1
|
Polara R, Ganesan R, Pitson SM, Robinson N. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ 2024; 31:1255-1266. [PMID: 39039207 PMCID: PMC11445524 DOI: 10.1038/s41418-024-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
CD47 is a ubiquitously expressed cell surface receptor, which is widely known for preventing macrophage-mediated phagocytosis by interacting with signal regulatory protein α (SIRPα) on the surface of macrophages. In addition to its role in phagocytosis, emerging studies have reported numerous noncanonical functions of CD47 that include regulation of various cellular processes such as proliferation, migration, apoptosis, differentiation, stress responses, and metabolism. Despite lacking an extensive cytoplasmic signaling domain, CD47 binds to several cytoplasmic proteins, particularly upon engaging with its secreted matricellular ligand, thrombospondin 1. Indeed, the regulatory functions of CD47 are greatly influenced by its interacting partners. These interactions are often cell- and context-specific, adding a further level of complexity. This review addresses the downstream cell-intrinsic signaling pathways regulated by CD47 in various cell types and environments. Some of the key pathways modulated by this receptor include the PI3K/AKT, MAPK/ERK, and nitric oxide signaling pathways, as well as those implicated in glucose, lipid, and mitochondrial metabolism. These pathways play vital roles in maintaining tissue homeostasis, highlighting the importance of understanding the phagocytosis-independent functions of CD47. Given that CD47 expression is dysregulated in a variety of cancers, improving our understanding of the cell-intrinsic signals regulated by this molecule will help advance the development of CD47-targeted therapies.
Collapse
Affiliation(s)
- Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Institute for Molecular Immunology, CECAD Research Center, University Hospital Cologne, Cologne, Germany
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Liu F, Wang G, Zhao L, Chen G, Dong L, Li Q, Zhu D. Toosendanin Induces Lung Squamous Cell Carcinoma Cell Apoptosis and Inhibits Tumor Progression via the BNIP3/AMPK Signaling Pathway. Adv Biol (Weinh) 2024; 8:e2300610. [PMID: 38773915 DOI: 10.1002/adbi.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Indexed: 05/24/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common type of non-small cell lung cancer. Toosendanin can target critical cancer cell survival and proliferation. However, the function of toosendanin in LUSC is limited. Cancer cell proliferative capacity is detected using cell morphology, colony formation, and flow cytometry. The invasiveness of the cells is detected by a Transwell assay, western blotting, and RT-qPCR. Nude mice are injected with H226 (1×106) and received an intraperitoneal injection of toosendanin every 2 days for 21 days. RNA sequence transcriptome analysis is performed on toosendanin-treated cells to identify target genes and signaling pathways. With increasing concentrations of toosendanin, the rate of cell proliferation decreases and apoptotic cells increases. The number of migrated cells significantly reduces and epithelial-mesenchymal transition is reversed. Injection of toosendanin in nude mice leads to a reduction in tumor volume, weight, and the number of metastatic tumors. Furthermore, KEGG shows that genes related to the AMPK pathway are highly enriched. BNIP3 is the most differentially expressed gene, and its expression along with phosphorylated-AMPK significantly increases in toosendanin-treated cells. Toosendanin exerts anticancer effects, induces apoptosis in LUSC cells, and inhibits tumor progression via the BNIP3/AMPK signaling pathway.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- AMP-Activated Protein Kinases/metabolism
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Drugs, Chinese Herbal/pharmacology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Fabing Liu
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liming Zhao
- Department of Emergency, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Guohan Chen
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lin Dong
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qinchuan Li
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dongyi Zhu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| |
Collapse
|
4
|
Xu L, Wang X, Zhang T, Meng X, Zhao W, Pi C, Yang YG. Expression of a mutant CD47 protects against phagocytosis without inducing cell death or inhibiting angiogenesis. Cell Rep Med 2024; 5:101450. [PMID: 38508139 PMCID: PMC10983038 DOI: 10.1016/j.xcrm.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Chenchen Pi
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China; International Center of Future Science, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zhang T, Wang F, Xu L, Yang YG. Structural-functional diversity of CD47 proteoforms. Front Immunol 2024; 15:1329562. [PMID: 38426113 PMCID: PMC10902115 DOI: 10.3389/fimmu.2024.1329562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
