1
|
Zou K, Zeng Z. Role of early growth response 1 in inflammation-associated lung diseases. Am J Physiol Lung Cell Mol Physiol 2023; 325:L143-L154. [PMID: 37401387 PMCID: PMC10511164 DOI: 10.1152/ajplung.00413.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Nimphy J, Ibrahim S, Dayoub R, Kubitza M, Melter M, Weiss TS. Interleukin-1ß Attenuates Expression of Augmenter of Liver Regeneration (ALR) by Regulating HNF4α Independent of c-Jun. Int J Mol Sci 2023; 24:ijms24098107. [PMID: 37175814 PMCID: PMC10179097 DOI: 10.3390/ijms24098107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression.
Collapse
Affiliation(s)
- Jonas Nimphy
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sara Ibrahim
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rania Dayoub
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Melter
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
4
|
Wijesekera N, Hazell N, Jones C. Independent Cis-Regulatory Modules within the Herpes Simplex Virus 1 Infected Cell Protein 0 (ICP0) Promoter Are Transactivated by Krüppel-like Factor 15 and Glucocorticoid Receptor. Viruses 2022; 14:v14061284. [PMID: 35746756 PMCID: PMC9228413 DOI: 10.3390/v14061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
A corticosteroid antagonist impairs Herpes Simplex Virus 1 (HSV-1) productive infection and explant-induced reactivation from latency, suggesting corticosteroids and the glucocorticoid receptor (GR) mediate certain aspects of these complex virus-host interactions. GR-hormone complexes regulate transcription positively and negatively, in part, by binding GR response elements (GREs). Recent studies revealed infected cell protein 0 (ICP0), ICP4, and ICP27 promoter/cis-regulatory modules (CRMs) are cooperatively transactivated by GR and Krüppel-like factor 15 (KLF15), which forms a feed-forward transcription loop. We hypothesized the ICP0 promoter contains independent CRMs that are transactivated by GR, KLF15, and the synthetic corticosteroid dexamethasone (DEX). This hypothesis is based on the finding that the ICP0 promoter contains multiple transcription factor binding sites, and GR and KLF15 cooperatively transactivate the full-length ICP0 promoter. ICP0 promoter sequences spanning -800 to -635 (fragment A) were efficiently transactivated by GR, KLF15, and DEX in monkey kidney cells (Vero), whereas GR and DEX significantly enhanced promoter activity in mouse neuroblastoma cells (Neuro-2A). Furthermore, ICP0 fragment B (-458 to -635) was efficiently transactivated by GR, KLF15, and DEX in Vero cells, but not Neuro-2A cells. Finally, fragment D (-232 to -24) was transactivated significantly in Vero cells by GR, KLF15, and DEX, whereas KLF15 and DEX were sufficient for transactivation in Neuro-2A cells. Collectively, these studies revealed efficient transactivation of three independent CRMs within the ICP0 promoter by GR, KLF15, and/or DEX. Finally, GC-rich sequences containing specificity protein 1 (Sp1) binding sites were essential for transactivation.
Collapse
Affiliation(s)
- Nishani Wijesekera
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 208 N McFarland Street, RM 250 McElroy Hall, Stillwater, OK 74078, USA;
| | - Nicholas Hazell
- Experimental Pathology Program, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 208 N McFarland Street, RM 250 McElroy Hall, Stillwater, OK 74078, USA;
- Correspondence: ; Tel.: +1-405-744-1842
| |
Collapse
|
5
|
Pang Z, Xu Y, Zhu Q. Early Growth Response 1 Suppresses Macrophage Phagocytosis by Inhibiting NRF2 Activation Through Upregulation of Autophagy During Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2022; 11:773665. [PMID: 35096638 PMCID: PMC8790152 DOI: 10.3389/fcimb.2021.773665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infections in cystic fibrosis patients and immunocompromised individuals. A tightly regulated immune response possessed by healthy individuals can effectively control P. aeruginosa infections, whereas the patients with dysregulated immune response are susceptible to this bacterial pathogen. Early growth response 1 (Egr-1) is a zinc-finger transcription factor involved in regulation of various cellular functions, including immune responses. We previously identified that Egr-1 was deleterious to host in a mouse model of acute P. aeruginosa pneumonia by promoting systemic inflammation and impairing bacterial clearance in lung, which associated with reduced phagocytosis and bactericidal ability of leucocytes, including macrophages and neutrophils. However, the molecular mechanisms underlying the Egr-1-suppressed phagocytosis of P. aeruginosa are incompletely understood. Herein, we investigated whether the Egr-1-regulated autophagy play a role in macrophage phagocytosis during P. aeruginosa infection by overexpression or knockdown of Egr-1. We found that overexpression of Egr-1 inhibited the phagocytic activity of macrophages, and the autophagy activator rapamycin and inhibitor chloroquine could reverse the effects of Egr-1 knockdown and Egr-1 overexpression on phagocytosis of P. aeruginosa, respectively. Furthermore, the Egr-1-overexpressing macrophages displayed upregulated expression of autophagy-related proteins LC3A, LC3B and Atg5, and decreased levels of p62 in macrophages. Further studies revealed that the macrophages with Egr-1 knockdown displayed enhanced activation of transcription factor NRF2 and expression of scavenger receptors MACRO and MSR1. Altogether, these findings suggest that Egr-1 suppresses the phagocytosis of P. aeruginosa by macrophages through upregulation of autophagy and inhibition of NRF2 signaling.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Ahi EP, Tsakoumis E, Brunel M, Schmitz M. Transcriptional study reveals a potential leptin-dependent gene regulatory network in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1283-1298. [PMID: 34236575 PMCID: PMC8302498 DOI: 10.1007/s10695-021-00967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 06/01/2023]
Abstract
The signal mediated by leptin hormone and its receptor is a major regulator of body weight, food intake and metabolism. In mammals and many teleost fish species, leptin has an anorexigenic role and inhibits food intake by influencing the appetite centres in the hypothalamus. However, the regulatory connections between leptin and downstream genes mediating its appetite-regulating effects are still not fully explored in teleost fish. In this study, we used a loss of function leptin receptor zebrafish mutant and real-time quantitative PCR to assess brain expression patterns of several previously identified anorexigenic genes downstream of leptin signal under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-h refeeding). These downstream factors include members of cart genes, crhb and gnrh2, as well as selected genes co-expressed with them based on a zebrafish co-expression database. Here, we found a potential gene expression network (GRN) comprising the abovementioned genes by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of this GRN, we found expression pattern of sp3a to be correlated with transcriptional changes of the downstream gene network. Interestingly, the expression and transcriptional activity of Sp3 orthologous gene in mammals have already been implicated to be under the influence of leptin signal. These findings suggest a potentially conserved regulatory connection between leptin and sp3a, which is predicted to act as a transcriptional driver of a downstream gene network in the zebrafish brain.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Gene expression of type II collagen is regulated by direct interaction with Kruppel-like factor 4 and AT-rich interactive domain 5B. Gene 2020; 773:145381. [PMID: 33383116 DOI: 10.1016/j.gene.2020.145381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
We have previously found and characterized two pairs of enhancer elements, E1 and E2, in the type II collagen alpha 1 chain (COL2A1) gene. Subsequent studies have suggested that these enhancers function differently in the regulation of gene expression. For example, histone deacetylase 10 modifies only the E2 enhancer region to affect gene expression. Therefore, in this study, we aimed to clarify the transcriptional complex formed at each enhancer region by identifying transcription factors that specifically bind to each enhancer element. To this end, we used chondrocytic cell lines established using our unique silent reporter system and overexpressed candidate transcription factors in these cells. We found two transcription factors, other than the SOX trio, that directly bound to COL2A1 and regulated its expression. The first was Kruppel-like factor-4 (KLF4), which bound to the promoter proximal region, and the second was AT-rich interactive domain 5B (ARID5B) which bound to the E1 enhancer element. Further studies are needed to identify factors that specifically bind to the E2 enhancer element. In any case, our findings provide an important insight into the molecular mechanisms underlying the regulation of COL2A1. In this paper, we reevaluated the previous analysis of transcription factors involved in the regulation of COL2A1 expression.
