribute to disease processes, the most reactive are the IsoLGs, which rapidly adduct to lysine and other cellular primary amines, leading to changes in protein function, cross-linking and immunogenicity. Their rapid reactivity means that only IsoLG adducts, and not the unreacted aldehyde, can be readily measured. This high reactivity also makes it challenging for standard cellular defense mechanisms such as aldehyde reductases and oxidases to dispose of them before they react with proteins and other cellular amines. This led us to seek small molecule primary amines that might trap and inactivate IsoLGs before they could modify cellular proteins or other endogenous cellular amines such as phosphatidylethanolamines to cause disease. Our studies identified 2-aminomethylphenols including 2-hydroxybenzylamine as IsoLG scavengers. Subsequent studies showed that they also trap other lipid dicarbonyls that react with primary amines such as 4-oxo-nonenal and malondialdehyde, but not hydroxyalkenals like 4-hydroxy-nonenal that preferentially react with soft nucleophiles. This review describes the use of these 2-aminomethylphenols as dicarbonyl scavengers to assess the contribution of IsoLGs and other amine-reactive lipid dicarbonyls to disease and as therapeutic agents.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States.
| | - Linda S May-Zhang
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Olivier Boutaud
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - David G Harrison
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Davies SS, May-Zhang LS. Isolevuglandins and cardiovascular disease. Prostaglandins Other Lipid Mediat 2018; 139:29-35. [PMID: 30296489 DOI: 10.1016/j.prostaglandins.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 11/30/2022]
Abstract
Isolevuglandins are 4-ketoaldehydes formed by peroxidation of arachidonic acid. Isolevuglandins react rapidly with primary amines including the lysyl residues of proteins to form irreversible covalent modifications. This review highlights evidence for the potential role of isolevuglandin modification in the disease processes, especially atherosclerosis, and some of the tools including small molecule dicarbonyl scavengers utilized to assess their contributions to disease.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Linda S May-Zhang
- Department of Pharmacology, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Cheng YS, Yu W, Xu Y, Salomon RG. Total Synthesis Confirms the Molecular Structure Proposed for Oxidized Levuglandin D 2. JOURNAL OF NATURAL PRODUCTS 2017; 80:488-498. [PMID: 28195470 PMCID: PMC6013286 DOI: 10.1021/acs.jnatprod.6b01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Levuglandins (LG)D2 and LGE2 are γ-ketoaldehyde levulinaldehyde derivatives with prostanoid side chains produced by spontaneous rearrangement of the endoperoxide intermediate PGH2 in the biosynthesis of prostaglandins. Covalent adduction of LGs with the amyloid peptide Aβ1-42 promotes formation of the type of oligomers that have been associated with neurotoxicity and are a pathologic hallmark of Alzheimer's disease. Within 1 min of their generation during the production of PGH2 by cyclooxygenation of arachidonic acid, LGs are sequestered by covalent adduction to proteins. In view of this high proclivity for covalent adduction, it is understandable that free LGs have never been detected in vivo. Recently a catabolite, believed to be an oxidized derivative of LGD2 (ox-LGD2), a levulinic acid hydroxylactone with prostanoid side chains, was isolated from the red alga Gracilaria edulis and detected in mouse tissues and in the lysate of phorbol-12-myristate-13-acetate-treated THP-1 cells incubated with arachidonic acid. Such oxidative catabolism of LGD2 is remarkable because it must be outstandingly efficient to prevail over adduction with proteins and because it requires a unique dehydrogenation. We now report a concise total synthesis that confirms the molecular structure proposed for ox-LGD2. The synthesis also produces ox-LGE2, which readily undergoes allylic rearrangement to Δ6-ox-LGE2.