The ubiquitously expressed transmembrane glycoprotein CD47 participates in various important physiological cell functions, including phagocytosis, apoptosis, proliferation, adhesion, and migration, through interactions with its ligands, including the inhibitory receptor signal regulatory protein α (SIRPα), secreted glycoprotein thrombospondin-1 (TSP-1), and integrins. Elevated expression of CD47 is observed in a wide range of cancer cells as a mechanism for evading the immune system, blocking the interaction between the CD47 and SIRPα is the most advanced and promising therapeutic approach currently investigated in multiple clinical trials. The widely held view that a single type of CD47 protein acts through membrane interactions has been challenged by the discovery of a large cohort of CD47 proteins with cell-, tissue-, and temporal-specific expression and functional profiles. These profiles have been derived from a single gene through alternative splicing and post-translational modifications, such as glycosylation, pyroglutamate modification, glycosaminoglycan modification, and proteolytic cleavage and, to some extent, via specific CD47 clustering in aging and tumor cells and the regulation of its subcellular localization by a pre-translational modification, alternative cleavage and polyadenylation (APA). This review explores the origins and molecular properties of CD47 proteoforms and their roles under physiological and pathological conditions, mentioning the new methods to improve the response to the therapeutic inhibition of CD47-SIRPα immune checkpoints, contributing to the understanding of CD47 proteoform diversity and identification of novel clinical targets and immune-related therapeutic candidates.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Feng Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Lau APY, Khavkine Binstock SS, Thu KL. CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:5229. [PMID: 37958404 PMCID: PMC10649163 DOI: 10.3390/cancers15215229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.
Collapse
Affiliation(s)
- Asa P. Y. Lau
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Sharon S. Khavkine Binstock
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
8
|
Montero E, Isenberg JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era. Cancer Immunol Immunother 2023; 72:2879-2888. [PMID: 37217603 PMCID: PMC10412679 DOI: 10.1007/s00262-023-03465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the ligand-receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mitochondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific targeting and intelligent therapeutic effect.
Collapse
Affiliation(s)
- Enrique Montero
- Department of Diabetes Immunology, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
9
|
Zhang X, Wen Z, Wang Q, Ren L, Zhao S. A novel stratification framework based on anoikis-related genes for predicting the prognosis in patients with osteosarcoma. Front Immunol 2023; 14:1199869. [PMID: 37575253 PMCID: PMC10413143 DOI: 10.3389/fimmu.2023.1199869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Background Anoikis resistance is a prerequisite for the successful development of osteosarcoma (OS) metastases, whether the expression of anoikis-related genes (ARGs) correlates with OS prognosis remains unclear. This study aimed to investigate the feasibility of using ARGs as prognostic tools for the risk stratification of OS. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provided transcriptome information relevant to OS. The GeneCards database was used to identify ARGs. Differentially expressed ARGs (DEARGs) were identified by overlapping ARGs with common differentially expressed genes (DEGs) between OS and normal samples from the GSE16088, GSE19276, and GSE99671 datasets. Anoikis-related clusters of patients were obtained by consistent clustering, and gene set variation analysis (GSVA) of the different clusters was completed. Next, a risk model was created using Cox regression analyses. Risk scores and clinical features were assessed for independent prognostic values, and a nomogram model was constructed. Subsequently, a functional enrichment analysis of the high- and low-risk groups was performed. In addition, the immunological characteristics of OS samples were compared between the high- and low-risk groups, and their sensitivity to therapeutic agents was explored. Results Seven DEARGs between OS and normal samples were obtained by intersecting 501 ARGs with 68 common DEGs. BNIP3 and CXCL12 were significantly differentially expressed between both clusters (P<0.05) and were identified as prognosis-related genes. The risk model showed that the risk score and tumor metastasis were independent prognostic factors of patients with OS. A nomogram combining risk score and tumor metastasis effectively predicted the prognosis. In addition, patients in the high-risk group had low immune scores and high tumor purity. The levels of immune cell infiltration, expression of human leukocyte antigen (HLA) genes, immune response gene sets, and immune checkpoints were lower in the high-risk group than those in the low-risk group. The low-risk group was sensitive to the immune checkpoint PD-1 inhibitor, and the high-risk group exhibited lower inhibitory concentration values by 50% for 24 drugs, including AG.014699, AMG.706, and AZD6482. Conclusion The prognostic stratification framework of patients with OS based on ARGs, such as BNIP3 and CXCL12, may lead to more efficient clinical management.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Nutrition, College of Public Health of Sun Yat-Sen University, Guangzhou, China
