1
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
2
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Subramanian A, Capalbo A, Iyengar NR, Rizzo R, di Campli A, Di Martino R, Lo Monte M, Beccari AR, Yerudkar A, Del Vecchio C, Glielmo L, Turacchio G, Pirozzi M, Kim SG, Henklein P, Cancino J, Parashuraman S, Diviani D, Fanelli F, Sallese M, Luini A. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell 2020; 176:1461-1476.e23. [PMID: 30849374 DOI: 10.1016/j.cell.2019.01.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/30/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.
Collapse
Affiliation(s)
- Advait Subramanian
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| | - Anita Capalbo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Namrata Ravi Iyengar
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Antonella di Campli
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Andrea R Beccari
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Dompé Farmaceutici SpA, Milan, Italy
| | - Amol Yerudkar
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Carmen Del Vecchio
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Luigi Glielmo
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Petra Henklein
- Institut fur Biochemie, Charite Universitätsmedizin, Berlin, Germany
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | | | - Dario Diviani
- Université de Lausanne, Département de Pharmacologie et Toxicologie, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| |
Collapse
|
4
|
Maeda S, Koehl A, Matile H, Hu H, Hilger D, Schertler GFX, Manglik A, Skiniotis G, Dawson RJP, Kobilka BK. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat Commun 2018; 9:3712. [PMID: 30213947 PMCID: PMC6137068 DOI: 10.1038/s41467-018-06002-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gβγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes. The determination of high resolution structures of G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins is challenging. Here authors develop an antibody fragment, mAB16, which stabilizes GPCR/G-protein complexes and facilitates the application of high resolution cryo-EM.
Collapse
Affiliation(s)
- Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Antoine Koehl
- Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Hugues Matile
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Hongli Hu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94143, USA.,Department of Anesthesia and Perioperative Care, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94143, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Itoh M, Radisky DC, Hashiguchi M, Sugimoto H. The exon 38-containing ARHGEF11 splice isoform is differentially expressed and is required for migration and growth in invasive breast cancer cells. Oncotarget 2017; 8:92157-92170. [PMID: 29190905 PMCID: PMC5696171 DOI: 10.18632/oncotarget.20985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023] Open
Abstract
Breast cancer invasion involves the loss of cell-cell junctions and acquisition of an invasive, migratory phenotype, and breast cancer cells of the basal intrinsic subtype are more invasive and metastatic than breast cancer cells of other subtypes. ARHGEF11 is a RhoGEF that was previously shown to bind to the tight junction protein ZO-1 at perijunctional actomyosin ring (PJAR), a network of cortically organized actin and myosin filaments associated with junctional complexes that regulates cell-cell adhesion and polarization. We show here that ARHGEF11 shows splice isoform expression that differs according to the intrinsic subtype of breast cancer cells and that controls their invasive phenotype. Luminal subtype breast cancer cells express the isoform of ARHGEF11 lacking exon 38 (38-), which binds to ZO-1 at PJAR and is necessary for formation and maintenance of cell-cell junctions. Basal subtype breast cancer cells express the isoform of ARHGEF11 containing exon 38 (38+), which does not bind to ZO-1 and which drives cell migration and motility. Depletion of ARHGEF11 in basal subtype breast cancer cells is sufficient to alter cell morphology from a mesenchymal stellate form with extensive cell protrusions to a cobblestone-like epithelial form, and to suppress growth and survival both in vitro and in vivo. These findings show that the expression of the particular splice isoform of ARHGEF11 is critically linked to the malignant phenotype of breast cancer cells, identifying ARHGEF11 exon 38(+) as a biomarker and target for therapy of breast cancer.
Collapse
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Masaaki Hashiguchi
- Department of Immunology, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
6
|
Yung BS, Brand CS, Xiang SY, Gray CBB, Means CK, Rosen H, Chun J, Purcell NH, Brown JH, Miyamoto S. Selective coupling of the S1P 3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. J Mol Cell Cardiol 2017; 103:1-10. [PMID: 28017639 PMCID: PMC5410967 DOI: 10.1016/j.yjmcc.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.
Collapse
Affiliation(s)
- Bryan S Yung
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sunny Y Xiang
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Charles B B Gray
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | | | - Hugh Rosen
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, United States
| | - Nicole H Purcell
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Joan Heller Brown
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Shigeki Miyamoto
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
7
|
Montgomery ER, Temple BRS, Peters KA, Tolbert CE, Booker BK, Martin JW, Hamilton TP, Tagliatela AC, Smolski WC, Rogers SL, Jones AM, Meigs TE. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation. Mol Pharmacol 2014; 85:586-97. [PMID: 24435554 PMCID: PMC3965892 DOI: 10.1124/mol.113.088443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022] Open
Abstract
The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.
Collapse
Affiliation(s)
- Ellyn R Montgomery
- Department of Biology, University of North Carolina at Asheville, Asheville, North Carolina (E.R.M., B.K.B., J.W.M., T.P.H., A.C.T., W.C.S., T.E.M.); Departments of Biology (K.A.P., S.L.R., A.M.J.), Biochemistry and Biophysics (B.R.S.T.), Cell Biology and Physiology (C.E.T.), and Pharmacology (A.M.J.), R. L. Juliano Structural Bioinformatics Core Facility (B.R.S.T.), and Carolina Center for Genome Sciences (S.L.R.), University of North Carolina, and the Lineberger Comprehensive Cancer Center, (S.L.R., T.E.M.), Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ritchie BJ, Smolski WC, Montgomery ER, Fisher ES, Choi TY, Olson CM, Foster LA, Meigs TE. Determinants at the N- and C-termini of Gα12 required for activation of Rho-mediated signaling. J Mol Signal 2013; 8:3. [PMID: 23531275 PMCID: PMC3636079 DOI: 10.1186/1750-2187-8-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterotrimeric guanine nucleotide binding proteins of the G12/13 subfamily, which includes the α-subunits Gα12 and Gα13, stimulate the monomeric G protein RhoA through interaction with a distinct subset of Rho-specific guanine nucleotide exchange factors (RhoGEFs). The structural features that mediate interaction between Gα13 and RhoGEFs have been examined in crystallographic studies of the purified complex, whereas a Gα12:RhoGEF complex has not been reported. Several signaling responses and effector interactions appear unique to Gα12 or Gα13, despite their similarity in amino acid sequence. METHODS To comprehensively examine Gα12 for regions involved in RhoGEF interaction, we screened a panel of Gα12 cassette substitution mutants for binding to leukemia-associated RhoGEF (LARG) and for activation of serum response element mediated transcription. RESULTS We identified several cassette substitutions that disrupt Gα12 binding to LARG and the related p115RhoGEF. These Gα12 mutants also were impaired in activating serum response element mediated signaling, a Rho-dependent response. Most of these mutants matched corresponding regions of Gα13 reported to contact p115RhoGEF, but unexpectedly, several RhoGEF-uncoupling mutations were found within the N- and C-terminal regions of Gα12. Trypsin protection assays revealed several mutants in these regions as retaining conformational activation. In addition, charge substitutions near the Gα12 N-terminus selectively disrupted binding to LARG but not p115RhoGEF. CONCLUSIONS Several structural aspects of the Gα12:RhoGEF interface differ from the reported Gα13:RhoGEF complex, particularly determinants within the C-terminal α5 helix and structurally uncharacterized N-terminus of Gα12. Furthermore, key residues at the Gα12 N-terminus may confer selectivity for LARG as a downstream effector.