Collapse
|
8
|
Varela D, Conceição N, Cancela ML. Transcriptional regulation of human T-box 5 gene (TBX5) by bone- and cardiac-related transcription factors. Gene 2020; 768:145322. [PMID: 33221539 DOI: 10.1016/j.gene.2020.145322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/14/2020] [Indexed: 01/22/2023]
Abstract
T-box 5 (TBX5) protein belongs to the T-box family whose members play a crucial role in cell-type specification, morphogenesis and organogenesis. TBX5 is a transcription factor important for cardiac development and upper limbs formation and its haploinsufficiency causes Holt-Oram syndrome (HOS). An increase in TBX5 dosage also leads to HOS, suggesting that TBX5 is a dose-sensitive transcription factor that needs to be tightly regulated but the molecular mechanisms involved remain unclear. In this work we report the cloning and functional analysis of human TBX5 promoter region 1 (upstream of exon 1) and promoter region 2 (upstream of exon 2), that probably regulate the transcription of the different transcript variants. In silico analysis showed several binding sites for cardiac and skeletal related transcription factors (TFs) and their functionality was assessed using promoter-luciferase constructions and TF-expressing vectors. MEF2A (Myocyte enhancer factor 2 A) was shown to positively regulate both TBX5 promoters, while EGR1 (early growth response 1) repressed both promoters. SOX9 (SRY (sex determining region Y)-box 9) repressed only the activity of promoter region 2. Interestingly, YY1 (Yin and yang 1) repressed promoter region 1 (that regulates the expression of variant 1 and 3), but activated promoter region 2 (that regulates the expression of variant 4). In conclusion, this work provides novel insights toward the better understanding of TBX5 transcriptional regulation by cardiac- and skeletal-related TFs.
Collapse
Affiliation(s)
- Débora Varela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal; Algarve Biomedical Centre (ABC) University of Algarve, Faro, Portugal.
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal; Algarve Biomedical Centre (ABC) University of Algarve, Faro, Portugal; Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.
| |
Collapse
|
9
|
Zhang R, Cong F, Li Q, Min Z, Yan J, Zhang Q, Ma J, Lu S, Ma J. miR-497 Is Implicated in the Process of Chondrogenesis and Inhibits IHH Gene Expression in Human Chondrocytes. Cartilage 2020; 11:479-489. [PMID: 30156864 PMCID: PMC7488943 DOI: 10.1177/1947603518796126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine differences in microRNA-497 (miR-497) expression during cartilage tissue formation and to test whether miR-497 directly interferes with Indian hedgehog (IHH) gene and inhibits IHH expression in human chondrocytes. DESIGN At different cartilage development stages and different time points in bone matrix gelatin-induced endochondral ossification (BMG-ECO) rat models, the expression of miR-497 and the Ihh gene was monitored at the mRNA level. Bioinformatic analysis, gene mutation, dual luciferase reporter gene assays and gene expression assays at both the mRNA and protein levels in human chondrocytes were subsequently performed to validate the interaction between miR-497 and the IHH gene. RESULTS The mRNA expression of miR-497 or the Ihh gene in BMG-ECO rats showed significant differences between the cartilage development stages and between different time points, and the trends in the expression of miR-497 and Ihh were reversed. Bioinformatic and dual luciferase reporter gene assays demonstrated a direct interaction between miR-497 and the IHH gene. Differential mRNA and protein expression profiles of the IHH gene in human chondrocytes after 48 hours of transfection with miR-497 mimics and a negative control indicated that miR-497 inhibited IHH expression. CONCLUSION Our study provided new clues for further functional and molecular mechanism studies of miR-497 in chondrogenesis and demonstrated a potential target for clinical therapy for cartilage degenerative disease.
Collapse
Affiliation(s)
- Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fei Cong
- Department of Orthopedic Microsurgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi Li
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zixin Min
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jidong Yan
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qian Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Ma
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shemin Lu
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, 555 East Youyi Road, Xi’an, Shaanxi, 710054, China.
| |
Collapse
|
10
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
11
|
Dose-Dependent Effect of Mesenchymal Stromal Cell Recruiting Chemokine CCL25 on Porcine Tissue-Engineered Healthy and Osteoarthritic Cartilage. Int J Mol Sci 2018; 20:ijms20010052. [PMID: 30583576 PMCID: PMC6337313 DOI: 10.3390/ijms20010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023] Open
Abstract
Thymus-expressed chemokine (CCL25) is a potent cell attractant for mesenchymal stromal cells, and therefore it is a candidate for in situ cartilage repair approaches focusing on the recruitment of endogenous repair cells. However, the influence of CCL25 on cartilage is unknown. Accordingly, in this study, we investigated the effect of CCL25 on tissue-engineered healthy and osteoarthritic cartilage. Porcine chondrocytes were cultured in a three-dimensional (3D) micromass model that has been proven to mimic key-aspects of human cartilage and osteoarthritic alterations upon stimulation with tumor necrosis factor-α (TNF-α). Micromass cultures were stimulated with CCL25 (0, 0.05, 0.5, 5, 50, 500 nmol/L) alone or in combination with 0.6 nmol/L TNF-α for seven days. Effects were evaluated by life/dead staining, safranin O staining, histomorphometrical analysis of glycosaminoglycans (GAGs), collagen type II (COL2A1) real-time RT-PCR and Porcine Genome Array analysis. 500 nmol/L CCL25 led to a significant reduction of GAGs and COL2A1 expression and induced the expression of matrix metallopeptidases (MMP) 1, MMP3, early growth response protein 1 (EGR1), and superoxide dismutase 2 (SOD2). In concentrations lower than 500 nmol/L, CCL25 seems to be a candidate for in situ cartilage repair therapy approaches.
Collapse
|
12
|
Fisch KM, Gamini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y, Sasho T, Koziol JA, Su AI, Lotz MK. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 2018; 26:1531-1538. [PMID: 30081074 PMCID: PMC6245598 DOI: 10.1016/j.joca.2018.07.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent joint disease. As disease-modifying therapies are not available, novel therapeutic targets need to be discovered and prioritized for their importance in mediating the abnormal phenotype of cells in OA-affected joints. Here, we generated a genome-wide molecular profile of OA to elucidate regulatory mechanisms of OA pathogenesis and to identify possible therapeutic targets using integrative analysis of mRNA-sequencing data obtained from human knee cartilage. DESIGN RNA-sequencing (RNA-seq) was performed on 18 normal and 20 OA human knee cartilage tissues. RNA-seq datasets were analysed to identify genes, pathways and regulatory networks that were dysregulated in OA. RESULTS RNA-seq data analysis revealed 1332 differentially expressed (DE) genes between OA and non-OA samples, including known and novel transcription factors (TFs). Pathway analysis identified 15 significantly perturbed pathways in OA with ECM-related, PI3K-Akt, HIF-1, FoxO and circadian rhythm pathways being the most significantly dysregulated. We selected DE TFs that are enriched for regulating DE genes in OA and prioritized these TFs by creating a cartilage-specific interaction subnetwork. This analysis revealed eight TFs, including JUN, Early growth response (EGR)1, JUND, FOSL2, MYC, KLF4, RELA, and FOS that both target large numbers of dysregulated genes in OA and are themselves suppressed in OA. CONCLUSIONS We identified a novel subnetwork of dysregulated TFs that represent new mediators of abnormal gene expression and promising therapeutic targets in OA.
Collapse
Affiliation(s)
- K M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - R Gamini
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - O Alvarez-Garcia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - R Akagi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - M Saito
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Y Muramatsu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - T Sasho
- Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - J A Koziol
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - A I Su
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
13
|
Weinmann D, Mueller M, Walzer SM, Hobusch GM, Lass R, Gahleitner C, Viernstein H, Windhager R, Toegel S. Brazilin blocks catabolic processes in human osteoarthritic chondrocytes via inhibition of NFKB1/p50. J Orthop Res 2018; 36:2431-2438. [PMID: 29704279 DOI: 10.1002/jor.24013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the chondroprotective and anti-inflammatory activity of brazilin in human osteoarthritic (OA) cartilage and chondrocytes with particular focus on the nuclear factor-kappa B (NF-κB) pathway. Therefore, brazilin was isolated from Caesalpinia sappan and identified using high performance liquid chromatography (HPLC). The effect of brazilin was assessed in cartilage explants treated with 10 ng/ml interleukin (IL)-1β and 10 ng/ml tumor necrosis factor (TNF)-α using histological and biochemical glycosaminoglycan (GAG) analyses and in primary chondrocytes treated with 10 ng/ml IL-1β using RT-qPCR, ELISA, and Western blot. The involvement of NF-κB signaling was examined using a human NF-κB signaling array and in silico pathway analysis. Brazilin was found to reduce the GAG loss from cartilage explants stimulated with IL-1β and TNF-α. NF-κB pathway analysis in chondrocytes revealed NFKB1/p50 as a central player regulating the anti-inflammatory activities of brazilin. Brazilin suppressed the IL-1β-mediated up-regulation of OA markers and the induction of NFKB1/p50 in chondrocytes. In conclusion, brazilin effectively attenuates catabolic processes in human OA cartilage and chondrocytes-at least in part due to the inhibition of NFKB1/p50-which indicates a chondroprotective potential of brazilin in OA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2431-2438, 2018.