| | - Zhenxing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Qi Wang
- Department of Oncology, Nanyang Central Hospital, Nanyang, China
| | - Lijuan Ren
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shengli Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
10
|
Zhao Y, Fang L, Guo P, Fang Y, Wu J. A MD Simulation Prediction for Regulation of N-Terminal Modification on Binding of CD47 to CD172a in a Force-Dependent Manner. Molecules 2023; 28:molecules28104224. [PMID: 37241964 DOI: 10.3390/molecules28104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer cells can evade immune surveillance through binding of its transmembrane receptor CD47 to CD172a on myeloid cells. CD47 is recognized as a promising immune checkpoint for cancer immunotherapy inhibiting macrophage phagocytosis. N-terminal post-translated modification (PTM) via glutaminyl cyclase is a landmark event in CD47 function maturation, but the molecular mechanism underlying the mechano-chemical regulation of the modification on CD47/CD172a remains unclear. Here, we performed so-called "ramp-clamp" steered molecular dynamics (SMD) simulations, and found that the N-terminal PTM enhanced interaction of CD172a with CD47 by inducing a dynamics-driven contraction of the binding pocket of the bound CD172a, an additional constraint on CYS15 on CD47 significantly improved the tensile strength of the complex with or without PTM, and a catch bond phenomenon would occur in complex dissociation under tensile force of 25 pN in a PTM-independent manner too. The residues GLN52 and SER66 on CD172a reinforced the H-bonding with their partners on CD47 in responding to PTM, while ARG69 on CD172 with its partner on CD47 might be crucial in the structural stability of the complex. This work might serve as molecular basis for the PTM-induced function improvement of CD47, should be helpful for deeply understanding CD47-relevant immune response and cancer development, and provides a novel insight in developing of new strategies of immunotherapy targeting this molecule interaction.
Collapse
Affiliation(s)
- Yang Zhao
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liping Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pei Guo
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Stirling ER, Terabe M, Wilson AS, Kooshki M, Yamaleyeva LM, Alexander-Miller MA, Zhang W, Miller LD, Triozzi PL, Soto-Pantoja DR. Targeting the CD47/thrombospondin-1 signaling axis regulates immune cell bioenergetics in the tumor microenvironment to potentiate antitumor immune response. J Immunother Cancer 2022; 10:e004712. [PMID: 36418073 PMCID: PMC9685258 DOI: 10.1136/jitc-2022-004712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics. METHODS A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden. Cytotoxic (CD8+) T cells from Pmel-1 transgenic mice were used for T cell activation, cytotoxic T lymphocyte, and cellular bioenergetic assays. Single-cell RNA-sequencing, ELISA, and flow cytometry was performed on peripheral blood mononuclear cells and plasma of melanoma patients receiving anti-PD-1 therapy to examine CD47/TSP1 expression. RESULTS Human malignant melanoma tissue had increased CD47 and TSP1 expression within the tumor microenvironment compared with benign tissue. Due to the negative implications CD47/TSP1 can have on antitumor immune responses, we targeted CD47 in a melanoma model and observed a decrease in tumor burden due to increased tumor oxygen saturation and granzyme B secreting CD8+ T cells compared with wild-type tumors. Additionally, Pmel-1 CD8+ T cells exposed to TSP1 had reduced activation, proliferation, and effector function against B16 melanoma cells. Targeting CD47 allowed CD8+ T cells to overcome this TSP1 interaction to sustain these functions. TSP1 exposed CD8+ T cells have a decreased rate of glycolysis; however, targeting CD47 restored glycolysis when CD8+ T cells were exposed to TSP1, suggesting CD47 mediated metabolic reprogramming of T cells. Additionally, non-responding patients to anti-PD-1 therapy had increased T cells expressing CD47 and circulating levels of TSP1 compared with responding patients. Since CD47/TSP1 signaling axis negatively impacts CD8+ T cells and non-responding patients to anti-PD-1 therapy have increased CD47/TSP1 expression, we targeted CD47 in combination with anti-PD-1 in a melanoma model. Targeting CD47 in combination with anti-PD-1 treatment further decreased tumor burden compared with monotherapy and control. CONCLUSION CD47/TSP1 expression could serve as a marker to predict patient response to immune checkpoint blockade treatment, and targeting this pathway may preserve T cell activation, proliferation, effector function, and bioenergetics to reduce tumor burden as a monotherapy or in combination with anti-PD-1.