Collapse
Affiliation(s)
- Benjamin J Ritchie
- Department of Biology, University of North Carolina at Asheville, One University Heights, Asheville, NC 28804, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Siehler S. G12/13-dependent signaling of G-protein-coupled receptors: disease context and impact on drug discovery. Expert Opin Drug Discov 2013; 2:1591-604. [PMID: 23488903 DOI: 10.1517/17460441.2.12.1591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the plasma membrane via intracellular activation of heterotrimeric G proteins. The signal transduction pathways of Gs, Gi and Gq protein families are widely studied, whereas signaling properties of G12 proteins are only emerging. Many GPCRs were found to couple to G12/13 proteins in addition to coupling to one or more other types of G proteins. G12/13 proteins couple GPCRs to activation of the small monomeric GTPase RhoA. Activation of RhoA modulates various downstream effector systems relevant to diseases such as hypertension, artherosclerosis, asthma and cancer. GPCR screening assays exist for Gs-, Gi- and Gq-linked pathways, whereas a drug-screening assay for the G12-Rho pathway was developed only recently. The review gives an overview of the present understanding of the G12/13-related biology of GPCRs.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, WSJ-88.2.05, 4002 Basel, Switzerland +41 61 324 8946 ; +41 61 324 2870 ;
| |
Collapse
|
10
|
Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M, Liao JK. FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J 2012; 27:1439-49. [PMID: 23271052 DOI: 10.1096/fj.12-217018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Rho-associated coiled-coil containing kinases, ROCK1 and ROCK2, are important regulators of cell shape, migration, and proliferation through effects on the actin cytoskeleton. However, it is not known whether ROCK2 plays an important role in the development of cardiac hypertrophy. To determine whether the loss of ROCK2 could prevent cardiac hypertrophy, cardiomyocyte-specific ROCK2-null (c-ROCK2(-/-)) were generated using conditional ROCK2(flox/flox) mice and α-myosin heavy-chain promoter-driven Cre recombinase transgenic mice. Cardiac hypertrophy was induced by Ang II infusion (400 ng/kg/min, 28 d) or transverse aortic constriction (TAC). Under basal conditions, hemodynamic parameters, cardiac anatomy, and function of c-ROCK2(-/-) mice were comparable to wild-type (WT) mice. However, following Ang II infusion or TAC, c-ROCK2(-/-) mice exhibited a substantially smaller increase in heart-to-body weight ratio, left ventricular mass, myocyte cross-sectional area, hypertrophy-related fetal gene expression, intraventricular fibrosis, cardiac apoptosis, and oxidative stress compared to control mice. Deletion of ROCK2 in cardiomyocytes leads to increased expression of four-and-a-half LIM-only protein-2 (FHL2) and FHL2-mediated inhibition of serum response factor (SRF) and extracellular signal-regulated mitogen-activated protein kinase (ERK). Knockdown of FHL2 expression in ROCK2-deficient cardiomyocytes or placing ROCK2-haploinsufficient (ROCK2(+/-)) mice on FHL2(+/-)-haploinsufficient background restored the hypertrophic response to Ang II. These results indicate that cardiomyocyte ROCK2 is essential for the development of cardiac hypertrophy and that up-regulation of FHL2 may contribute to the antihypertrophic phenotype that is observed in cardiac-specific ROCK2-deficient mice.
Collapse
Affiliation(s)
- Ryuji Okamoto
- Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Goldsmith ZG, Ha JH, Jayaraman M, Dhanasekaran DN. Lysophosphatidic Acid Stimulates the Proliferation of Ovarian Cancer Cells via the gep Proto-Oncogene Gα(12). Genes Cancer 2011; 2:563-75. [PMID: 21901169 DOI: 10.1177/1947601911419362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/08/2011] [Accepted: 07/16/2011] [Indexed: 01/03/2023] Open
Abstract
Lysophosphatidic acid (LPA), an agonist that activates specific G protein-coupled receptors, is present at an elevated concentration in the serum and ascitic fluid of ovarian cancer patients. Although the increased levels of LPA have been linked to the genesis and progression of different cancers including ovarian carcinomas, the specific signaling conduit utilized by LPA in promoting different aspects of oncogenic growth has not been identified. Here, we show that LPA stimulates both migration and proliferation of ovarian cancer cells. Using multiple approaches, we demonstrate that the stimulation of ovarian cancer cells with LPA results in a robust and statistically significant proliferative response. Our results also indicate that Gα(12), the gep proto-oncogene, which can be stimulated by LPA via specific LPA receptors, is overtly activated in a large array of ovarian cancer cells. We further establish that LPA stimulates the rapid activation of Gα(12) in SKOV-3 cells and the expression of CT12, an inhibitory minigene of Gα(12) that disrupts LPAR-Gα(12) interaction and potently inhibits such activation. Using this inhibitory molecule as well as the shRNA approach, we show that the inhibition of Gα(12) or silencing of its expression drastically and significantly attenuates LPA-mediated proliferation of ovarian cancer cell lines such as SKOV3, Hey, and OVCAR-3. Together with our findings that the silencing of Gα(12) does not have any significant effect on LPA-mediated migratory response of SKOV3 cells, our results point to a critical role for LPA-LPAR-Gα(12) signaling in ovarian cancer cell proliferation and not in migration. Thus, results presented here for the first time demonstrate that the gep proto-oncogene forms a specific node in LPA-LPAR-mediated mitogenic signaling in ovarian cancer cells.
Collapse
|
12
|
Wilson BA, Ho M. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins. Future Microbiol 2010; 5:1185-201. [PMID: 20722598 DOI: 10.2217/fmb.10.91] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor [CNF]1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys-His-Asp catalytic triads distinct from E. coli CNF1.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, B128 CLSL, Urbana, IL 61801, USA.
| | | |
Collapse
|
13
|
Ayoub MA, Trinquet E, Pfleger KDG, Pin J. Differential association modes of the thrombin receptor PAR
1
with Gαil, Gα12, and β‐arrestin 1. FASEB J 2010; 24:3522-35. [DOI: 10.1096/fj.10-154997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mohammed Akli Ayoub
- CNRS UMR5203INSERM U661Universités Montpellier I and IIInstitut de Génomique FonctionnelleDépartement de Pharmacologie Moléculaire Montpellier France
- Laboratory for Molecular Endocrinology—GPCRsWestern Australian Institute for Medical Research and Centre for Medical ResearchUniversity of Western Australia Nedlands, Perth Western Australia Australia
| | | | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology—GPCRsWestern Australian Institute for Medical Research and Centre for Medical ResearchUniversity of Western Australia Nedlands, Perth Western Australia Australia
| | - Jean‐Philippe Pin
- CNRS UMR5203INSERM U661Universités Montpellier I and IIInstitut de Génomique FonctionnelleDépartement de Pharmacologie Moléculaire Montpellier France
| |
Collapse
|
14
|
Kong T, Xu D, Yu W, Takakura A, Boucher I, Tran M, Kreidberg JA, Shah J, Zhou J, Denker BM. G alpha 12 inhibits alpha2 beta1 integrin-mediated Madin-Darby canine kidney cell attachment and migration on collagen-I and blocks tubulogenesis. Mol Biol Cell 2009; 20:4596-610. [PMID: 19776354 DOI: 10.1091/mbc.e09-03-0220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regulation of epithelial cell attachment and migration are essential for normal development and maintenance of numerous tissues. G proteins and integrins are critical signaling proteins regulating these processes, yet in polarized cells little is known about the interaction of these pathways. Herein, we demonstrate that G alpha 12 inhibits interaction of MDCK cells with collagen-I, the major ligand for alpha2 beta1 integrin. Activating G alpha 12 (QL point mutation or stimulating endogenous G alpha 12 with thrombin) inhibited focal adhesions and lamellipodia formation and led to impaired cell migration. Consistent with G alpha 12-regulated attachment to collagen-I, G alpha 12-silenced MDCK cells revealed a more adherent phenotype. Inhibiting Rho kinase completely restored normal attachment in G alpha 12-activated cells, and there was partial recovery with inhibition of Src and protein phosphatase pathways. G alpha 12 activation led to decreased phosphorylation of focal adhesion kinase and paxillin with displacement of alpha2 integrin from the focal adhesion protein complex. Using the MDCK cell 3D-tubulogenesis assay, activated G alpha 12 inhibited tubulogenesis and led to the formation of cyst-like structures. Furthermore, G alpha 12-silenced MDCK cells were resistant to thrombin-stimulated cyst development. Taken together, these studies provide direct evidence for G alpha 12-integrin regulation of epithelial cell spreading and migration necessary for normal tubulogenesis.