Collapse
|
7
|
Zagol-Ikapite I, Sosa IR, Oram D, Judd A, Amarnath K, Amarnath V, Stec D, Oates JA, Boutaud O. Modification of platelet proteins by malondialdehyde: prevention by dicarbonyl scavengers. J Lipid Res 2015; 56:2196-205. [PMID: 26378094 DOI: 10.1194/jlr.p063271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
The thromboxane synthase converts prostaglandin H(2) to thromboxane A(2) and malondialdehyde (MDA) in approximately equimolar amounts. A reactive dicarbonyl, MDA forms covalent adducts of amino groups, including the ε-amine of lysine, but the importance of this reaction in platelets was unknown. Utilizing a novel LC/MS/MS method for analysis of one of the MDA adducts, the dilysyl-MDA cross-link, we demonstrated that dilysyl-MDA cross-links in human platelets are formed following platelet activation via the cyclooxygenase (COX)-1/thromboxane synthase pathway. Salicylamine and analogs of salicylamine were shown to react with MDA preferentially, thereby preventing formation of lysine adducts. Dilysyl-MDA cross-links were measured in two diseases known to be associated with increased platelet activation. Levels of platelet dilysyl-MDA cross-links were increased by 2-fold in metabolic syndrome relative to healthy subjects, and by 1.9-fold in sickle cell disease (SCD). In patients with SCD, the reduction of platelet dilysyl-MDA cross-links following administration of nonsteroidal anti-inflammatory drug provided evidence that MDA modifications of platelet proteins in this disease are derived from the COX pathway. In summary, MDA adducts of platelet proteins that cross-link lysines are formed on platelet activation and are increased in diseases associated with platelet activation. These protein modifications can be prevented by salicylamine-related scavengers.
Collapse
Affiliation(s)
| | - Iberia R Sosa
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Denise Oram
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Audra Judd
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Kalyani Amarnath
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Donald Stec
- Department of Chemistry, Vanderbilt University, Nashville, TN
| | - John A Oates
- Department of Medicine, Vanderbilt University, Nashville, TN Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
8
|
Abstract
SIGNIFICANCE A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. CRITICAL ISSUES IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. RECENT ADVANCES The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. FUTURE DIRECTIONS Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein-protein and DNA-protein cross-link formation, and its biological consequences.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Wenzhao Bi
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
9
|
Carrier EJ, Zagol-Ikapitte I, Amarnath V, Boutaud O, Oates JA. Levuglandin forms adducts with histone h4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA. Biochemistry 2014; 53:2436-41. [PMID: 24684440 PMCID: PMC4004227 DOI: 10.1021/bi401673b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Inflammation and subsequent cyclooxygenase-2
(COX-2) activity has
long been linked with the development of cancer, although little is
known about any epigenetic effects of COX-2. A product of COX-2 activation,
levuglandin (LG) quickly forms covalent bonds with nearby primary
amines, such as those in lysine, which leads to LG-protein adducts.
Here, we demonstrate that COX-2 activity causes LG-histone adducts
in cultured cells and liver tissue, detectable through LC–MS,
with the highest incidence in histone H4. Adduction is blocked by
a γ-ketoaldehyde scavenger, which has no effect on COX-2 activity
as measured by PGE2 production. Formation of the LG-histone
adduct is associated with an increased histone solubility in NaCl,
indicating destabilization of the nucleosome structure; this is also
reversed with scavenger treatment. These data demonstrate that COX-2
activity can cause histone adduction and loosening of the nucleosome
complex, which could lead to altered transcription and contribute
to carcinogenesis.
Collapse
Affiliation(s)
- Erica J Carrier
- Departments of †Pharmacology, ‡Pathology, and §Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | |
Collapse
|
10
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chacon A, Zagol-Ikapitte I, Amarnath V, Reyzer ML, Oates JA, Caprioli RM, Boutaud O. On-tissue chemical derivatization of 3-methoxysalicylamine for MALDI-imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:840-6. [PMID: 21834023 PMCID: PMC3174490 DOI: 10.1002/jms.1958] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MALDI-imaging mass spectrometry (IMS) has been shown to be a powerful tool to study drug distributions in organ tissue as well as whole animal bodies. Nevertheless, not all drugs are amenable to MALDI while others may be limited by poor sensitivity poor sensitivity. The use of chemical derivatization to improve detection of small molecules by mass spectrometry techniques is well documented. To our knowledge, however, this approach has not been applied to direct tissue analysis of small organic molecules. In this manuscript, we demonstrate the use of on-tissue chemical derivatization of a small organic molecule, 3-methoxysalicylamine (3-MoSA) a scavenger of γ-ketoaldehydes. Derivatization of 3-MoSA with 1,1'-thiocarbonyldiimidazole (TCDI) results in an oxothiazolidine derivative which is detected with much greater sensitivity by MALDI than 3-MoSA itself. TCDI treatment of tissue from mice dosed with 3-MoSA allowed images to be obtained showing its spatial distribution as well as its pharmacokinetic profile in different organs. These images correlated well with results obtained from HPLC-MS/MS analyses of the same tissues. These results provide proof-of-concept that on-tissue chemical derivatization can be used to improve detection of a small organic molecule by MALDI-IMS.