Collapse
Affiliation(s)
- Elizabeth R Stirling
- Department of Cancer Biology, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
| | - Masaki Terabe
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
| | - Mitra Kooshki
- Department of Hematology & Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiation Oncology, Wake Forest University School of Medicine, WInston-Salem, North Carolina, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
| | - Martha A Alexander-Miller
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
- Atrium Health Wake Forest Baptist Medical Center, Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
- Atrium Health Wake Forest Baptist Medical Center, Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Pierre L Triozzi
- Department of Cancer Biology, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
- Department of Hematology & Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Atrium Health Wake Forest Baptist Medical Center, Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
- Department of Surgery, Wake Forest Univerisity School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiation Oncology, Wake Forest University School of Medicine, WInston-Salem, North Carolina, USA
- Atrium Health Wake Forest Baptist Medical Center, Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Nath PR, Pal-Nath D, Kaur S, Gangaplara A, Meyer TJ, Cam MC, Roberts DD. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022; 11:2111909. [PMID: 36105746 PMCID: PMC9467551 DOI: 10.1080/2162402x.2022.2111909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.
Collapse
Affiliation(s)
- Pulak R. Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical and Translational Immunology Unit, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arunkumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Zhao H, Song S, Ma J, Yan Z, Xie H, Feng Y, Che S. CD47 as a promising therapeutic target in oncology. Front Immunol 2022; 13:757480. [PMID: 36081498 PMCID: PMC9446754 DOI: 10.3389/fimmu.2022.757480] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer.
Collapse
Affiliation(s)
- Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuangshuang Song
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junwei Ma
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiyong Yan
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shusheng Che
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shusheng Che,
| |
Collapse
|
14
|
van Duijn A, Van der Burg SH, Scheeren FA. CD47/SIRPα axis: bridging innate and adaptive immunity. J Immunother Cancer 2022; 10:jitc-2022-004589. [PMID: 35831032 PMCID: PMC9280883 DOI: 10.1136/jitc-2022-004589] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloid immune cells are frequently present in the tumor environment, and although they can positively contribute to tumor control they often negatively impact anticancer immune responses. One way of inhibiting the positive contributions of myeloid cells is by signaling through the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) axis. The SIRPα receptor is expressed on myeloid cells and is an inhibitory immune receptor that, upon binding to CD47 protein, delivers a ‘don’t eat me’ signal. As CD47 is often overexpressed on cancer cells, treatments targeting CD47/SIRPα have been under active investigation and are currently being tested in clinical settings. Interestingly, the CD47/SIRPα axis is also involved in T cell-mediated antitumor responses. In this perspective we provide an overview of recent studies showing how therapeutic blockade of the CD47/SIRPα axis improves the adaptive immune response. Furthermore, we discuss the interconnection between the myeloid CD47/SIRPα axis and adaptive T cell responses as well as the potential therapeutic role of the CD47/SIRPα axis in tumors with acquired resistance to the classic immunotherapy through major histocompatibility complex downregulation. Altogether this review provides a profound insight for the optimal exploitation of CD47/SIRPα immune checkpoint therapy.
Collapse
Affiliation(s)
- Anneloes van Duijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Deng Q, Li X, Fang C, Li X, Zhang J, Xi Q, Li Y, Zhang R. Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int Immunopharmacol 2022; 107:108695. [PMID: 35305385 DOI: 10.1016/j.intimp.2022.108695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Cordycepin, also known as 3'-deoxyadenosine, is an extract from Cordyceps militaris, which has been reported as an anti-inflammation and anti-tumor substance without toxicity. However, the pharmacological mechanism of Cordycepin on tumor immunity under its anti-tumor effect has not yet been elucidated. Herein, we investigated Cordycepin's anti-tumor effect on colon cancer both in vitro and in vivo. Our results show that Cordycepin can inhibit growth, migration, and promoted apoptosis of CT26 cells in a dose-dependent manner. Cordycepin suppressed the growth of colon cancer in mouse subcutaneous tumor model by modulating tumor immune microenvironment where CD4+ T, CD8+ T, M1 type macrophages, NK cells were up-regulated. Further investigations revealed that Cordycepin inhibited phagocytosis immune checkpoint CD47 protein expression by reducing BNIP3 expression. In addition, Cordycepin also inhibited the expression of TSP1 in tumor cells and Jurkat cells, which may reduce the binding of TSP1 to CD47, thereby reducing T cell apoptosis and allowing more T cells to infiltrate into tumors. And in vitro co-culture experiments proved that Cordycepin could enhance the phagocytosis of CT26 cells by macrophages. These results explained the underlying mechanism of the anti-tumor immunity of Cordycepin. In conclusion, our results identify a novel mechanism by which Cordycepin inhibits phagocytosis immune checkpoint CD47 in tumor cells to promote tumor cells phagocytosis of macrophages. Cordycepin may be able to serve as a more effective immunotherapeutic drug against colon cancer.