Collapse
Affiliation(s)
- Tianqing Kong
- Renal Division, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bunda S, Wang Y, Mitts TF, Liu P, Arab S, Arabkhari M, Hinek A. Aldosterone stimulates elastogenesis in cardiac fibroblasts via mineralocorticoid receptor-independent action involving the consecutive activation of Galpha13, c-Src, the insulin-like growth factor-I receptor, and phosphatidylinositol 3-kinase/Akt. J Biol Chem 2009; 284:16633-16647. [PMID: 19372600 PMCID: PMC2713569 DOI: 10.1074/jbc.m109.008748] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/15/2009] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that aldosterone, which stimulates collagen production through the mineralocorticoid receptor (MR)-dependent pathway, also induces elastogenesis via a parallel MR-independent mechanism involving insulin-like growth factor-I receptor (IGF-IR) signaling. The present study provides a more detailed explanation of this signaling pathway. Our data demonstrate that small interfering RNA-driven elimination of MR in cardiac fibroblasts does not inhibit aldosterone-induced IGF-IR phosphorylation and subsequent increase in elastin production. These results exclude the involvement of the MR in aldosterone-induced increases in elastin production. Results of further experiments aimed at identifying the upstream signaling component(s) that might be activated by aldosterone also eliminate the putative involvement of pertussis toxin-sensitive Galphai proteins, which have previously been shown to be responsible for some MR-independent effects of aldosterone. Instead, we found that small interfering RNA-dependent elimination of another heterotrimeric G protein, Galpha13, eliminates aldosterone-induced elastogenesis. We further demonstrate that aldosterone first engages Galpha13 and then promotes its transient interaction with c-Src, which constitutes a prerequisite step for aldosterone-dependent activation of the IGF-IR and propagation of consecutive downstream elastogenic signaling involving phosphatidylinositol 3-kinase/Akt. In summary, the data we present reveal new details of an MR-independent cellular signaling pathway through which aldosterone stimulates elastogenesis in human cardiac fibroblasts.
Collapse
Affiliation(s)
- Severa Bunda
- From the Physiology and Experimental Medicine Program, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario M5G 1X8, Canada
| | - Yanting Wang
- From the Physiology and Experimental Medicine Program, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario M5G 1X8, Canada
| | - Thomas F Mitts
- From the Physiology and Experimental Medicine Program, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario M5G 1X8, Canada
| | - Peter Liu
- Heart and Stroke/Richard Lewar Centre for Excellence, University of Toronto, Toronto, Ontario M5G 1X8, Canada; Toronto General Hospital/University Health Network, Toronto, Ontario M5G 1X8, Canada
| | - Sara Arab
- Toronto General Hospital/University Health Network, Toronto, Ontario M5G 1X8, Canada
| | - Majid Arabkhari
- From the Physiology and Experimental Medicine Program, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario M5G 1X8, Canada
| | - Aleksander Hinek
- From the Physiology and Experimental Medicine Program, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario M5G 1X8, Canada; Heart and Stroke/Richard Lewar Centre for Excellence, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
16
|
Abstract
G protein-coupled receptors (GPCRs) represent a large family of seven transmembrane receptors, which communicate extracellular signals into the cellular lumen. The human genome contains 720-800 GPCRs, and their diverse signal characteristics are determined by their specific tissue and subcellular expression profiles, as well as their coupling profile to the various G protein families (G(s), G(i), G(q), G(12)). The G protein coupling pattern links GPCR activation to the specific downstream effector pathways. G(12/13) signalling of GPCRs has been studied only recently in more detail, and involves activation of RhoGTPase nucleotide exchange factors (RhoGEFs). Four mammalian RhoGEFs regulated by G(12/13) proteins are known: p115-RhoGEF, PSD-95/Disc-large/ZO-1 homology-RhoGEF, leukemia-associated RhoGEF and lymphoid blast crisis-RhoGEF. These link GPCRs to activation of the small monomeric GTPase RhoA, and other downstream effectors. Misregulated G(12/13) signalling is involved in multiple pathophysiological conditions such as cancer, cardiovascular diseases, arterial and pulmonary hypertension, and bronchial asthma. Specific targeting of G(12/13) signalling-related diseases of GPCRs hence provides novel therapeutic approaches. Assays to quantitatively measure GPCR-mediated activation of G(12/13) are only emerging, and are required to understand the G(12/13)-linked pharmacology. The review gives an overview of G(12/13) signalling of GPCRs with a focus on RhoGEF proteins as the immediate mediators of G(12/13) activation.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
17
|
Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 2009; 17:55-70. [PMID: 19212140 DOI: 10.1159/000186690] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/10/2008] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcription factors, to regulate cellular responses. Galpha12/13 have slow rates of nucleotide exchange and GTP hydrolysis, and specifically target RhoGEFs containing an amino-terminal RGS homology domain (RH-RhoGEFs), which uniquely function both as a GAP and an effector for Galpha12/13. In this review, we will focus on the mechanisms regulating the Galpha12/13 signaling system, particularly the Galpha12/13-RH-RhoGEF-Rho pathway, which can regulate a wide variety of cellular functions from migration to transformation.
Collapse
Affiliation(s)
- Nobuchika Suzuki
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
18
|
Lee SJ, Yang JW, Cho IJ, Kim WD, Cho MK, Lee CH, Kim SG. The gep oncogenes, Galpha(12) and Galpha(13), upregulate the transforming growth factor-beta1 gene. Oncogene 2009; 28:1230-40. [PMID: 19151758 DOI: 10.1038/onc.2008.488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGFbeta1) plays a role in neoplastic transformation and transdifferentiation. Galpha(12) and Galpha(13), referred to as the gep oncogenes, stimulate mitogenic pathways. Nonetheless, no information is available regarding their roles in the regulation of the TGFbeta1 gene and the molecules linking them to gene transcription. Knockdown or knockout experiments using murine embryonic fibroblasts and hepatic stellate cells indicated that a Galpha(12) and Galpha(13) deficiency reduced constitutive, auto-stimulatory or thrombin-inducible TGFbeta1 gene expression. In contrast, transfection of activated mutants of Galpha(12) and Galpha(13) enabled the knockout cells to promote TGFbeta1 induction. A promoter deletion analysis suggested that activating protein 1 (AP-1) plays a role in TGFbeta1 gene transactivation, which was corroborated by the observation that a deficiency of the G-proteins decreased the AP-1 activity, whereas their activation enhanced it. Moreover, mutation of the AP-1-binding site abrogated the ability of Galpha(12) and Galpha(13) to induce the TGFbeta1 gene. Transfection of a dominant-negative mutant of Rho or Rac, but not Cdc42, prevented gene transactivation and decreased AP-1 activity downstream of Galpha(12) and Galpha(13). In summary, Galpha(12) and Galpha(13) regulate the expression of the TGFbeta1 gene through an increase in Rho/Rac-dependent AP-1 activity, implying that the G-protein-coupled receptor (GPCR)-Galpha(12) pathway is involved in the TGFbeta1-mediated transdifferentiation process.