Collapse
Affiliation(s)
- Almary Chacon
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Irene Zagol-Ikapitte
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | | | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - John A. Oates
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232-6602, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-6602, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
- Correspondence to: Olivier Boutaud, Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| |
Collapse
|
12
|
Zhang M, Li W, Li T. Generation and detection of levuglandins and isolevuglandins in vitro and in vivo. Molecules 2011; 16:5333-48. [PMID: 21705973 PMCID: PMC6264246 DOI: 10.3390/molecules16075333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 02/02/2023] Open
Abstract
Levuglandins (LGs) and isolevuglandins (isoLGs), formed by rearrangement of endoperoxide intermediates generated through the cyclooxygenase and free radical induced oxidation of polyunsaturated fatty acids (PUFAs), are extraordinarily reactive, forming covalent adducts incorporating protein lysyl ε-amino groups. Because they accumulate, these adducts provide a dosimeter of oxidative injury. This review provides an updated and comprehensive overview of the generation of LG/isoLG in vitro and in vivo and the detection methods for the adducts of LG/isoLG and biological molecules in vivo.
Collapse
Affiliation(s)
- Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; E-Mail: (M.Z.)
| | - Wei Li
- Office of the Texas State Chemist, Texas A&M University, College Station, TX 77845, USA; E-Mail: (W.L.)
| | - Tao Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +86-278-374-6960
| |
Collapse
|
13
|
Zagol-Ikapitte I, Amarnath V, Jadhav S, Oates JA, Boutaud O. Determination of 3-methoxysalicylamine levels in mouse plasma and tissue by liquid chromatography-tandem mass spectrometry: application to in vivo pharmacokinetics studies. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1098-104. [PMID: 21489890 PMCID: PMC3091354 DOI: 10.1016/j.jchromb.2011.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 11/23/2022]
Abstract
We report the development of a sensitive liquid chromatography-tandem mass spectrometric assay to quantitate 3-methoxysalicylamine (3-MoSA) in biological samples. Derivatization with 1,1'-thiocarbonyldiimidazole followed by C(18) reverse-phase chromatography allowed the detection of both analyte and internal standard (hexylsalicylamine) using electrospray ionization and selected reaction monitoring (SRM) in positive ion mode. We monitored the transitions from m/z 196.7 to 65.1 and from m/z 250.1 to 77.1 for 3-MoSA and HxSA, respectively. The method is validated with respect to linearity (r(2)=0.995), precision (<17% RSD), recovery (100% for 3-MoSA and HxSA), and stability (77% after storage up to 7 month at -80°C). The LOD and LOQ were 16.12 and 48.87 μg/l, respectively and the LLOQ of 1 pg/ml. In addition, we used this assay to analyze the pharmacokinetics of 3-MoSA in mouse plasma and tissues following both intraperitoneal and oral administration, providing new information regarding the distribution of this compound in vivo.