Collapse
Affiliation(s)
- Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Monika Mueller
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard M Hobusch
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Richard Lass
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Claudia Gahleitner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
14
|
Hulme JT, D'Souza WN, McBride HJ, Yoon BRP, Willee AM, Duguay A, Thomas M, Fan B, Dayao MR, Rottman JB, Merriam K, Xie J, Smith R, Alba BM, Case RB, Dang K, Montalvan A, Grinberg N, Sun H, Black RA, Gabel CA, Sims JE, Moore K, Bakker A, Li P. Novel protein therapeutic joint retention strategy based on collagen-binding Avimers. J Orthop Res 2018; 36:1238-1247. [PMID: 28971529 DOI: 10.1002/jor.23756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
Designing drugs to treat diseases associated with articular joints, particularly those targeting chondrocytes, is challenging due to unique local environmental constraints including the avascular nature of cartilage, the absence of a closed joint compartment, and a highly cross-linked extracellular matrix. In an effort to address these challenges, we developed a novel strategy to prolong residence time of intra-articularly administered protein therapeutics. Avimer domains are naturally found in membrane polypeptides and mediate diverse protein-protein interactions. Screening of a phage Avimer domain library led to identification of several low affinity type II collagen-binding Avimers. Following several rounds of mutagenesis and reselection, these initial hits were transformed to high affinity, selective type II collagen-binding Avimers. One such Avimer (M26) persisted in rat knees for at least 1 month following intra-articular administration. Fusion of this Avimer to a candidate therapeutic payload, IL-1Ra, yielded a protein construct which simultaneously bound to type II collagen and to IL-1 receptor. In vitro, IL-1Ra_M26 bound selectively to cartilage explants and remained associated even after extensive washing. Binding appeared to occur preferentially to pericellular regions surrounding chondrocytes. An acute intra-articular IL-1-induced IL-6 challenge rat model was employed to assess in vivo pharmacodynamics. Whereas both IL-1Ra_M26 and native IL-1Ra inhibited IL-6 output when co-administered with the IL-1 challenge, only IL-1Ra_M26 inhibited when administered 1 week prior to IL-1 challenge. Collagen-binding Avimers thus represent a promising strategy for enhancing cartilage residence time of protein therapeutics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1238-1247, 2018.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Duguay
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Melissa Thomas
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Bin Fan
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | | | - James B Rottman
- Comparative Biology & Safety Sciences, Amgen, Inc., Cambridge, Massachusetts
| | - Kim Merriam
- Comparative Biology & Safety Sciences, Amgen, Inc., Cambridge, Massachusetts
| | - Jiansong Xie
- Clinical Immunology, Amgen, Inc., Thousand Oaks, California
| | - Richard Smith
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Benjamin M Alba
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Ryan B Case
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Khue Dang
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | | | - Natalia Grinberg
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Hong Sun
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Roy A Black
- Inflammation, Amgen, Inc., Seattle, Washington
| | | | - John E Sims
- Inflammation, Amgen, Inc., Seattle, Washington
| | - Kevin Moore
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Alice Bakker
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| | - Peng Li
- Therapeutic Discovery, Amgen, Inc., South San Francisco, California
| |
Collapse
|
15
|
Ahsendorf T, Müller FJ, Topkar V, Gunawardena J, Eils R. Transcription factors, coregulators, and epigenetic marks are linearly correlated and highly redundant. PLoS One 2017; 12:e0186324. [PMID: 29216191 PMCID: PMC5720766 DOI: 10.1371/journal.pone.0186324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 11/30/2022] Open
Abstract
The DNA microstates that regulate transcription include sequence-specific transcription factors (TFs), coregulatory complexes, nucleosomes, histone modifications, DNA methylation, and parts of the three-dimensional architecture of genomes, which could create an enormous combinatorial complexity across the genome. However, many proteins and epigenetic marks are known to colocalize, suggesting that the information content encoded in these marks can be compressed. It has so far proved difficult to understand this compression in a systematic and quantitative manner. Here, we show that simple linear models can reliably predict the data generated by the ENCODE and Roadmap Epigenomics consortia. Further, we demonstrate that a small number of marks can predict all other marks with high average correlation across the genome, systematically revealing the substantial information compression that is present in different cell lines. We find that the linear models for activating marks are typically cell line-independent, while those for silencing marks are predominantly cell line-specific. Of particular note, a nuclear receptor corepressor, transducin beta-like 1 X-linked receptor 1 (TBLR1), was highly predictive of other marks in two hematopoietic cell lines. The methodology presented here shows how the potentially vast complexity of TFs, coregulators, and epigenetic marks at eukaryotic genes is highly redundant and that the information present can be compressed onto a much smaller subset of marks. These findings could be used to efficiently characterize cell lines and tissues based on a small number of diagnostic marks and suggest how the DNA microstates, which regulate the expression of individual genes, can be specified.
Collapse
Affiliation(s)
- Tobias Ahsendorf
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Ved Topkar
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard College, Boston, Massachusetts, United States of America
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
16
|
Ramaker RC, Savic D, Hardigan AA, Newberry K, Cooper GM, Myers RM, Cooper SJ. A genome-wide interactome of DNA-associated proteins in the human liver. Genome Res 2017; 27:1950-1960. [PMID: 29021291 PMCID: PMC5668951 DOI: 10.1101/gr.222083.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in important ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expression of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-related disruptions.
Collapse
Affiliation(s)
- Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Kimberly Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
17
|
Seidl CI, Martinez-Sanchez A, Murphy CL. Derepression of MicroRNA-138 Contributes to Loss of the Human Articular Chondrocyte Phenotype. Arthritis Rheumatol 2016; 68:398-409. [PMID: 26359943 DOI: 10.1002/art.39428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the function of microRNA-138 (miR-138) in human articular chondrocytes (HACs). METHODS The expression of miR-138 in intact cartilage and cultured chondrocytes and the effects of miR-138 overexpression on chondrocyte marker genes were investigated. Targets of miR-138 relevant to chondrocytes were identified and verified by overexpression of synthetic miRNA mimics and inhibitors, luciferase assays, chromatin immunoprecipitation, and RNA immunoprecipitation of native argonaute 2, using quantitative polymerase chain reaction, Western blotting, and luciferase assays. RESULTS Expression levels of miR-138 were maintained at relatively low levels in intact human cartilage but were greatly increased upon loss of the differentiated phenotype in culture, with a concomitant decrease in the major cartilage extracellular matrix component COL2A1. We showed that miR-138 is able to repress the expression of COL2A1 by directly targeting Sp-1 and hypoxia-inducible factor 2α (HIF-2α), 2 transcription factors that are essential for COL2A1 transcription. We further demonstrated a direct association of these targets with miR-138 in the RNA-induced silencing complex and confirmed binding of Sp-1 to the COL2A1 promoter region in HACs. CONCLUSION We propose that an evolutionary pressure helps to suppress expression levels of miR-138 in human cartilage, thus enabling expression of appropriate tissue-specific matrix genes. Inhibition of miR-138 may serve as a potential therapeutic strategy to maintain the chondrocyte phenotype or reduce the progression of dedifferentiation in cultured HACs.
Collapse
Affiliation(s)
- Christine I Seidl
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | |
Collapse
|
18
|
Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 2015; 52:235-42. [PMID: 26487428 DOI: 10.1007/s11626-015-9959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.
Collapse
|
19
|
Torrero JI, Martínez C. New developments in the treatment of osteoarthritis - focus on biologic agents. Open Access Rheumatol 2015; 7:33-43. [PMID: 27790043 PMCID: PMC5045124 DOI: 10.2147/oarrr.s50058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases around the world. Medical, social, and financial consequences oblige clinicians, surgeons, and researchers to focus on finding the best treatment option, to eradicate and stop this degenerative joint disease, in order to avoid surgical options which in many instances are over-indicated. Noninvasive treatments, such as anti-inflammatory drugs, physiotherapy, orthotic devices, dietary supplements, have demonstrated lack of effectiveness. The possibility to perform intra-articular injections with hyaluronic acid, corticosteroids, or the newest but criticized treatment based on platelet-rich plasma (PRP) has changed the management of OA disease. The use of PRP has led to many differences in treatment since there is a lack of consensus about protocols, indications, number of doses, cost-effectiveness, and duration of the treatment. Many publications have suggested efficacy in tendon injuries, but when PRP has been indicated to treat cartilage injuries, things are more inconsistent. Some authors have reported their experience treating OA with PRP, and it seems that, if well indicated, it is an option as a supplementary therapy. Therefore, we need to understand that OA is a mechanical disease which not only produces changes in radiographs, but also affects the quality of life. Pathogenesis of OA has been well explained, providing us new knowledge and future possibilities to improve the clinical approach. From basic science to surgery, there is a great field we all need to contribute to, because the general population is aging and total joint replacements should not be the only solution for OA. So herein is an actual review of the developments for treating OA with biologics, intended to be useful for the population inside orthopedics who could be called bio-orthopedists, since OA is a molecular homeostasis disbalance between catabolism and anabolism triggered by mechanical stress.
Collapse
Affiliation(s)
| | - Carlos Martínez
- University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| |
Collapse
|
20
|
Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Matsuguchi T. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation. Bone 2015; 74:125-33. [PMID: 25497570 DOI: 10.1016/j.bone.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity.