Collapse
Affiliation(s)
- S J Lee
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Kwanak-Gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamazaki J, Katoh H, Negishi M. Lysophosphatidic acid and thrombin receptors require both G alpha12 and G alpha13 to regulate axonal morphology in hippocampal neurons. Biol Pharm Bull 2009; 31:2216-22. [PMID: 19043202 DOI: 10.1248/bpb.31.2216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The G alpha subunits of the G(12) family of heterotrimeric guanine nucleotide-binding proteins (G proteins), defined by G alpha(12) and G alpha(13), have many cellular functions in common, including stimulation of stress fiber formation and focal adhesion assembly via the small GTPase RhoA activation. We and others previously showed that G alpha(12) and G alpha(13) mediate neurite retraction in neuronal cell lines, but their roles in primary cultured neurons have not been adequately understood. Here, we found that expression of constitutively active mutants of G alpha(12) or G alpha(13) caused growth cone collapse dependent on Rho-kinase activity in hippocampal neurons. The stimulation of thrombin and lysophosphatidic acid (LPA) receptors, which have been thought to selectively couple to G alpha(12) and G alpha(13), respectively, caused growth cone collapse and suppressed axon branching dependent on Rho-kinase activity in hippocampal neurons. Thrombin- and LPA-induced growth cone collapse was suppressed by both single knockdown of G alpha(12) and G alpha(13) with short hairpin RNAs and this suppression was augmented by double knockdown of both G alpha(12) and G alpha(13). These results suggest that thrombin and LPA receptors couple to both G alpha(12) and G alpha(13) for growth cone collapse.
Collapse
Affiliation(s)
- Junya Yamazaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Japan
| | | | | |
Collapse
|
20
|
Meyer BH, Freuler F, Guerini D, Siehler S. Reversible translocation of p115-RhoGEF by G(12/13)-coupled receptors. J Cell Biochem 2008; 104:1660-70. [PMID: 18320579 DOI: 10.1002/jcb.21732] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA. RhoA is involved in many cellular and physiological aspects, and a dysfunction of the G(12/13)-Rho pathway can lead to hypertension, cardiovascular diseases, stroke, impaired wound healing and immune cell functions, cancer progression and metastasis, or asthma. In this study, regulator of G protein signaling (RGS) domain-containing RhoGEFs were tagged with enhanced green fluorescent protein (EGFP) to detect their subcellular localization and translocation upon receptor activation. Constitutively active Galpha(12) and Galpha(13) mutants induced redistribution of these RhoGEFs from the cytosol to the plasma membrane. Furthermore, a pronounced and rapid translocation of p115-RhoGEF from the cytosol to the plasma membrane was observed upon activation of several G(12/13)-coupled GPCRs in a cell type-independent fashion. Plasma membrane translocation of p115-RhoGEF stimulated by a GPCR agonist could be completely and rapidly reversed by subsequent application of an antagonist for the respective GPCR, that is, p115-RhoGEF relocated back to the cytosol. The translocation of RhoGEF by G(12/13)-linked GPCRs can be quantified and therefore used for pharmacological studies of the pathway, and to discover active compounds in a G(12/13)-related disease context.
Collapse
Affiliation(s)
- Bruno H Meyer
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Nürnberg A, Braüer AU, Wettschureck N, Offermanns S. Antagonistic regulation of neurite morphology through Gq/G11 and G12/G13. J Biol Chem 2008; 283:35526-31. [PMID: 18854320 DOI: 10.1074/jbc.m804972200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of neurite retraction and growth cone collapse via G-protein-coupled receptors is involved in developmental as well as regenerative processes. The role of individual G-protein-mediated signaling processes in the regulation of neurite morphology is still incompletely understood. Using primary neurons from brains lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13), we show here that G(12)/G(13)-mediated signaling is absolutely required for neurite retraction and growth cone collapse induced by the blood-borne factors lysophosphatidic acid and thrombin. Interestingly, the effects of lysophosphatidic acid were mediated mainly by G(13), whereas thrombin effects required G(12). Surprisingly, lack of Galpha(q)/Galpha(11) resulted in overshooting responses to both stimuli, indicating that G(q)/G(11)-mediated signaling most likely via activation of Rac antagonizes the effects of G(12)/G(13).
Collapse
Affiliation(s)
- Alexander Nürnberg
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Worzfeld T, Wettschureck N, Offermanns S. G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci 2008; 29:582-9. [PMID: 18814923 DOI: 10.1016/j.tips.2008.08.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/10/2023]
Abstract
The human genome encodes hundreds of G-protein-coupled receptors. Their intracellular effects, however, are mediated by only four families of heterotrimeric G proteins: G(s), G(i)/G(o), G(q)/G(11) and G(12)/G(13). Progress in the knowledge about the G(12)/G(13) family has somewhat lagged behind because their downstream effectors remained unknown for several years, and tools to specifically interfere with G(12)/G(13)-mediated signalling were, therefore, missing. However, with the identification of G(12)/G(13)-regulated signalling pathways and the recent application of new techniques, such as conditional gene inactivation, RNA interference or expression of inhibitory proteins, new insights into the in vivo functions of this G-protein family have been gained. It has become clear that this pathway regulates cellular proliferation, movement and morphology in many different organs and that it is centrally involved in various diseases including cancer and cardiovascular disorders. Here, we focus on recent progress made in the analyses of the in vivo functions of mammalian G(12)/G(13)-mediated signalling.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J 2008; 22:2821-31. [PMID: 18367648 DOI: 10.1096/fj.07-104224] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G alpha12 constitutes, along with G alpha13, one of the four families of alpha subunits of heterotrimeric G proteins. We found that the N terminus of G alpha12, but not those of other G alpha subunits, contains a predicted mitochondrial targeting sequence. Using confocal microscopy and cell fractionation, we demonstrated that up to 40% of endogenous G alpha12 in human umbilical vein endothelial cells colocalize with mitochondrial markers. N-terminal sequence of G alpha12 fused to GFP efficiently targeted the fusion protein to mitochondria. G alpha12 with mutated mitochondrial targeting sequence was still located in mitochondria, suggesting the existence of additional mechanisms for mitochondrial localization. Lysophosphatidic acid, one of the known stimuli transduced by G alpha12/13, inhibited mitochondrial motility, while depletion of endogenous G alpha12 increased mitochondrial motility. G alpha12Q229L variants uncoupled from RhoGEFs (but not fully functional activated G alpha12Q229L) induced transformation of the mitochondrial network into punctate mitochondria and resulted in a loss of mitochondrial membrane potential. All examined G alpha12Q229L variants reduced phosphorylation of Bcl-2 at Ser-70, while only mutants unable to bind RhoGEFs also decreased cellular levels of Bcl-2. These G alpha12 mutants were also more efficient Hsp90 interactors. These findings are the first demonstration of a heterotrimeric G protein alpha subunit specifically targeted to mitochondria and involved in the control of mitochondrial morphology and dynamics.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | |
Collapse
|
24
|
Sabath E, Negoro H, Beaudry S, Paniagua M, Angelow S, Shah J, Grammatikakis N, Yu ASL, Denker BM. Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 2008; 121:814-24. [PMID: 18285450 DOI: 10.1242/jcs.014878] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarized functions of epithelia require an intact tight junction (TJ) to restrict paracellular movement and to separate membrane proteins into specific domains. TJs contain scaffolding, integral membrane and signaling proteins, but the mechanisms that regulate TJs and their assembly are not well defined. Galpha12 (GNA12) binds the TJ protein ZO-1 (TJP1), and Galpha12 activates Src to increase paracellular permeability via unknown mechanisms. Herein, we identify Src as a component of the TJ and find that recruitment of Hsp90 to activated Galpha12 is necessary for signaling. TJ integrity is disrupted by Galpha12-stimulated Src phosphorylation of ZO-1 and ZO-2 (TJP2); this phosphorylation leads to dissociation of occludin and claudin 1 from the ZO-1 protein complex. Inhibiting Hsp90 with geldanamycin blocks Galpha12-stimulated Src activation and phosphorylation, but does not affect protein levels or the Galpha12-ZO-1 interaction. Using the calcium-switch model of TJ assembly and GST-TPR (GST-fused TPR domain of PP5) pull-downs of activated Galpha12, we demonstrate that switching to normal calcium medium activates endogenous Galpha12 during TJ assembly. Thrombin increases permeability and delays TJ assembly by activating Galpha12, but not Galpha13, signaling pathways. These findings reveal an important role for Galpha12, Src and Hsp90 in regulating the TJ in established epithelia and during TJ assembly.