Collapse
Affiliation(s)
| | | | - Satyawan Jadhav
- Drug Metabolism and Pharmaceutics, Glenmark Research Center, Glenmark Pharmaceuticals Ltd, Navi Mumbai-400709, Maharashtra, India
| | - John A. Oates
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602 USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-6602 USA
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602 USA
| |
Collapse
|
14
|
Zagol-Ikapitte I, Amarnath V, Bala M, Roberts LJ, Oates JA, Boutaud O. Characterization of scavengers of gamma-ketoaldehydes that do not inhibit prostaglandin biosynthesis. Chem Res Toxicol 2010; 23:240-50. [PMID: 20041722 DOI: 10.1021/tx900407a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of cyclooxygenase-2 (COX-2) is associated with the development of many pathologic conditions. The product of COX-2, prostaglandin H(2) (PGH(2)), can spontaneously rearrange to form reactive gamma-ketoaldehydes called levuglandins (LGs). This gamma-ketoaldehyde structure confers a high degree of reactivity on the LGs, which rapidly form covalent adducts with primary amines of protein residues. Formation of LG adducts of proteins has been demonstrated in pathologic conditions (e.g., increased levels in the hippocampus in Alzheimer's disease) and during physiologic function (platelet activation). On the basis of knowledge that lipid modification of proteins is known to cause their translocation and to alter their function, we hypothesize that modification of proteins by LG could have functional consequences. Testing this hypothesis requires an experimental approach that discriminates between the effects of protein modification by LG and the effects of cyclooxygenase-derived prostanoids acting through their G-protein coupled receptors. To achieve this goal, we have synthesized and evaluated a series of scavengers that react with LG with a potency more than 2 orders of magnitude greater than that with the epsilon-amine of lysine. A subset of these scavengers are shown to block the formation of LG adducts of proteins in cells without inhibiting the catalytic activity of the cyclooxygenases. Ten of these selective scavengers did not produce cytotoxicity. These results demonstrate that small molecules can scavenge LGs in cells without interfering with the formation of prostaglandins. They also provide a working hypothesis for the development of pharmacologic agents that could be used in experimental animals in vivo to assess the pathophysiological contribution of levuglandins in diseases associated with cyclooxygenase up-regulation.
Collapse
Affiliation(s)
- Irene Zagol-Ikapitte
- Departments of Pharmacology, Pathology, and Medicine, Vanderbilt University, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mosoni L, Balage M, Vazeille E, Combaret L, Morand C, Zagol-Ikapitte I, Boutaud O, Marzani B, Papet I, Dardevet D. Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs. Nutrition 2010; 26:1157-62. [PMID: 20080031 DOI: 10.1016/j.nut.2009.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Aged muscle is characterized by a defect in the ability of leucine to stimulate protein synthesis. We showed previously that antioxidant supplementation improved the anabolic response to leucine of old muscle and reduced inflammation. The aim of the present study was to determine if the positive effects observed in muscle could be related to an improvement of local muscle oxidative status. METHODS Two groups of 20-mo-old male Wistar rats were supplemented or not with rutin, vitamin E, vitamin A, zinc, and selenium during 7 wk. We measured body weight, food intake, oxidative status in muscle and other tissues, gastrocnemius muscle proteolytic activities, and liver glutathione metabolism. RESULTS Antioxidant supplementation had no effect on muscle antioxidant capacity, superoxide dismutase activities, and myofibrillar protein carbonyl content and induced an increase in muscle cathepsin activities. In other tissues, antioxidant supplementation increased liver glutathione (reduced plus oxidized glutathione) content, reduced oxidative damage in the liver and spleen (as measured by γ-keto-aldehyde content), and reduced heart thiobarbituric acid-reactive substances. CONCLUSION Our results showed that the positive effects of antioxidant supplementation observed previously on the anabolic response to leucine of old muscle were not directly related to an improvement of in situ muscle oxidative status. It could result from reduced systemic inflammation/oxidative stress. The dialog between muscle and other organs should be studied more thoroughly, especially during aging.
Collapse
Affiliation(s)
- Laurent Mosoni
- INRA, UMR 1019 Nutrition Humaine, Saint Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Roychowdhury S, McMullen MR, Pritchard MT, Li W, Salomon RG, Nagy LE. Formation of gamma-ketoaldehyde-protein adducts during ethanol-induced liver injury in mice. Free Radic Biol Med 2009; 47:1526-38. [PMID: 19616618 PMCID: PMC2783279 DOI: 10.1016/j.freeradbiomed.2009.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/16/2009] [Accepted: 07/11/2009] [Indexed: 01/08/2023]
Abstract
Ethanol metabolism promotes the formation of a variety of reactive aldehydes in the liver. These aldehydes can rapidly form covalent protein adducts. Accumulating evidence indicates that these protein adducts may contribute to ethanol-mediated liver injury. Overproduction of gamma-ketoaldehydes, levuglandins (LGs) and isolevuglandins, is implicated in the pathogenesis of several chronic inflammatory diseases. gamma-Ketoaldehydes can form protein adducts orders of magnitude more quickly than 4-hydroxynonenal (4-HNE) or malondialdehyde. We hypothesized that ethanol-induced oxidative stress in vivo results in overproduction of LGE(2)- and iso[4]LGE(2)-protein adducts in mouse liver. Female C57BL/6 mice were allowed free access to an ethanol-containing diet for up to 39 days or pair-fed control diets. Pathological markers of ethanol-induced hepatic injury including serum alanine aminotransferase, hepatic triglyceride, and CYP2E1 were elevated in response to ethanol feeding. Ethanol-induced formation of iso[4]LGE(2)-, LGE(2)-, and 4-HNE-protein adducts in mouse liver was dependent on both dose and duration of ethanol feeding. Deficiency of cyclooxygenase 1 or 2 did not prevent ethanol-induced iso[4]LGE(2) or LGE(2) adducts in the liver, but adduct formation was reduced in both TNFR1- and CYP2E1-deficient mice. In summary, ethanol feeding enhanced gamma-ketoaldehyde-protein adduct production via a TNFR1/CYP2E1-dependent, but cyclooxygenase-independent, mechanism in mouse liver.