Collapse
Affiliation(s)
- Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
21
|
Wu G, Fan H, Huang Y, Zheng C, Ye J, Liu X. Duhuo Jisheng Decoction‑containing serum promotes proliferation of interleukin‑1β‑induced chondrocytes through the p16‑cyclin D1/CDK4‑Rb pathway. Mol Med Rep 2014; 10:2525-34. [PMID: 25189115 DOI: 10.3892/mmr.2014.2527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
Duhuo Jisheng Decoction (DHJSD) is a traditional Chinese herbal medicine that has multiple uses, including as a treatment for osteoarthritis (OA). However, the molecular mechanisms underlying the therapeutic effects of DHJSD on OA remain unknown. In the present study, a serum pharmacological method was applied to investigate the effects of DHJSD on the proliferation of chondrocytes treated with interleukin‑1β (IL‑1β) in vitro. This is a cell model commonly used to reproduce the mechanisms involved in degenerative arthropathies, including OA. The most effective intervention conditions of DHJSD serum were examined by MTT assay. The degenerative chondrocyte model was established by IL‑1β‑culture for 24 h, and was verified by optical microscopy and immunohistochemical analyses. Following the successful establishment of the degenerative chondrocyte model, the chondrocytes were subsequently randomly divided into two groups: The blank serum group and the DHJSD treatment group. Subsequent to treatment with the corresponding serum, cell proliferation was detected by MTT assay and DNA staining followed by FACS analysis, and the mRNA and protein expression levels of cyclin D1, cyclin‑dependent kinase 4 (CDK4), retinoblastoma tumor suppressor protein (Rb) and p16 were measured by reverse transcription polymerase chain reaction and western blotting, respectively. The results indicated that the most effective condition for the promotion of chondrocyte proliferation was 10% concentration of DHJSD 2‑h serum, and the degenerative chondrocyte model was successfully reproduced by IL‑1β‑treatment for 24 h. The mRNA and protein expression levels of cyclin D1, CDK4 and Rb in the DHJSD serum‑treated cells were significantly increased compared with those in the blank serum group, whereas p16 expression was significantly downregulated. These results indicate that treatment of cells with DHJSD‑containing serum is able to promote IL‑1β‑induced chondrocyte proliferation by promoting G1/S phase transition via modulating the expressions of cyclin D1, CDK4, Rb and p16, which contribute to the clinical efficacy of DHJSD in OA.
Collapse
Affiliation(s)
- Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou 350122, P.R. China
| | - Huailing Fan
- Academy of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou 350122, P.R. China
| | - Yuanpeng Huang
- Fujian Sports Vocational Education and Technical College, Fujian, Fuzhou 350003, P.R. China
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou 350122, P.R. China
| | - Jinxia Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou 350122, P.R. China
| |
Collapse
|
22
|
Difference in apoptosis-associated genes expression profiling and immunohistology analysis between Kashin-Beck disease and primary osteoarthritis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0130-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Ushijima T, Okazaki K, Tsushima H, Iwamoto Y. CCAAT/enhancer-binding protein β regulates the repression of type II collagen expression during the differentiation from proliferative to hypertrophic chondrocytes. J Biol Chem 2013; 289:2852-63. [PMID: 24344131 DOI: 10.1074/jbc.m113.492843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation by stimulating type X collagen and matrix metalloproteinase 13 during chondrocyte differentiation. However, the effect of C/EBPβ on proliferative chondrocytes is unclear. Here, we investigated whether C/EBPβ represses type II collagen (COL2A1) expression and is involved in the regulation of sex-determining region Y-type high mobility group box 9 (SOX9), a crucial factor for transactivation of Col2a1. Endogenous expression of C/EBPβ in the embryonic growth plate and differentiated ATDC5 cells were opposite to those of COL2A1 and SOX9. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked repression of Col2a1. The expression of Sox9 mRNA and nuclear protein was also repressed, resulting in decreased binding of SOX9 to the Col2a1 enhancer as shown by a ChIP assay. Knockdown of C/EBPβ by lentivirus expressing shRNA caused significant stimulation of these genes in ATDC5 cells. Reporter assays demonstrated that C/EBPβ repressed transcriptional activity of Col2a1. Deletion and mutation analysis showed that the C/EBPβ core responsive element was located between +2144 and +2152 bp within the Col2a1 enhancer. EMSA and ChIP assays also revealed that C/EBPβ directly bound to this region. Ex vivo organ cultures of mouse limbs transfected with C/EBPβ showed that the expression of COL2A1 and SOX9 was reduced upon ectopic C/EBPβ expression. Together, these results indicated that C/EBPβ represses the transcriptional activity of Col2a1 both directly and indirectly through modulation of Sox9 expression. This consequently promotes the phenotypic conversion from proliferative to hypertrophic chondrocytes during chondrocyte differentiation.
Collapse
Affiliation(s)
- Takahiro Ushijima
- From the Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, 812-8582, Japan
| | | | | | | |
Collapse
|
24
|
Hida M, Hamanaka R, Okamoto O, Yamashita K, Sasaki T, Yoshioka H, Matsuo N. Nuclear factor Y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 2013; 50:358-66. [PMID: 24092017 DOI: 10.1007/s11626-013-9692-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
Abstract
Type XI collagen, a heterotrimer composed of α1(XI), α2(XI), and α3(XI), plays a critical role in cartilage formation and in skeletal morphogenesis. However, the transcriptional regulation of α1(XI) collagen gene (Col11a1) in chondrocyte is poorly characterized. In this study, we investigated the proximal promoter of mouse Col11a1 gene in chondrocytes. Major transcription start site was located at -299 bp upstream of the translation start site, and the proximal promoter lacks a TATA sequence but has a high guanine-cytosine (GC) content. Cell transfection experiments demonstrated that the segment from -116 to -256 is necessary for activation of the proximal Col11a1 promoter, and an electrophoretic mobility shift assay showed that a nuclear protein is bound to the segment from -116 to -176 in this promoter. Additional comparative and in silico analyses demonstrated that an ATTGG sequence, which is critical for binding to nuclear factor Y (NF-Y), is within the highly conserved region from -135 to -145. Interference assays using wild-type and mutant oligonucleotide or with specific antibody revealed that NF-Y protein is bound to this region. Cell transfection experiments with reporter constructs in the absence of NF-Y binding sequence exhibited the suppression of the promoter activity. Furthermore, chromatin immunoprecipitation assay demonstrated that NF-Y protein is directly bound to this region in vivo, and overexpression of dominant-negative NF-Y A mutant also inhibited the proximal promoter activity. Taken together, these results indicate that the transcription factor NF-Y regulates the proximal promoter activity of mouse Col11a1 gene in chondrocytes.
Collapse
Affiliation(s)
- Mariko Hida
- Department of Matrix Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kearney SJ, Delgado C, Eshleman EM, Hill KK, O'Connor BP, Lenz LL. Type I IFNs downregulate myeloid cell IFN-γ receptor by inducing recruitment of an early growth response 3/NGFI-A binding protein 1 complex that silences ifngr1 transcription. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3384-92. [PMID: 23935197 PMCID: PMC3777655 DOI: 10.4049/jimmunol.1203510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of type I IFNs to increase susceptibility to certain bacterial infections correlates with downregulation of myeloid cell surface IFNGR, the receptor for the type II IFN (IFN-γ), and reduced myeloid cell responsiveness to IFN-γ. In this study, we show that the rapid reductions in mouse and human myeloid cell surface IFNGR1 expression that occur in response to type I IFN treatment reflect a rapid silencing of new ifngr1 transcription by repressive transcriptional regulators. Treatment of macrophages with IFN-β reduced cellular abundance of ifngr1 transcripts as rapidly and effectively as actinomycin D treatment. IFN-β treatment also significantly reduced the amounts of activated RNA polymerase II (pol II) and acetylated histones H3 and H4 at the ifngr1 promoter and the activity of an IFNGR1-luc reporter construct in macrophages. The suppression of IFNGR1-luc activity required an intact early growth response factor (Egr) binding site in the proximal ifngr1 promoter. Three Egr proteins and two Egr/NGFI-A binding (Nab) proteins were found to be expressed in bone macrophages, but only Egr3 and Nab1 were recruited to the ifngr1 promoter upon IFN-β stimulation. Knockdown of Nab1 in a macrophage cell line prevented downregulation of IFNGR1 and prevented the loss of acetylated histones from the ifngr1 promoter. These data suggest that type I IFN stimulation induces a rapid recruitment of a repressive Egr3/Nab1 complex that silences transcription from the ifngr1 promoter. This mechanism of gene silencing may contribute to the anti-inflammatory effects of type I IFNs.