Collapse
Affiliation(s)
- Ernesto Sabath
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yanamadala V, Negoro H, Gunaratnam L, Kong T, Denker BM. Galpha12 stimulates apoptosis in epithelial cells through JNK1-mediated Bcl-2 degradation and up-regulation of IkappaBalpha. J Biol Chem 2007; 282:24352-63. [PMID: 17565996 DOI: 10.1074/jbc.m702804200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is an essential mechanism for the maintenance of somatic tissues, and when dysregulated can lead to numerous pathological conditions. G proteins regulate apoptosis in addition to other cellular functions, but the roles of specific G proteins in apoptosis signaling are not well characterized. Galpha12 stimulates protein phosphatase 2A (PP2A), a serine/threonine phosphatase that modulates essential signaling pathways, including apoptosis. Herein, we examined whether Galpha12 regulates apoptosis in epithelial cells. Inducible expression of Galpha12 or constitutively active (QL)alpha12 in Madin-Darby canine kidney cells led to increased apoptosis with expression of QLalpha12, but not Galpha12. Inducing QLalpha12 led to degradation of the anti-apoptotic protein Bcl-2 (via the proteasome pathway), increased JNK activity, and up-regulated IkappaBalpha protein levels, a potent stimulator of apoptosis. Furthermore, the QLalpha12-stimulated activation of JNK was blocked by inhibiting PP2A. To characterize endogenous Galpha12 signaling pathways, non-transfected MDCK-II and HEK293 cells were stimulated with thrombin. Thrombin activated endogenous Galpha12 (confirmed by GST-tetratricopeptide repeat (TPR) pull-downs) and stimulated apoptosis in both cell types. The mechanisms of thrombin-stimulated apoptosis through endogenous Galpha12 were nearly identical to the mechanisms identified in QLalpha12-MDCK cells and included loss of Bcl-2, JNK activation, and up-regulation of IkappaBalpha. Knockdown of the PP2A catalytic subunit in HEK293 cells inhibited thrombin-stimulated apoptosis, prevented JNK activation, and blocked Bcl-2 degradation. In summary, Galpha12 has a major role in regulating epithelial cell apoptosis through PP2A and JNK activation leading to loss of Bcl-2 protein expression. Targeting these pathways in vivo may lead to new therapeutic strategies for a variety of disease processes.
Collapse
Affiliation(s)
- Vijay Yanamadala
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Zhu D, Tate RI, Ruediger R, Meigs TE, Denker BM. Domains necessary for Galpha12 binding and stimulation of protein phosphatase-2A (PP2A): Is Galpha12 a novel regulatory subunit of PP2A? Mol Pharmacol 2007; 71:1268-76. [PMID: 17303700 DOI: 10.1124/mol.106.033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many cellular signaling pathways share regulation by protein phosphatase-2A (PP2A), a widely expressed serine/threonine phosphatase, and the heterotrimeric G protein Galpha(12). PP2A activity is altered in carcinogenesis and in some neurodegenerative diseases. We have identified binding of Galpha(12) with the Aalpha subunit of PP2A, a trimeric enzyme composed of A (scaffolding), B (regulatory), and C (catalytic) subunits and demonstrated that Galpha(12) stimulated phosphatase activity (J Biol Chem 279: 54983-54986, 2004). We now show in substrate-velocity analysis using purified PP2A that V(max) was stimulated 3- to 4-fold by glutathione transferase (GST)-Galpha(12) with little effect on K(m) values. To identify the binding domains mediating the Aalpha-Galpha(12) interaction, an extensive mutational analysis was performed. Well-characterized mutations of Aalpha were expressed in vitro and tested for binding to GST-Galpha(12) in pull-down assays. Galpha(12) binds to Aalpha along repeats 7 to 10, and PP2A B subunits are not necessary for binding. To identify where Aalpha binds to Galpha(12), a series of 61 Galpha(12) mutants were engineered to contain the sequence Asn-Ala-Ala-Ile-Arg-Ser (NAAIRS) in place of 6 consecutive amino acids. Mutant Galpha(12) proteins were individually expressed in human embryonic kidney cells and analyzed for interaction with GST or GST-Aalpha in pull-down assays. The Aalpha binding sites were localized to regions near the N and C termini of Galpha(12). The expression of constitutively activated Galpha(12) (QLalpha(12)) in Madin Darby canine kidney cells stimulated PP2A activity as determined by decreased phosphorylation of tyrosine 307 on the catalytic subunit. Based on crystal structures of Galpha(12) and PP2A Aalpha, a model describing the binding surfaces and potential mechanisms of Galpha(12)-mediated PP2A activation is presented.