Collapse
|
17
|
Carrier EJ, Amarnath V, Oates JA, Boutaud O. Characterization of covalent adducts of nucleosides and DNA formed by reaction with levuglandin. Biochemistry 2009; 48:10775-81. [PMID: 19824699 DOI: 10.1021/bi9015132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced expression of cyclooxygenase-2 (COX-2) is associated with development of several cancers. The product of COX-2, prostaglandin H(2) (PGH(2)), can undergo spontaneous rearrangement and nonenzymatic ring cleavage to form the highly reactive levuglandin E(2) (LGE(2)) or D(2) (LGD(2)). Incubation with LGE(2) causes DNA-protein cross-linking in cultured cells, suggesting that levuglandins can directly react with DNA. We report the identification by liquid chromatography-tandem mass spectrometry of a stable levuglandin-deoxycytidine (LG-dC) adduct that forms upon reaction of levuglandin with DNA. We found that LGE(2) reacted with deoxycytidine, deoxyadenosine, or deoxyguanosine in vitro to form covalent adducts with a dihydroxypyrrolidine structure, as deduced from selective ion fragmentation. For LG-deoxycytidine adducts, the initial dihydroxypyrrolidine structure converted to a pyrrole structure over time. Reaction of LG with DNA yielded a stable LG-dC adduct with a pyrrole structure. These results describe the first structure of levuglandinyl-DNA adducts and provide the tools with which to evaluate the potential for LG-DNA adduct formation in vivo.
Collapse
Affiliation(s)
- Erica J Carrier
- Department of Medicine, Vanderbilt University, Nashville,Tennessee 37232, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Oxidative stress, defined as an increase in reactive oxygen species, leads to peroxidation of polyunsaturated fatty acids and generates a vast number of biologically active molecules, many of which might contribute in some way to health and disease. This chapter will focus on one specific class of peroxidation products, the levuglandins and isoketals (also called isolevuglandins). These gamma-ketoaldehydes are some of the most reactive products derived from the peroxidation of lipids and exert their biological effects by rapidly adducting to primary amines such as the lysyl residues of proteins. The mechanism of their formation and remarkable reactivity will be described, along with evidence for their increased formation in disease conditions linked with oxidative stress and inflammation. Finally, the currently known effects of these gamma-ketoaldehydes on cellular function will then be discussed and when appropriate compared to the effects of alpha,beta-unsaturated fatty aldehydes, in order to illustrate the significant differences between these two classes of peroxidation products that modify proteins.