Collapse
Affiliation(s)
- Staci J. Kearney
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Christine Delgado
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Emily M. Eshleman
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Krista K. Hill
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
| | - Brian P. O'Connor
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| |
Collapse
|
26
|
Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, Jorgensen C, Bourin P, Fleury-Cappellesso S, Facchini A, Noël D, Lisignoli G. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. ACTA ACUST UNITED AC 2013; 65:1271-81. [PMID: 23613363 DOI: 10.1002/art.37908] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/12/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To examine the effect of different sources of good manufacturing practice clinical grade adipose-derived mesenchymal stem cells (AD-MSCs) on inflammatory factors in osteoarthritic (OA) chondrocytes and synoviocytes. METHODS AD-MSCs from infrapatellar Hoffa fat, subcutaneous (SC) hip fat, and SC abdominal fat were cocultured in Transwells with chondrocytes or synoviocytes. Inflammatory factors (interleukin-1β [IL-1β], tumor necrosis factor α, IL-6, CXCL1/growth-related oncogene α, CXCL8/IL-8, CCL2/monocyte chemotactic protein 1, CCL3/macrophage inflammatory protein 1α, and CCL5/RANTES) were evaluated by quantitative reverse transcription-polymerase chain reaction or multiplex bead-based immunoassay. The role of different immunomodulators was analyzed. RESULTS All the inflammatory factors analyzed were down-modulated at the messenger RNA or protein level independently by all 3 AD-MSC sources or by allogeneic AD-MSCs used in coculture with chondrocytes or synoviocytes. Inflammatory factor down-modulation was observed only when AD-MSCs were cocultured with chondrocytes or synoviocytes that produced high levels of inflammatory factors, but no effect was observed in cells that produced low levels of those factors, thus highlighting a dependence of the AD-MSC effect on existing inflammation. The immunomodulators IL-10, IL-1 receptor antagonist, fibroblast growth factor 2, indoleamine 2,3-dioxygenase 1, and galectin 1 were not involved in AD-MSC effects, whereas the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2 ) pathway exerted a role in the mechanism of antiinflammatory AD-MSC action. CONCLUSION The antiinflammatory effects of AD-MSCs are probably not dependent on AD-MSC adipose tissue sources and donors but rather on the inflammatory status of OA chondrocytes and synoviocytes. AD-MSCs seem to be able to sense and respond to the local environment. Even though a combination of different molecules may be involved in AD-MSC effects, the COX-2/PGE2 pathway may play a role, suggesting that AD-MSCs may be useful for therapies in osteoarticular diseases.
Collapse
|
27
|
Abstract
BACKGROUND Osteoarthritis (OA) is a frustrating disease for both patient and physician because neither cause nor cure is known and there are currently no disease-modifying drugs. OBJECTIVE To review current therapeutic approaches as well as new findings regarding OA pathoetiology that could form the basis of future direction for the development of drugs to prevent or slow down disease progression. METHODS After reviewing disease progression in human OA, as demonstrated by histological analyses, the reasons for cartilage erosion are explored and possible therapeutic approaches are highlighted. RESULTS/CONCLUSIONS OA may be an epigenetic disease. This new concept can explain many aspects of the disease and provide reasons why therapeutic approaches until now have met with little success.
Collapse
Affiliation(s)
- Helmtrud I Roach
- University of Southampton General Hospital, Bone & Joint Research Group, Southampton SO16 6YD, UK +44 023 8079 4316 ; +44 023 8079 5256 ;
| |
Collapse
|
28
|
Spaapen F, van den Akker GGH, Caron MMJ, Prickaerts P, Rofel C, Dahlmans VEH, Surtel DAM, Paulis Y, Schweizer F, Welting TJM, Eijssen LM, Voncken JW. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis. PLoS One 2013; 8:e58083. [PMID: 23483971 PMCID: PMC3590300 DOI: 10.1371/journal.pone.0058083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/30/2013] [Indexed: 12/18/2022] Open
Abstract
Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3) blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.
Collapse
Affiliation(s)
- Frank Spaapen
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guus G. H. van den Akker
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M. J. Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peggy Prickaerts
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Celine Rofel
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vivian E. H. Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yvette Paulis
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Finja Schweizer
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lars M. Eijssen
- Department of Bioinformatics – BiGCaT, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Niebler S, Bosserhoff AK. The transcription factor activating enhancer-binding protein epsilon (AP-2ε) regulates the core promoter of type II collagen (COL2A1). FEBS J 2013; 280:1397-408. [PMID: 23331625 DOI: 10.1111/febs.12130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 01/05/2023]
Abstract
The transcription factor activating enhancer-binding protein epsilon (AP-2ε) was recently shown to be expressed during late chondrocyte differentiation, especially in hypertrophic chondrocytes. In this study, we were able to reveal that the promoter of the type II collagen (COL2A1) gene, encoding the extracellular matrix protein type II collagen, is specifically regulated by AP-2ε. Expression of COL2A1 is downregulated at the transition of chondroblasts into hypertrophic chondrocytes and our data provide evidence that AP-2ε is involved in this process. In reporter gene assays, overexpression of AP-2ε in cartilaginous cell lines resulted in a significant reduction in COL2A1 core promoter activity of ~ 45%. Furthermore, we found that this process is dose-dependent and highly specific for the epsilon isoform. Computational analysis offered only a single putative AP-2-binding motif within the chosen promoter fragment but site-directed mutagenesis revealed this motif to be regulatory inactive. After expanding our screening to motifs containing minor differences from the classical AP-2 consensus sequence (5'-GCCN3 GGC-3'), we determined the sequence 5'-GCCCAGGC-3' ranging from position -128 to -135 bp as an important regulatory site and responsible for COL2A1 downregulation through AP-2ε. Interaction of AP-2ε with the COL2A1 promoter at this site was confirmed by chromatin immunoprecipitation and electromobility shift assay. Further, our experiments suggest that at least one additional factor is involved in this process. This is the first study to prove regulation of COL2A1 by AP-2ε highlighting the role of the transcription factor as a modulator of cartilage development.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | | |
Collapse
|
30
|
Xia J, Wu X, Yang Y, Zhao Y, Fang M, Xie W, Wang H, Xu Y. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells. Biochem Biophys Res Commun 2012; 428:264-70. [PMID: 23079621 DOI: 10.1016/j.bbrc.2012.10.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-γ represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.
Collapse
Affiliation(s)
- Jun Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Egr-1 induces DARPP-32 expression in striatal medium spiny neurons via a conserved intragenic element. J Neurosci 2012; 32:6808-18. [PMID: 22593050 DOI: 10.1523/jneurosci.5448-11.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DARPP-32 (dopamine and adenosine 3', 5'-cyclic monophosphate cAMP-regulated phosphoprotein, 32 kDa) is a striatal-enriched protein that mediates signaling by dopamine and other first messengers in the medium spiny neurons. The transcriptional mechanisms that regulate striatal DARPP-32 expression remain enigmatic and are a subject of much interest in the efforts to induce a striatal phenotype in stem cells. We report the identification and characterization of a conserved region, also known as H10, in intron IV of the gene that codes for DARPP-32 (Ppp1r1b). This DNA sequence forms multiunit complexes with nuclear proteins from adult and embryonic striata of mice and rats. Purification of proteins from these complexes identified early growth response-1 (Egr-1). The interaction between Egr-1 and H10 was confirmed in vitro and in vivo by super-shift and chromatin immunoprecipitation assays, respectively. Importantly, brain-derived neurotrophic factor (BDNF), a known inducer of DARPP-32 and Egr-1 expression, enhanced Egr-1 binding to H10 in vitro. Moreover, overexpression of Egr-1 in primary striatal neurons induced the expression of DARPP-32, whereas a dominant-negative Egr-1 blocked DARPP-32 induction by BDNF. Together, this study identifies Egr-1 as a transcriptional activator of the Ppp1r1b gene and provides insight into the molecular mechanisms that regulate medium spiny neuron maturation.
Collapse
|
32
|
Nebbaki SS, El Mansouri FE, Afif H, Kapoor M, Benderdour M, Duval N, Pelletier JP, Martel-Pelletier J, Fahmi H. Egr-1 contributes to IL-1-mediated down-regulation of peroxisome proliferator-activated receptor γ expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2012; 14:R69. [PMID: 22455954 PMCID: PMC3446440 DOI: 10.1186/ar3788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/17/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor (PPAR)γ has been shown to exhibit anti-inflammatory and anti-catabolic properties and to be protective in animal models of osteoarthritis (OA). We have previously shown that interleukin-1β (IL-1) down-regulates PPARγ expression in human OA chondrocytes. However, the mechanisms underlying this effect have not been well characterized. The PPARγ promoter harbors an overlapping Egr-1/specificity protein 1 (Sp1) binding site. In this study, our objective was to define the roles of Egr-1 and Sp1 in IL-1-mediated down-regulation of PPARγ expression. METHODS Chondrocytes were stimulated with IL-1 and the expression levels of Egr-1 and Sp1 mRNAs and proteins were evaluated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The role of de novo protein synthesis was evaluated using the protein synthesis inhibitor cycloheximide (CHX). The recruitment of Sp1 and Egr-1 to the PPARγ promoter was evaluated using chromatin immunoprecipitation (ChIP) assays. The PPARγ promoter activity was analyzed in transient transfection experiments. The roles of Egr-1 and Sp1 were further evaluated using small interfering RNA (siRNA) approaches. The level of Egr-1 in cartilage was determined using immunohistochemistry. RESULTS Down-regulation of PPARγ expression by IL-1 requires de novo protein synthesis and was concomitant with the induction of the transcription factor Egr-1. Treatment with IL-1 induced Egr-1 recruitment and reduced Sp1 occupancy at the PPARγ promoter. Overexpression of Egr-1 potentiated, whereas overexpression of Sp1 alleviated, the suppressive effect of IL-1 on the PPARγ promoter, suggesting that Egr-1 may mediate the suppressive effect of IL-1. Consistently, Egr-1 silencing prevented IL-1-mediated down-regulation of PPARγ expression. We also showed that the level of Egr-1 expression was elevated in OA cartilage compared to normal cartilage. CONCLUSIONS Our results indicate that induction and recruitment of Egr-1 contributed to the suppressive effect of IL-1 on PPARγ expression. They also suggest that modulation of Egr-1 levels in the joint may have therapeutic potential in OA.