Collapse
Affiliation(s)
- Deguang Zhu
- Renal Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Kreutz B, Yau DM, Nance M, Tanabe S, Tesmer JJG, Kozasa T. A new approach to producing functional G alpha subunits yields the activated and deactivated structures of G alpha(12/13) proteins. Biochemistry 2006; 45:167-74. [PMID: 16388592 PMCID: PMC2688741 DOI: 10.1021/bi051729t] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oncogenic G(12/13) subfamily of heterotrimeric G proteins transduces extracellular signals that regulate the actin cytoskeleton, cell cycle progression, and gene transcription. Previously, structural analyses of fully functional G alpha(12/13) subunits have been hindered by insufficient amounts of homogeneous, functional protein. Herein, we report that substitution of the N-terminal helix of G alpha(i1) for the corresponding region of G alpha12 or G alpha13 generated soluble chimeric subunits (G alpha(i/12) and G alpha(i/13)) that could be purified in sufficient amounts for crystallographic studies. Each chimera bound guanine nucleotides, G betagamma subunits, and effector proteins and exhibited GAP responses to p115RhoGEF and leukemia-associated RhoGEF. Like their wild-type counterparts, G alpha(i/13), but not G alpha(i/12), stimulated the activity of p115RhoGEF. Crystal structures of the G alpha(i/12) x GDP x AlF4(-) and G alpha(i/13) x GDP complexes were determined using diffraction data extending to 2.9 and 2.0 A, respectively. These structures reveal not only the native structural features of G alpha12 and G alpha13 subunits, which are expected to be important for their interactions with GPCRs and effectors such as G alpha-regulated RhoGEFs, but also novel conformational changes that are likely coupled to GTP hydrolysis in the G alpha(12/13) class of heterotrimeric G proteins.
Collapse
Affiliation(s)
| | | | | | | | - John J. G. Tesmer
- To whom correspondence should be addressed. E-mail: . Telephone: (734) 615-9544. Fax: (734) 763-6492. . Telephone: (312)-413-0111. FAX: (312)-996-1225
| | - Tohru Kozasa
- To whom correspondence should be addressed. E-mail: . Telephone: (734) 615-9544. Fax: (734) 763-6492. . Telephone: (312)-413-0111. FAX: (312)-996-1225
| |
Collapse
|
28
|
Kim SG, Lee CH. G-protein signaling in iNOS gene expression. Methods Enzymol 2005; 396:377-87. [PMID: 16291247 DOI: 10.1016/s0076-6879(05)96032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Heterotrimeric G proteins are the molecular switches in the receptor-mediated transmembrane signaling system. Inducible nitric oxide synthase (iNOS) is inducible by a variety of inflammatory stimuli, which leads to vascular hyporeactivity. In this chapter, the system to study the cell signaling pathways downstream of the GPCR coupling to G proteins is described for the study of iNOS gene expression. The cellular signaling pathways by which ligand induces iNOS may serve as the pharmacological targets for preventing or treating vascular hyporeactivity.
Collapse
Affiliation(s)
- Sang Geon Kim
- College of Pharmacy, Seoul National University, Kwanak-gu, Seoul, South Korea
| | | |
Collapse
|
29
|
Tateiwa K, Katoh H, Negishi M. Socius, a novel binding partner of Gα12/13, promotes the Gα12-induced RhoA activation. Biochem Biophys Res Commun 2005; 337:615-20. [PMID: 16202387 DOI: 10.1016/j.bbrc.2005.09.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/16/2005] [Indexed: 11/25/2022]
Abstract
Heterotrimeric G proteins act as a molecular switch that conveys signals from G protein-coupled receptors in the cell membrane to intracellular downstream effectors. The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), have many cellular functions through their specific downstream effectors. On the other hand, regulatory systems of the activity of Galpha(12) and Galpha(13) have not been fully clear. Here, we show that Socius, a previously identified Rho family small GTPase Rnd1 interacting protein, binds directly to Galpha(12) and Galpha(13) through its NH(2)-terminal region. Socius increased the amounts of GTP-bound active form of Galpha(12) in 293T cells. Furthermore, Socius promotes the Galpha(12)-induced RhoA activation in 293T cells. These results demonstrate that Socius is a novel activator of the Galpha(12) family.
Collapse
Affiliation(s)
- Katsunori Tateiwa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
30
|
Harashima T, Heitman J. Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:4557-71. [PMID: 16030250 PMCID: PMC1237064 DOI: 10.1091/mbc.e05-05-0403] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/11/2022] Open
Abstract
All eukaryotic cells sense extracellular stimuli and activate intracellular signaling cascades via G protein-coupled receptors (GPCR) and associated heterotrimeric G proteins. The Saccharomyces cerevisiae GPCR Gpr1 and associated Galpha subunit Gpa2 sense extracellular carbon sources (including glucose) to govern filamentous growth. In contrast to conventional Galpha subunits, Gpa2 forms an atypical G protein complex with the kelch repeat Gbeta mimic proteins Gpb1 and Gpb2. Gpb1/2 negatively regulate cAMP signaling by inhibiting Gpa2 and an as yet unidentified target. Here we show that Gpa2 requires lipid modifications of its N-terminus for membrane localization but association with the Gpr1 receptor or Gpb1/2 subunits is dispensable for membrane targeting. Instead, Gpa2 promotes membrane localization of its associated Gbeta mimic subunit Gpb2. We also show that the Gpa2 N-terminus binds both to Gpb2 and to the C-terminal tail of the Gpr1 receptor and that Gpb1/2 binding interferes with Gpr1 receptor coupling to Gpa2. Our studies invoke novel mechanisms involving GPCR-G protein modules that may be conserved in multicellular eukaryotes.
Collapse
Affiliation(s)
- Toshiaki Harashima
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Xu H, Wang X, Zimmerman D, Boja ES, Wang J, Bilsky EJ, Rothman RB. Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor. J Pharmacol Exp Ther 2005; 315:248-55. [PMID: 15987828 DOI: 10.1124/jpet.105.089367] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of literature indicates that chronic morphine exposure alters the expression and function of cytoskeletal proteins in addition to the well established interactions between mu opioid receptors and G proteins. In the present study, we hypothesized that chronic morphine alters the expression and functional effects of G alpha12, a G protein that regulates downstream cytoskeletal proteins via its control of RhoA. Our results showed that chronic morphine treatment decreased the expression of G alpha i2 (64%) and G alpha i3 (60%), had no effect of G alpha o, and increased G alpha12 (66%) expression in Chinese hamster ovary (CHO) cells expressing the cloned human mu opioid receptors (hMOR-CHO cells) but not in cells expressing a mutant mu opioid receptor that do not develop morphine tolerance and dependence (T394A-CHO cells). Morphine treatment had no significant effect on PAR-1 thrombin receptor-activated G protein activity, as measured by thrombin-stimulated guanosine 5'-O-(3-[35S]thio)triphosphate binding. Chronic morphine treatment significantly enhanced thrombin-stimulated RhoA activity and thrombin-stimulated expression of alpha-actinin, a cytoskeletal anchoring protein, in hMOR-CHO cells. Proteomic analysis of two-dimensional gel spots prepared from hMOR-CHO cells showed that morphine treatment affected the expression of a number of proteins associated with morphological changes. Up-regulation of G alpha12 and alpha-actinin by chronic morphine was also observed in mouse brain. Viewed collectively, these findings indicate, for the first time, that chronic morphine enhances the G alpha12-associated signaling system, which is involved in regulating cellular morphology and growth, supporting other findings that chronic morphine may alter cellular morphology, in addition to cellular function.
Collapse
Affiliation(s)
- Heng Xu
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224-2735, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Yamazaki J, Katoh H, Yamaguchi Y, Negishi M. Two G12 family G proteins, G alpha12 and G alpha13, show different subcellular localization. Biochem Biophys Res Commun 2005; 332:782-6. [PMID: 15907792 DOI: 10.1016/j.bbrc.2005.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
The G alpha subunits of the G12 family of heterotrimeric G proteins, G alpha12 and G alpha13, are closely related in sequences and some effectors, but they often act through different pathways or bind to different proteins. We have examined subcellular distribution of these two G proteins and found that endogenous G alpha12 and G alpha13 localize in membrane and cytoplasmic fractions, respectively. Exogenously expressed G alpha12 and G alpha13 also localize in membrane and cytoplasmic fractions, respectively, in COS-7 cells. Stimulation of lysophosphatidic acid receptor coupled to G alpha13 markedly promotes the translocation of G alpha13 from cytoplasm to membrane. This different localization of G alpha12 and G alpha13 may explain some of the nonoverlapping actions of G alpha12 and G alpha13.