Collapse
|
19
|
Davies SS, Amarnath V, Brame CJ, Boutaud O, Roberts LJ. Measurement of chronic oxidative and inflammatory stress by quantification of isoketal/levuglandin γ-ketoaldehyde protein adducts using liquid chromatography tandem mass spectrometry. Nat Protoc 2007; 2:2079-91. [PMID: 17853863 DOI: 10.1038/nprot.2007.298] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measurement of F(2)-isoprostanes (F(2)-IsoPs) has been independently verified as one of the most reliable approaches to assess oxidative stress in vivo. However, the rapid clearance of F(2)-IsoPs makes the timing of sample collection critical for short-lived oxidative insults. Isoketals (IsoKs) are gamma-ketoaldehydes formed via the IsoP pathway of lipid peroxidation that rapidly react with lysyl residues of proteins to form stable protein adducts. Oxidative stress can also activate cyclooxygenases to produce prostaglandin H(2), which can form two specific isomers of IsoK-levuglandin (LG) D(2) and E(2). Because adducted proteins are not rapidly cleared, IsoK/LG protein adduct levels can serve as a dosimeter of oxidative and inflammatory damage over prolonged periods of time as well as brief episodes of injury. Quantification of IsoK/LG protein adducts begins with liquid-phase extraction to separate proteins from lipid membranes, allowing measurement of both IsoK/LG protein adducts and F(2)-IsoP from the same sample if desired. IsoK/LG-lysyl-lactam adducts are measured by liquid chromatography tandem mass spectrometry after proteolytic digestion of extracted proteins, solid-phase extraction and preparative HPLC.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 27232-6602, USA
| | | | | | | | | |
Collapse
|
20
|
Davies SS, Brantley EJ, Voziyan PA, Amarnath V, Zagol-Ikapitte I, Boutaud O, Hudson BG, Oates JA, Roberts LJ. Pyridoxamine analogues scavenge lipid-derived gamma-ketoaldehydes and protect against H2O2-mediated cytotoxicity. Biochemistry 2006; 45:15756-67. [PMID: 17176098 PMCID: PMC2597444 DOI: 10.1021/bi061860g] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isoketals and levuglandins are highly reactive gamma-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge alpha-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive gamma-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic gamma-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogues of pyridoxamine, salicylamine and 5'-O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogues, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by alpha-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogues appear to preferentially scavenge gamma-ketoaldehydes. Both pyridoxamine and its lipophilic analogues inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogues provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogues to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions.
Collapse
Affiliation(s)
- Sean S Davies
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boutaud O, Montine TJ, Chang L, Klein WL, Oates JA. PGH2-derived levuglandin adducts increase the neurotoxicity of amyloid beta1-42. J Neurochem 2006; 96:917-23. [PMID: 16412101 PMCID: PMC1621054 DOI: 10.1111/j.1471-4159.2005.03586.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The body of evidence indicating that oligomers of amyloid beta(1-42) (Abeta(1-42)) produce toxicity to neurons, together with our demonstration that prostaglandin H(2) (PGH(2)) oligomerizes amyloid beta(1-42), led to the examination of the neurotoxicity of amyloid beta(1-42) treated with PGH(2). The neurotoxic effects of Abeta(1-42) incubated with PGH(2) was examined in primary cultures of cerebral neurons of mice, monitoring the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of cell toxicity. Whereas Abeta(1-42) itself, incubated for 24 h, has little or no effect on MTT reduction, Abeta(1-42) 24 h after exposure to PGH(2) produced a marked inhibition of MTT reduction, comparable with the inhibition resulting from Abeta(1-42) that has been oligomerized by incubation for 6 days. Similar results were obtained when Abeta(1-42) was incubated with levuglandin E(2) (LGE(2)), a reactive aldehyde formed by spontaneous rearrangement of PGH(2). The oligomers formed from reaction of Abeta(1-42) with LGE(2) exhibit immunochemical similarity with amyloid-derived diffusible ligands (ADDLs), as determined by analysis of the products of reaction of Abeta(1-42) with LGE(2) using western blotting with an antibody that is selective for ADDLs.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6602, Tennessee, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Autoxidation of polyunsaturated phosphatidylcholines (PCs) generates isolevuglandins (isoLGs) through rearrangements of isoprostanoid endoperoxides. Within seconds, isoLGs are sequestered by covalent adduction with proteins. Murine plasma isoLG-protein levels increased at least 2.5-fold in response to inflammation. IsoLG-protein adducts accumulate in vivo providing a convenient dosimeter of oxidative stress. Elevated blood isoLG-protein levels present in atherosclerosis (AS) patients point to an independent defect that is not associated with total cholesterol levels, which results in an abnormally high level of oxidative injury in AS. Protein adduction and cross-linking caused by isoLGs can obstruct protein function. For example, it interferes with proteosomal degradation of proteins and, consequently, may result in apoptotic death of smooth muscle cells and destabilization of atherosclerotic plaques. Phospholipid autoxidation also generates biologically active oxidatively truncated PCs through fragmentation of dihydroperoxydienes that can be promoted by alpha-tocopherol. The oxidatively truncated PCs in oxidized low-density lipoprotein (oxLDL) contribute to the etiology of AS by inhibiting enzymatic activities required for normal processing of oxLDL by macrophages. They promote interactions of monocytes with endothelial cells that may foster migration of monocytes into the subendothelial space. They are also ligands for unregulated receptor-mediated uptake of oxLDL by monocyte macrophages leading to foam cell formation.