Collapse
Affiliation(s)
- Sarah-Salwa Nebbaki
- Osteoarthritis Research Unit, Research Centre of the University of Montreal Hospital Center (CR-CHUM), Notre-Dame Hospital, 1560 Sherbrooke Street East, J,A, DeSève Pavillion, Y-2628, and Department of Medicine, University of Montreal, Montreal, QC H2L 4M1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Coexistence of fibrotic and chondrogenic process in the capsule of idiopathic frozen shoulders. Osteoarthritis Cartilage 2012; 20:241-9. [PMID: 22233812 DOI: 10.1016/j.joca.2011.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To analyze changes in the capsule from idiopathic frozen shoulders and clarify their etiology. MATERIALS AND METHODS Samples (the rotator interval capsule, middle glenohumeral ligament (MGHL), and inferior glenohumeral ligament (IGHL)) were collected from 12 idiopathic frozen shoulders with severe stiffness and 18 shoulders with rotator cuff tears as a control. The number of cells was counted and the tissue elasticity of the samples was calculated by scanning acoustic microscopy (SAM). The amount of glycosaminoglycan content was assessed by alcian blue staining. Gene and protein expressions related to fibrosis, inflammation, and chondrogenesis were analyzed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Furthermore, the total genes of the two groups were compared by DNA microarray analysis. RESULTS The number of cells was significantly higher and the capsular tissue was significantly stiffer in idiopathic frozen shoulders compared with shoulders with rotator cuff tears. Staining intensity of alcian blue was significantly stronger in idiopathic frozen shoulders. Gene expressions related to fibrosis, inflammation, and chondrogenesis were significantly higher in idiopathic frozen shoulders compared with shoulders with rotator cuff tears assessed by both qPCR and DNA microarray analysis. CONCLUSION In addition to fibrosis and inflammation, which used to be considered the main pathology of frozen shoulders, chondrogenesis is likely to have a critical role in pathogenesis of idiopathic frozen shoulders.
Collapse
|
34
|
Otero M, Favero M, Dragomir C, Hachem KE, Hashimoto K, Plumb DA, Goldring MB. Human chondrocyte cultures as models of cartilage-specific gene regulation. Methods Mol Biol 2012; 806:301-336. [PMID: 22057461 DOI: 10.1007/978-1-61779-367-7_21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.
Collapse
Affiliation(s)
- Miguel Otero
- Laboratory for Cartilage Biology, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Otero M, Plumb DA, Tsuchimochi K, Dragomir CL, Hashimoto K, Peng H, Olivotto E, Bevilacqua M, Tan L, Yang Z, Zhan Y, Oettgen P, Li Y, Marcu KB, Goldring MB. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem 2011; 287:3559-72. [PMID: 22158614 DOI: 10.1074/jbc.m111.265744] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position -78 bp and by cooperating with AP-1. In addition, ELF3 binding to the proximal MMP13 promoter is enhanced by IL-1β stimulation in chondrocytes, and the IL-1β-induced MMP13 expression is inhibited in primary human chondrocytes by siRNA-ELF3 knockdown and in chondrocytes from Elf3(-/-) mice. Further, we found that MEK/ERK signaling enhances ELF3-driven MMP13 transactivation and is required for IL-1β-induced ELF3 binding to the MMP13 promoter, as assessed by chromatin immunoprecipitation. Finally, we show that enhanced levels of ELF3 co-localize with MMP13 protein and activity in human osteoarthritic cartilage. These studies define a novel role for ELF3 as a procatabolic factor that may contribute to cartilage remodeling and degradation by regulating MMP13 gene transcription.
Collapse
Affiliation(s)
- Miguel Otero
- Laboratory for Cartilage Biology, Research Division, the Hospital for Special Surgery, Weill Cornell Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang W, Zhong B, Sun J, Cao J, Tian J, Zhong N, Zhao W, Tian L, Xu P, Guo D, Ju X, Ma W, Li M, Hou W, Lu S. Down-regulated HS6ST2 in osteoarthritis and Kashin-Beck disease inhibits cell viability and influences expression of the genes relevant to aggrecan metabolism of human chondrocytes. Rheumatology (Oxford) 2011; 50:2176-86. [DOI: 10.1093/rheumatology/ker230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Reumann MK, Strachna O, Yagerman S, Torrecilla D, Kim J, Doty SB, Lukashova L, Boskey AL, Mayer-Kuckuk P. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair. Bone 2011; 49:743-52. [PMID: 21726677 PMCID: PMC3169183 DOI: 10.1016/j.bone.2011.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 01/24/2023]
Abstract
Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair.
Collapse
Affiliation(s)
- Marie K. Reumann
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
| | - Olga Strachna
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
| | - Sarah Yagerman
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
| | - Daniel Torrecilla
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
| | - Jihye Kim
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
| | - Steven B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York
| | | | - Adele L. Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York
| | - Philipp Mayer-Kuckuk
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York
- Corresponding author: Dr. Philipp Mayer-Kuckuk, Caspary Research Building, Rm. 623, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, USA, Fax:(212) 774 7877,
| |
Collapse
|
38
|
miRNAs control tracheal chondrocyte differentiation. Dev Biol 2011; 360:58-65. [PMID: 21945074 DOI: 10.1016/j.ydbio.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/22/2011] [Accepted: 09/05/2011] [Indexed: 12/21/2022]
Abstract
The specific program that enables the stereotypic differentiation of specialized cartilages, including the trachea, is intrinsically distinct from the program that gives rise to growth plate hypertrophic chondrocytes. For example, Snail1 is an effector of FGF signaling in growth plate pre-hypertrophic chondrocytes, but it derails the normal program of permanent chondrocytes, repressing the transcription of Aggrecan and Collagen type 2a1 (Col2a1). Here we show that miRNA activity is essential for normal trachea development and that miR-125b and miR-30a/c keep Snail1 at low levels, thus enabling full functional differentiation of Col2a1 tracheal chondrocytes. Specific inhibition of miR-125b and miR-30a/c in chondrocytes or Dicer1 knockout in the trachea, de-repress Snail1. As a consequence, the transcription of Aggrecan and Col2a1 is hampered and extracellular matrix deposition is decreased. Our data reveals a new miRNA pathway that is safekeeping the specific genetic program of differentiated and matrix-producing tracheal chondrocytes from acquisition of unwanted signals. This pathway may improve understanding of human primary tracheomalacia and improve protocols for cartilage tissue engineering.
Collapse
|
39
|
Fang F, Ooka K, Bhattacharyya S, Bhattachyya S, Wei J, Wu M, Du P, Lin S, Del Galdo F, Feghali-Bostwick CA, Varga J. The early growth response gene Egr2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2077-90. [PMID: 21514423 DOI: 10.1016/j.ajpath.2011.01.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 12/23/2010] [Accepted: 01/24/2011] [Indexed: 12/21/2022]
Abstract
Although the early growth response-2 (Egr-2, alias Krox20) protein shows structural and functional similarities to Egr-1, these two related early-immediate transcription factors are nonredundant. Egr-2 plays essential roles in peripheral nerve myelination, adipogenesis, and immune tolerance; however, its regulation and role in tissue repair and fibrosis remain poorly understood. We show herein that transforming growth factor (TGF)-β induced a Smad3-dependent sustained stimulation of Egr2 gene expression in normal fibroblasts. Overexpression of Egr-2 was sufficient to stimulate collagen gene expression and myofibroblast differentiation, whereas these profibrotic TGF-β responses were attenuated in Egr-2-depleted fibroblasts. Genomewide transcriptional profiling revealed that multiple genes associated with tissue remodeling and wound healing were up-regulated by Egr-2, but the Egr-2-regulated gene expression profile overlapped only partially with the Egr-1-regulated gene profile. Levels of Egr-2 were elevated in lesional tissue from mice with bleomycin-induced scleroderma. Moreover, elevated Egr-2 was noted in biopsy specimens of skin and lung from patients with systemic sclerosis. These results provide the first evidence that Egr-2 is a functionally distinct transcription factor that is both necessary and sufficient for TGF-β-induced profibrotic responses and is aberrantly expressed in lesional tissue in systemic sclerosis and in a murine model of scleroderma. Together, these findings suggest that Egr-2 plays an important nonredundant role in the pathogenesis of fibrosis. Targeting Egr-2 might represent a novel therapeutic strategy to control fibrosis.