Collapse
Affiliation(s)
- Junya Yamazaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
33
|
Radhika V, Hee Ha J, Jayaraman M, Tsim ST, Dhanasekaran N. Mitogenic signaling by lysophosphatidic acid (LPA) involves Galpha12. Oncogene 2005; 24:4597-603. [PMID: 15856019 DOI: 10.1038/sj.onc.1208665] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysophosphatidic acid (LPA), a major G protein coupled receptor (GPCR)-activating ligand present in serum, elicits growth factor like responses by stimulating specific GPCRs coupled to heterotrimeric G proteins such as G(i), G(q), and G12/13. Previous studies have shown that the overexpression of wild-type Galpha12 (Galpha12WT) results in the oncogenic transformation of NIH3T3 cells (Galpha12WT-NIH3T3) in a serum-dependent manner. Based on the potent growth-stimulating activity of LPA and the presence of LPA and LPA-like molecules in the serum, we hypothesized that the serum-dependent neoplastic transformation of Galpha12WT-NIH3T3 cells was mediated by the stimulation of LPA-receptors (LPARs) by LPA in the serum. In the present study, using guanine nucleotide exchange assay and GST-TPR binding assay, we show that the treatment of Galpha12WT-NIH3T3 with 2 muM LPA leads to the activation of Galpha12. Stimulation of these cells with LPA promotes JNK-activation, a critical component of Galpha12-response and cell proliferation. We also show that LPA can substitute for serum in stimulating JNK-activity, DNA synthesis, and proliferation of Galpha12WT-NIH3T3 cells. LPA-mediated proliferative response in NIH3T3 cells involves Galpha12, but not the closely related Galpha13. Pretreatment of Galpha12WT-NIH3T3 cells with suramin (100 microM), a receptor-uncoupling agent, inhibited LPA-stimulated proliferation of these cells by 55% demonstrating the signal coupling between cell surface LPAR and Galpha12 in the neoplastic proliferation of NIH3T3 cells. As LPA and LPAR mediated mitogenic pathways have been shown to play a major role in tumor genesis and progression, a mechanistic understanding of the signal coupling between LPAR, Galpha12, and the downstream effectors is likely to unravel additional targets for novel cancer chemotherapies.
Collapse
Affiliation(s)
- V Radhika
- Fels Institute for Cancer Research and Molecular Biology, Temple University School Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
34
|
Andreeva AV, Kutuzov MA, Vaiskunaite R, Profirovic J, Meigs TE, Predescu S, Malik AB, Voyno-Yasenetskaya T. G alpha12 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function. J Biol Chem 2005; 280:30376-83. [PMID: 15980433 DOI: 10.1074/jbc.m502844200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of heterotrimeric G proteins in the regulation of adherens junction function is unclear. We identified alphaSNAP as an interactive partner of G alpha12 using yeast two-hybrid screening. Glutathione S-transferase pull-down assays showed the selective interaction of alphaSNAP with G alpha12 in COS-7 as well as in human umbilical vein endothelial cells. Using domain swapping experiments, we demonstrated that the N-terminal region of G alpha12 (1-37 amino acids) was necessary and sufficient for its interaction with alphaSNAP. G alpha13 with its N-terminal extension replaced by that of G alpha12 acquired the ability to bind to alphaSNAP, whereas G alpha12 with its N terminus replaced by that of G alpha13 lost this ability. Using four point mutants of alphaSNAP, which alter its ability to bind to the SNARE complex, we determined that the convex rather than the concave surface of alphaSNAP was involved in its interaction with G alpha12. Co-transfection of human umbilical vein endothelial cells with G alpha12 and alphaSNAP stabilized VE-cadherin at the plasma membrane, whereas down-regulation of alphaSNAP with siRNA resulted in the loss of VE-cadherin from the cell surface and, when used in conjunction with G alpha12 overexpression, decreased endothelial barrier function. Our results demonstrate a direct link between the alpha subunit of G12 and alphaSNAP, an essential component of the membrane fusion machinery, and implicate a role for this interaction in regulating the membrane localization of VE-cadherin and endothelial barrier function.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H. G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem 2005; 280:18434-18441. [PMID: 15743761 DOI: 10.1074/jbc.m409710200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, we examined signal transduction mechanism of reactive oxygen species (ROS) production and the role of ROS in angiotensin II-induced activation of mitogen-activated protein kinases (MAPKs) in rat neonatal cardiomyocytes. Among three MAPKs, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK required ROS production for activation, as an NADPH oxidase inhibitor, diphenyleneiodonium, inhibited the activation. The angiotensin II-induced activation of JNK and p38 MAPK was also inhibited by the expression of the Galpha(12/13)-specific regulator of G protein signaling (RGS) domain, a specific inhibitor of Galpha(12/13), but not by an RGS domain specific for Galpha(q). Constitutively active Galpha(12)- or Galpha(13)-induced activation of JNK and p38 MAPK, but not extracellular signal-regulated kinase (ERK), was inhibited by diphenyleneiodonium. Angiotensin II receptor stimulation rapidly activated Galpha(13), which was completely inhibited by the Galpha(12/13)-specific RGS domain. Furthermore, the Galpha(12/13)-specific but not the Galpha(q)-specific RGS domain inhibited angiotensin II-induced ROS production. Dominant negative Rac inhibited angiotensin II-stimulated ROS production, JNK activation, and p38 MAPK activation but did not affect ERK activation. Rac activation was mediated by Rho and Rho kinase, because Rac activation was inhibited by C3 toxin and a Rho kinase inhibitor, Y27632. Furthermore, angiotensin II-induced Rho activation was inhibited by Galpha(12/13)-specific RGS domain but not dominant negative Rac. An inhibitor of epidermal growth factor receptor kinase AG1478 did not affect angiotensin II-induced JNK activation cascade. These results suggest that Galpha(12/13)-mediated ROS production through Rho and Rac is essential for JNK and p38 MAPK activation.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Riobo NA, Manning DR. Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci 2005; 26:146-54. [PMID: 15749160 DOI: 10.1016/j.tips.2005.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Much regarding the engagement of the G(12) family of heterotrimeric G proteins (G(12) and G(13)) by agonist-activated receptors remains unclear. For example, the identity of receptors that couple unequivocally to G(12) and G(13) and how signals are allocated among these and other G proteins remain open questions. Part of the problem in understanding signaling through G(12) and G(13) is that the activation of these G proteins is rarely demonstrated directly and is instead presumed usually from far removed downstream events. Furthermore, receptors that couple to G(12) and G(13) invariably couple to additional G proteins, and thus few events can be linked unambiguously to one G protein or another. In this article, we document receptors that reportedly couple to G(12), G(13) or both G(12) and G(13), evaluate the methodology used to understand the coupling of these receptors, and discuss the ability of these receptors to couple also to G(q).