Collapse
Affiliation(s)
- Wujuan Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7078, USA
| | | |
Collapse
|
23
|
Zagol-Ikapitte I, Masterson TS, Amarnath V, Montine TJ, Andreasson KI, Boutaud O, Oates JA. Prostaglandin H2-derived adducts of proteins correlate with Alzheimer's disease severity. J Neurochem 2005; 94:1140-5. [PMID: 15992375 DOI: 10.1111/j.1471-4159.2005.03264.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of cyclooxygenase-derived lipid adducts of protein in brains of patients who had Alzheimer's disease has been investigated. The enzymatic product of the cyclooxygenases, prostaglandin H2, rearranges in part to highly reactive gamma-ketoaldehydes, levuglandin (LG) E(2) and LGD(2). These gamma-ketoaldehydes react with free amines on proteins to yield a covalent adduct. Utilizing analysis of the levuglandinyl-lysine adducts by liquid chromatography-tandem mass spectrometry, we now find that this post-translational modification is increased significantly in the hippocampus in Alzheimer's disease. The magnitude of the increase correlates with the pathological evidence of severity.
Collapse
|
24
|
Boutaud O, Andreasson KI, Zagol-Ikapitte I, Oates JA. Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol 2005; 15:139-42. [PMID: 15912886 PMCID: PMC8096006 DOI: 10.1111/j.1750-3639.2005.tb00510.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Substantial evidence indicates that both beta-amyloid and cyclooxygenase activity contribute to the pathogenesis of Alzheimer disease. The immediate product of the cyclooxygenases, prostaglandin H2, rapidly rearranges in aqueous solution, with approximately 20% being converted to levuglandins E2 and D2. These gamma-ketoaldehydes are highly reactive and rapidly adduct to accessible amine groups on macromolecules, particularly the epsilon-amine of lysine residues on proteins. The immediate LG-lysine adducts are themselves reactive, and can covalently crosslink proteins. PGH2, acting via LGs, accelerates the formation of the type of oligomers of amyloid beta that has been associated with neurotoxicity. In this review, we discuss the cyclooxygenase-dependent lipid-modification of proteins by levuglandins in vitro, in cells in culture and in vivo in transgenic mice over-expressing COX in the brain.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | |
Collapse
|
25
|
Trebino CE, Eskra JD, Wachtmann TS, Perez JR, Carty TJ, Audoly LP. Redirection of Eicosanoid Metabolism in mPGES-1-deficient Macrophages. J Biol Chem 2005; 280:16579-85. [PMID: 15722356 DOI: 10.1074/jbc.m412075200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal prostaglandin E synthase (mPGES)-1 is one of several prostaglandin E synthases involved in prostaglandin H2 (PGH2) metabolism. In the present report, we characterize the contribution of mPGES-1 to cellular PGH2 metabolism in murine macrophages by studying the synthesis of eicosanoids and expression of eicosanoid metabolism enzymes in wild type and mPGES-1-deficient macrophages. Thioglycollate-elicited macrophages isolated from mPGES-1-/- animals and genetically matched wild type controls were stimulated with diverse pro-inflammatory stimuli. Prostaglandins were released in the following order of decreasing abundance from wild type macrophages stimulated with lipopolysaccharide: prostaglandin E2 (PGE2)>thromboxane B2 (TxB2)>6-keto prostaglandin F1alpha (PGF1alpha), prostaglandin F(2alpha) (PGF2alpha), and prostaglandin D2 (PGD2). In contrast, we detected in mPGES-1-/- macrophages a >95% reduction in PGE2 production resulting in the following altered prostaglandin profile: TxB2>6-keto PGF1alpha and PGF2alpha>PGE2, despite the comparable release of total prostaglandins. No significant change in expression pattern of key prostaglandin-synthesizing enzymes was detected between the genotypes. We then further profiled genotype-related differences in the eicosanoid profile using macrophages pre-stimulated with lipopolysaccharide followed by a 10-min incubation with 10 microm [3H]arachidonic acid. Eicosanoid products were subsequently identified by reverse phase high pressure liquid chromatography. The dramatic reduction in [3H]PGE2 formation from mPGES-1-/- macrophages compared with controls resulted in TxB2 and 6-keto PGF1alpha becoming the two most abundant prostaglandins in these samples. Our results also suggest a 5-fold increase in 12-[3H]hydroxyheptadecatrienoic acid release in mPGES-1-/- samples. Our data support the hypothesis that mPGES-1 induction in response to an inflammatory stimulus is essential for PGE2 synthesis. The redirection of prostaglandin production in mPGES-1-/- cells provides novel insights into how a cell processes the unstable endoperoxide PGH2 during the inactivation of a major metabolic outlet.