Collapse
Affiliation(s)
- Feng Fang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM, Marcu KB, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21:202-20. [PMID: 21351054 PMCID: PMC3937960 DOI: 10.22203/ecm.v021a16] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.
Collapse
Affiliation(s)
- Mary B. Goldring
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA,Address for correspondence: Mary B. Goldring, 535 East 70th Street, Caspary Research Building, 5th Floor, New York, NY 10021. USA,
| | - Miguel Otero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Darren A. Plumb
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cecilia Dragomir
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marta Favero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Karim El Hachem
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ko Hashimoto
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Kenneth B. Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy,Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | |
Collapse
|
41
|
Wang J, Stern PH. Dose-dependent differential effects of risedronate on gene expression in osteoblasts. Biochem Pharmacol 2011; 81:1036-42. [PMID: 21300031 DOI: 10.1016/j.bcp.2011.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/18/2022]
Abstract
Bisphosphonates have multiple effects on bone. Their actions on osteoclasts lead to inhibition of bone resorption, at least partially through apoptosis. Effects on osteoblasts vary, with modifications in the molecule and concentration both resulting in qualitatively different responses. To understand the mechanism of the differential effects of high and low bisphosphonate concentrations on osteoblast activity, we compared the effects of 10⁻⁸ M and 10⁻⁴ M risedronate on gene expression in UMR-106 rat osteoblastic cells. Two targeted arrays, an 84-gene signaling array and an 84-gene osteogeneic array were used. Gene expression was measured at 1 and 24 h. Although some genes were regulated similarly by low and high concentrations of the drug, there was also differential regulation. At 1 h, 11 genes (1 signaling and 10 osteogenesis) were solely regulated by the low concentration, and 7 genes (3 signaling, 4 osteogenesis) were solely regulated by the high concentration. At 24 h, 8 genes (3 signaling, 5 osteogenesis) were solely regulated by the low concentration and 30 genes (16 signaling and 14 osteogenesis) were solely regulated by the high concentration. Interestingly, the low, but not the high concentration of risedronate transiently and selectively upregulated several genes associated with cell differentiation. A number of genes related to apoptosis were regulated, and could be involved in effects of bisphosphonates to promote osteoblast apoptosis. Also, observed gene changes associated with decreased angiogenesis and decreased metastasis could, if they occur in other cell types, provide a basis for the effectiveness of bisphosphonates in the prevention of cancer metastases.
Collapse
Affiliation(s)
- J Wang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine. 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
42
|
Schmid R, Schiffner S, Opolka A, Grässel S, Schubert T, Moser M, Bosserhoff AK. Enhanced cartilage regeneration in MIA/CD-RAP deficient mice. Cell Death Dis 2010; 1:e97. [PMID: 21368873 PMCID: PMC3032321 DOI: 10.1038/cddis.2010.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Melanoma inhibitory activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from chondrocytes. It was identified as the prototype of a family of extracellular proteins adopting an SH3 domain-like fold. In order to study the consequences of MIA/CD-RAP deficiency in detail we used mice with a targeted gene disruption of MIA/CD-RAP (MIA−/−) and analyzed cartilage organisation and differentiation in in vivo and in vitro models. Cartilage formation and regeneration was determined in models for osteoarthritis and fracture healing in vivo, in addition to in vitro studies using mesenchymal stem cells of MIA−/− mice. Interestingly, our data suggest enhanced chondrocytic regeneration in the MIA−/− mice, modulated by enhanced proliferation and delayed differentiation. Expression analysis of cartilage tissue derived from MIA−/− mice revealed strong downregulation of nuclear RNA-binding protein 54-kDa (p54nrb), a recently described modulator of Sox9 activity. In this study, we present p54nrb as a mediator of MIA/CD-RAP to promote chondrogenesis. Taken together, our data indicate that MIA/CD-RAP is required for differentiation in cartilage potentially by regulating signaling processes during differentiation.
Collapse
Affiliation(s)
- R Schmid
- Institute of Pathology, University of Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Romero DG, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis. Physiol Genomics 2010; 42A:259-66. [PMID: 20876845 DOI: 10.1152/physiolgenomics.00098.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrinology, G. V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|
44
|
De Croos JNA, Roughley PJ, Kandel RA. Improved bioengineered cartilage tissue formation following cyclic compression is dependent on upregulation of MT1-MMP. J Orthop Res 2010; 28:921-7. [PMID: 20058268 DOI: 10.1002/jor.21064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The generation of bioengineered cartilage tissue suitable for transplantation is a potential therapy to treat damaged cartilage. We have shown previously that the physical and biomechanical properties of bioengineered cartilage can be improved by the application of 30 min of cyclic compression by a mechanism involving sequential upregulation of gene and protein levels of membrane type-1 matrix metalloproteinase (MT1-MMP) and MMP-13. In the current study, we demonstrated that MT1-MMP is critical to this response, as blocking the upregulation of MT1-MMP prevented the improvement in tissue formation. MT1-MMP seems to act by inducing tissue remodeling as evidenced by the presence of aggrecan degradation products by Western blot analysis and increased release of matrix molecules into the media. Release of these molecules was diminished when MT1-MMP upregulation was prevented. This matrix degradation was likely due to MT1-MMP, as under conditions where MMP-13 expression is maintained (stimulation in the presence of MT1-MMP siRNA) the release of these matrix molecules into the media was still prevented. It also appears that MT1-MMP does not regulate MMP-13 gene expression, as MT1-MMP-siRNA pretreatment had no effect on MMP-13 expression following mechanical stimulation. Further analysis of the anabolic genes and proteins involved in mechanically stimulated cartilage will lead to better understanding of the mechanism(s) underlying tissue formation yielding improved bioengineered cartilage.
Collapse
Affiliation(s)
- J N Amrith De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Suite 6-500, Toronto, Ontario, Canada
| | | | | |
Collapse
|
45
|
Hagedorn C, Telgmann R, Dördelmann C, Schmitz B, Hasenkamp S, Cambien F, Paul M, Brand E, Brand-Herrmann SM. Identification and Functional Analyses of Molecular Haplotypes of the Human Osteoprotegerin Gene Promoter. Arterioscler Thromb Vasc Biol 2009; 29:1638-43. [DOI: 10.1161/atvbaha.109.193532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Claudia Hagedorn
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Ralph Telgmann
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Corinna Dördelmann
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Boris Schmitz
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Sandra Hasenkamp
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - François Cambien
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Martin Paul
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Eva Brand
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| | - Stefan-Martin Brand-Herrmann
- From the Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease (C.H., R.T., C.D., B.S., S.-M.B.-H.), University of Münster, Germany; University Hospital Münster, Internal Medicine D (S.H., E.B.), Münster, Germany; INSERM, UMR S937 (F.C.), Université Pierre et Marie Curie, Paris, France; Maastricht University, Faculty of Health, Medicine, and Life Science (M.P.), Maastricht, The Netherlands
| |
Collapse
|
46
|
Tang QO, Shakib K, Heliotis M, Tsiridis E, Mantalaris A, Ripamonti U, Tsiridis E. TGF-beta3: A potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 2009; 9:689-701. [PMID: 19426117 DOI: 10.1517/14712590902936823] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND TGF-beta has been proposed to stimulate chondrogenesis through intracellular pathways involving small mothers against decapentaplegic proteins (Smads). OBJECTIVE To examine the use of exogenous TGF-beta3 to promote new hyaline cartilage formation. METHODS An overview of in vitro and in vivo evidence on the effects of TGF-beta3 on cartilage regeneration. RESULTS/CONCLUSION There is robust in vitro evidence suggesting a positive dose- and time-dependent effect of TGF-beta3 on anabolic chondrogenic gene markers such as alpha1-collagen type II and cartilage oligomeric matrix protein in human mesenchymal stem cells. TGF-beta3 cultured with silk elastin-like polymer scaffold carrier exhibits significantly increased glycosaminoglycan and collagen content. In vivo data showed that TGF-beta3 cultured with ovine mesenchymal stem cells in a chitosan scaffold stimulated the growth of hyaline cartilage that was fully integrated into host cartilage tissue of sheep. We highlight the potential for the clinical enhancement of cartilage formation through the use of TGF-beta3 with a suitable dose and scaffold carrier.