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
37
|
Grabocka E, Wedegaertner PB. Functional consequences of G alpha 13 mutations that disrupt interaction with p115RhoGEF. Oncogene 2005; 24:2155-65. [PMID: 15735747 PMCID: PMC1351220 DOI: 10.1038/sj.onc.1208414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The G-protein alpha subunit, alpha(13), regulates cell growth and differentiation through the monomeric Rho GTPase. Alpha(13) activates Rho through direct stimulation of the guanine nucleotide exchange factor p115RhoGEF, which contains a regulator of G-protein signaling homology domain (RH) in its N-terminus. Through its RH domain, p115RhoGEF also functions as a GAP for G alpha(13). The mechanism for the G alpha(13)/p115RhoGEF interaction is not well understood. Here, we determined specific alpha(13) residues important for its interaction with p115RhoGEF. GST-pulldowns and co-immunoprecipitation assays revealed that individually mutating alpha(13) residues Lys204, Glu229, or Arg232 to opposite charge residues disrupts the interaction of activated alpha(13) with the RH domain of p115RhoGEF or full-length p115RhoGEF. We further demonstrate that mutation of Glu229, and to a lesser extent Lys204 or Arg232, disrupts the ability of activated alpha(13) to induce the recruitment of p115RhoGEF to the plasma membrane (PM) and to activate Rho-mediated serum response element-luciferase gene transcription. Interestingly, an alpha(13) mutant where a conserved Gly was mutated to a Ser (G205S) retained its ability to bind to p115RhoGEF, induce p115RhoGEF recruitment to the PM, and activate Rho-dependent signaling, even though identical Gly to Ser mutations in other alpha disrupt their interaction with regulator of G-protein signaling (RGS) proteins. These results demonstrate that, whereas several features of a typical alpha/RGS interaction are preserved in the alpha(13)/p115RhoGEF interaction, there are also significant differences.
Collapse
Affiliation(s)
| | - Philip B. Wedegaertner
- Corresponding address: Philip Wedegaertner, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 St., 839 BLSB, Philadelphia, PA 19107, tel: 215-503-3137, fax: 215-923-2117, e-mail:
| |
Collapse
|
38
|
Yamada T, Ohoka Y, Kogo M, Inagaki S. Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J Biol Chem 2005; 280:19358-63. [PMID: 15755723 DOI: 10.1074/jbc.m414561200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a serum-derived phospholipid that induces a variety of biological responses in various cells via heterotrimeric G protein-coupled receptors (GPCRs) including LPA1, LPA2, and LPA3. LPA-induced cytoskeletal changes are mediated by Rho family small GTPases, such as RhoA, Rac1, and Cdc42. One of these small GTPases, RhoA, may be activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors (RhoGEFs) under LPA stimulation although the detailed mechanisms are poorly understood. Here, we show that the C terminus of LPA1 and LPA2 but not LPA3 interact with the PDZ domains of PDZ domain-containing RhoGEFs, PDZ-RhoGEF, and LARG, which are comprised of PDZ, RGS, Dbl homology (DH), and pleckstrin homology (PH) domains. In LPA1- and LPA2-transfected HEK293 cells, LPA-induced RhoA activation was observed although the C terminus of LPA1 and LPA2 mutants, which failed to interact with the PDZ domains, did not cause LPA-induced RhoA activation. Furthermore, overexpression of the PDZ domains of PDZ domain-containing RhoGEFs served as dominant negative mutants for LPA-induced RhoA activation. Taken together, these results indicate that formation of the LPA receptor/PDZ domain-containing RhoGEF complex plays a pivotal role in LPA-induced RhoA activation.
Collapse
Affiliation(s)
- Takeshi Yamada
- School of Allied Health Sciences, Faculty of Medicine, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
39
|
Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 2005; 92:949-66. [PMID: 15258918 DOI: 10.1002/jcb.20094] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.
Collapse
Affiliation(s)
- Julie Radeff-Huang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
40
|
Zhu D, Kosik KS, Meigs TE, Yanamadala V, Denker BM. Galpha12 directly interacts with PP2A: evidence FOR Galpha12-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau. J Biol Chem 2004; 279:54983-6. [PMID: 15525651 DOI: 10.1074/jbc.c400508200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Galpha(12/13) family of heterotrimeric G proteins modulate multiple cellular processes including regulation of the actin cytoskeleton. Galpha(12/13) interact with several cytoskeletal/scaffolding proteins, and in a yeast two-hybrid screen with Galpha(12), we detected an interaction with the scaffolding subunit (Aalpha) of the Ser/Thr phosphatase, protein phosphatase 2A (PP2A). PP2A dephosphorylates multiple substrates including tau, a microtubule-associated protein that is hyperphosphorylated in neurofibrillary tangles. The interaction of Aalpha and Galpha(12) was confirmed by coimmunoprecipitation studies in transfected COS cells and by glutathione S-transferase (GST)-Galpha(12) pull-downs from cell lysates of primary neurons. The interaction was specific for Aalpha and Galpha(12) and was independent of Galpha(12) conformation. Endogenous Aalpha and Galpha(12) colocalized by immunofluorescent microscopy in Caco-2 cells and in neurons. In vitro reconstitution of GST-Galpha(12) or recombinant Galpha(12) with PP2A core enzyme resulted in approximately 300% stimulation of PP2A activity that was not detected with other Galpha subunits and was similar with GTPgammaS- and GDP-liganded Galpha(12). When tau and active kinase (Cdk5 and p25) were cotransfected in to COS cells, there was robust tau phosphorylation. Co-expression of wild type or QLalpha(12) with tau and the active kinase resulted in 60 +/- 15% reductions in tau phosphorylation. In primary cortical neurons stimulated with lysophosphatitic acid, a 50% decrease in tau phosphorylation was observed. The Galpha(12) effect on tau phosphorylation was inhibited by the PP2A inhibitor, okadaic acid (50 nm), in COS cells and neurons. Taken together, these findings reveal novel, direct regulation of PP2A activity by Galpha(12) and potential in vivo modulation of PP2A target proteins including tau.
Collapse
Affiliation(s)
- Deguang Zhu
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Wang Q, Liu M, Kozasa T, Rothstein JD, Sternweis PC, Neubig RR. Thrombin and Lysophosphatidic Acid Receptors Utilize Distinct rhoGEFs in Prostate Cancer Cells. J Biol Chem 2004; 279:28831-4. [PMID: 15143072 DOI: 10.1074/jbc.c400105200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin and lysophosphatidic acid (LPA) receptors play important roles in vascular biology, development, and cancer. These receptors activate rho via G(12/13) family heterotrimeric G proteins, which are known to directly activate three distinct rho guanine nucleotide exchange factors (rhoGEFs) that contain a regulator of G protein signaling (RGS) domain (RGS-rhoGEFs). However, it is not known which, if any, of these RGS-rhoGEFs (LARG (leukemia-associated rhoGEF), p115rhoGEF, or PDZrhoGEF) plays a role in G protein-coupled receptor-stimulated rho signaling. Using oligonucleotide small interfering RNAs that suppress specific RGS-rhoGEF expression, we show that thrombin receptor stimulation of rho is primarily mediated by LARG in HEK293T and PC-3 prostate cancer cell lines. In contrast, the LPA-stimulated rho response in PC-3 cells is dependent on PDZrhoGEF expression. Suppression of p115rhoGEF had no effect. Thus different rhoGEFs (LARG and PDZrhoGEF) mediate downstream rho signaling by the thrombin and LPA receptors.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|