Collapse
Affiliation(s)
- Catherine E Trebino
- Inflammation, Pfizer Global Research and Development, Groton Laboratories, Pfizer Inc., Groton, Connecticut 06340, USA
| | | | | | | | | | | |
Collapse
|
26
|
Salomon RG. Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways. Chem Phys Lipids 2005; 134:1-20. [PMID: 15752459 DOI: 10.1016/j.chemphyslip.2004.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 12/29/2004] [Accepted: 12/29/2004] [Indexed: 11/21/2022]
Abstract
The cyclooxygenase (COX) pathway generates enantiomerically pure levuglandin (LG) E(2) by a rearrangement of the prostaglandin (PG) endoperoxide PGH(2). The isoprostane pathway generates racemic LGE(2) together with stereoisomers, designated collectively as isoLGE(2), through free radical-induced lipid oxidation. Within seconds, both LGs and isoLGs are rapidly sequestered by protein adduction. In theory, the diastereomeric purity of LGE(2)-protein adduct-derived lysyl lactams can reveal the relative contributions of the COX and isoprostane pathways to LGE(2) stereoisomer production in vivo. Notably, however, the detection of LGE(2)-protein adducts does not provide a basis for inferring their formation through the isoprostane pathway in vivo unless the COX pathway can be rigorously excluded. In contrast, LGE(2)structural isomers, designated collectively as iso[n]LGE(2)s, are produced exclusively through the isoprostane pathway. Immunoassays that selectively recognize iso[n]LGE(2)-protein adducts are the only tools available to unambiguously detect and quantify the production of isolevuglandins in vivo through free radical-induced oxidation of arachidonates.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, 2074, Adelbert Road, Cleveland, OH 44106-7078, USA.
| |
Collapse
|
27
|
Abstract
Inspired by a reaction discovered through basic research on the chemistry of the bicyclic peroxide nucleus of the prostaglandin endoperoxide PGH2, we postulated that levulinaldehyde derivatives with prostaglandin side chains, levuglandins (LGs), and structurally isomeric analogues, isolevuglandins (iso[n]LGs), would be generated by nonenzymatic rearrangements of prostanoid and isoprostanoid endoperoxides. Two decades of subsequent studies culminated in our discoveries of the LG and isoLG pathways, branches of the cyclooxygenase and isoprostane pathways, respectively. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. IsoLGs, also known as isoketals or neuroketals, are generated in vivo through free radical-induced autoxidation of polyunsaturated phospholipid esters. Hydrolysis occurs after rapid adduction of isoLG phospholipids to proteins. The proclivity of these reactive species to avidly bind covalently with and cross-link proteins and nucleic acids complicated the hunt for LGs and isoLGs in vivo. The extraordinary reactivity of these "stealthy toxins" underlies much, if not all, of the biological consequences of LG and isoLG generation. They interfere with protein function and are among the most potent neurotoxic products of lipid oxidation known. Because they can accumulate over the lifetimes of proteins, iso[n]LG-protein adducts represent a convenient dosimeter of oxidative stress.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7078, USA.
| |
Collapse
|