Collapse
Affiliation(s)
- Quen Oak Tang
- Leeds School of Medicine, Academic Orthopaedic Unit, Leeds General Infirmary, Leeds LS1 3EX , UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Surridge AK, Rodgers UR, Swingler TE, Davidson RK, Kevorkian L, Norton R, Waters JG, Goldring MB, Parker AE, Clark IM. Characterization and regulation of ADAMTS-16. Matrix Biol 2009; 28:416-24. [PMID: 19635554 PMCID: PMC2789966 DOI: 10.1016/j.matbio.2009.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/26/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
The ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) family includes 19 secreted proteinases in man. ADAMTS16 is a recently cloned gene expressed at high levels in fetal lung and kidney and adult brain and ovary. The ADAMTS-16 protein currently has no known function. ADAMTS16 is also expressed in human cartilage and synovium where its expression is increased in tissues from osteoarthritis patients compared to normal tissues. In this study, we ascertained that the full length ADAMTS16 mRNA was expressed in chondrocytes and cloned the appropriate cDNA. Stable over-expression of ADAMTS16 in chondrosarcoma cells led to a decrease in cell proliferation and migration, though not adhesion, as well as a decrease in the expression of matrix metalloproteinase-13 (MMP13). The transcription start point of the human ADAMTS16 gene was experimentally identified as 138 bp upstream of the translation start ATG and the basal promoter was mapped out to − 1802 bp. Overexpression of Egr1 induced ADAMTS16 promoter constructs of − 157/+138 or longer whilst Sp1 induced all ADAMTS16 promoter constructs. Transforming growth factor beta (TGFβ) stimulated expression of endogenous ADAMTS16 gene expression in chondrocyte cell lines.
Collapse
Affiliation(s)
- Alison K Surridge
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Ursula R Rodgers
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tracey E Swingler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Rose K Davidson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lara Kevorkian
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Rosemary Norton
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jasmine G Waters
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Mary B Goldring
- Hospital for Special Surgery, 535 East 70th Street, New York, USA
| | - Andrew E Parker
- Respiratory and Inflammation Department, AstraZeneca Pharmaceuticals, Cheshire, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Respiratory and Inflammation Department, AstraZeneca Pharmaceuticals, Cheshire, UK
- Corresponding author. Cellular Protease Group, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK. Tel.: +44 1603 592760; fax: +44 1603 592250.
| |
Collapse
|
48
|
Hayashida M, Okazaki K, Fukushi J, Sakamoto A, Iwamoto Y. CCAAT/enhancer binding protein beta mediates expression of matrix metalloproteinase 13 in human articular chondrocytes in inflammatory arthritis. ACTA ACUST UNITED AC 2009; 60:708-16. [PMID: 19248099 DOI: 10.1002/art.24332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To determine the function of CCAAT/enhancer binding protein beta (C/EBPbeta) in the expression of matrix metalloproteinase 13 (MMP-13) in chondrocytes in inflammatory arthritis. METHODS Cartilage obtained from patients with rheumatoid arthritis and osteoarthritis was immunostained for expression of C/EBPbeta or MMP-13. Interleukin-1beta- or tumor necrosis factor alpha (TNFalpha)-stimulated chondrocytes were subjected to Western blotting and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). MMP-13 promoter assays were conducted, and the C/EBPbeta response element was characterized by deletion and mutation analysis. C-28/I2 cells were treated with TNFalpha and subjected to chromatin immunoprecipitation (ChIP) assays. Finally, C/EBPbeta-liver-enriched activator protein (LAP) was overexpressed in C-28/I2 cells or cartilage tissues, and MMP-13 expression was analyzed. RESULTS C/EBPbeta and MMP-13 expression was colocalized in chondrocytes in arthritic cartilage. MMP-13 promoter activity was stimulated by C/EBPbeta overexpression in a dose-dependent manner. Luciferase assays revealed that a -981-bp promoter had the greatest activity, while deletion to -936 bp strongly diminished promoter activity. Luciferase activity was repressed to basal levels by mutations in potential C/EBP binding sites. The stimulatory effects of C/EBPbeta overexpression were diminished by mutation. ChIP assays revealed that TNFalpha treatment enhanced the binding of C/EBPbeta to the MMP-13 promoter. When C/EBPbeta-LAP was overexpressed in C-28/I2 cells, endogenous MMP-13 expression was stimulated up to 32-fold as detected by real-time RT-PCR. Furthermore, following adenoviral overexpression of C/EBPbeta-LAP in organ culture of articular cartilage, stimulation of MMP-13 was also detected by immunohistochemistry. CONCLUSION C/EBPbeta directly binds to the MMP-13 promoter region and stimulates the expression of MMP-13 in chondrocytes in inflammatory arthritis.
Collapse
|
49
|
Liu X, Kelm RJ, Strauch AR. Transforming growth factor beta1-mediated activation of the smooth muscle alpha-actin gene in human pulmonary myofibroblasts is inhibited by tumor necrosis factor-alpha via mitogen-activated protein kinase kinase 1-dependent induction of the Egr-1 transcriptional repressor. Mol Biol Cell 2009; 20:2174-85. [PMID: 19261809 DOI: 10.1091/mbc.e08-10-0994] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF) beta1 is a mediator of myofibroblast differentiation in healing wounds in which it activates transcription of the smooth muscle alpha-actin (SMalphaA) gene via dynamic interplay of nuclear activators and repressors. Targeting components of TGFbeta1 signaling may be an effective strategy for controlling myofibroblasts in chronic fibrotic diseases. We examined the ability of proinflammatory tumor necrosis factor (TNF)-alpha to antagonize TGFbeta1-mediated human pulmonary myofibroblast differentiation. TNF-alpha abrogated TGFbeta1-induced SMalphaA gene expression at the level of transcription without disrupting phosphorylation of regulatory Smads. Intact mitogen-activated protein kinase kinase (Mek)-extracellular signal-regulated kinase (Erk) kinase signaling was required for myofibroblast repression by TNF-alpha via induction of the early growth response factor-1 (Egr-1) DNA-binding protein. Egr-1 bound to the GC-rich SPUR activation element in the SMalphaA promoter and potently suppressed Smad3- and TGFbeta1-mediated transcription. Reduction in Smad binding to the SMalphaA promoter in TNF-alpha-treated myofibroblasts was accompanied by an increase in Egr-1 and YB-1 repressor binding, suggesting that the molecular mechanism underlying repression may involve competitive interplay between Egr-1, YB-1, and Smads. The ability of TNF-alpha to attenuate myofibroblast differentiation via modulation of a Mek1/Erk/Egr-1 regulatory axis may be useful in designing new therapeutic targets to offset destructive tissue remodeling in chronic fibrotic disease.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Physiology and Cell Biology and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
50
|
Rockel JS, Bernier SM, Leask A. Egr-1 inhibits the expression of extracellular matrix genes in chondrocytes by TNFalpha-induced MEK/ERK signalling. Arthritis Res Ther 2009; 11:R8. [PMID: 19144181 PMCID: PMC2688239 DOI: 10.1186/ar2595] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/08/2008] [Accepted: 01/14/2009] [Indexed: 12/13/2022] Open
Abstract
Introduction TNFα is increased in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. TNFα activates mitogen-activated kinase kinase (MEK)/extracellular regulated kinase (ERK) in chondrocytes; however, the overall functional relevance of MEK/ERK to TNFα-regulated gene expression in chondrocytes is unknown. Methods Chondrocytes were treated with TNFα with or without the MEK1/2 inhibitor U0126 for 24 hours. Microarray analysis and real-time PCR analyses were used to identify genes regulated by TNFα in a MEK1/2-dependent fashion. Promoter/reporter, immunoblot, and electrophoretic mobility shift assays were used to identify transcription factors whose activity in response to TNFα was MEK1/2 dependent. Decoy oligodeoxynucleotides bearing consensus transcription factor binding sites were introduced into chondrocytes to determine the functionality of our results. Results Approximately 20% of the genes regulated by TNFα in chondrocytes were sensitive to U0126. Transcript regulation of the cartilage-selective matrix genes Col2a1, Agc1 and Hapln1, and of the matrix metalloproteinase genes Mmp-12 and Mmp-9, were U0126 sensitive – whereas regulation of the inflammatory gene macrophage Csf-1 was U0126 insensitive. TNFα-induced regulation of Sox9 and NFκB activity was also U0126 insensitive. Conversely, TNFα-increased early growth response 1 (Egr-1) DNA binding was U0126 sensitive. Transfection of chondrocytes with cognate Egr-1 oligodeoxynucleotides attenuated the ability of TNFα to suppress Col2a1, Agc1 or Hapln1 mRNA expression. Conclusions Our results suggest that MEK/ERK and Egr1 are required for TNFα-regulated catabolic and anabolic genes of the cartilage extracellular matrix, and hence may represent potential targets for drug intervention in osteoarthritis or rheumatoid arthritis.
Collapse
Affiliation(s)
- Jason S Rockel
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A5C1, Canada.
| | | | | |
Collapse
|