Collapse
Affiliation(s)
- Qifeng Deng
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinrui Li
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunqiang Fang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Li
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Xi
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
16
|
Sharp RC, Brown ME, Shapiro MR, Posgai AL, Brusko TM. The Immunoregulatory Role of the Signal Regulatory Protein Family and CD47 Signaling Pathway in Type 1 Diabetes. Front Immunol 2021; 12:739048. [PMID: 34603322 PMCID: PMC8481641 DOI: 10.3389/fimmu.2021.739048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic β-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic β-cells could potentially promote T1D development. Major Conclusions We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced β-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- CD47 Antigen/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Genetic Association Studies
- Humans
- Immunotherapy
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Polymorphism, Genetic
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Robert C. Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
18
|
Gao L, Yang TT, Zhang JS, Liu HX, Cai DC, Wang LT, Wang J, Li XW, Gao K, Zhang SY, Cao YJ, Ji XX, Yang MM, Han B, Wang S, He L, Nie XY, Liu DM, Meng G, He CY. THBS1/CD47 Modulates the Interaction of γ-Catenin With E-Cadherin and Participates in Epithelial-Mesenchymal Transformation in Lipid Nephrotoxicity. Front Cell Dev Biol 2021; 8:601521. [PMID: 33681182 PMCID: PMC7930485 DOI: 10.3389/fcell.2020.601521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Hyperlipidemia, an important risk factor for cardiovascular and end-stage renal diseases, often aggravates renal injury and compromises kidney function. Here, histological analysis of human kidney samples revealed that high lipid levels induced the development of renal fibrosis. To elucidate the mechanism underlying lipid nephrotoxicity, we used two types of mouse models (Apoe−/− and C57BL/6 mice fed a 45 and 60% high-fat diet, respectively). Histological analysis of kidney tissues revealed high-lipid-induced renal fibrosis and inflammation; this was confirmed by examining fibrotic and inflammatory marker expression using Western blotting and real-time polymerase chain reaction. Oxidized low-density lipoprotein (OX-LDL) significantly induced the fibrotic response in HK-2 tubular epithelial cells. RNA-sequencing and Gene Ontology analysis of differentially expressed mRNAs in OX-LDL-treated HK-2 tubular epithelial cells and real-time PCR validation in Apoe−/− mice showed that the expression of thrombospondin-1 (THBS1) in the high-fat group was significantly higher than that of the other top known genes, along with significant overexpression of its receptor CD47. THBS1 knockdown cells verified its relation to OX-LDL-induced fibrosis and inflammation. Liquid chromatography tandem mass spectrometry and STRING functional protein association network analyses predicted that THBS1/CD47 modulated the interaction between γ-catenin and E-cadherin and was involved in epithelial–mesenchymal transition, which was supported by immunoprecipitation and immunohistochemistry. CD47 downregulation following transfection with small-hairpin RNA in OX-LDL-treated tubular epithelial cells and treatment with anti-CD47 antibody restored the expression of E-cadherin and attenuated renal injury, fibrosis, and inflammatory response in OX-LDL-treated cells and in type 2 diabetes mellitus. These findings indicate that CD47 may serve as a potential therapeutic target in long-term lipid-induced kidney injury.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ting-Ting Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jun-Sheng Zhang
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Xia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dong-Cheng Cai
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Lin-Tao Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xin-Wei Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Kun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Su-Ya Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yu-Jia Cao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Xia Ji
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Yang
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Biao Han
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yan Nie
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dan-Mei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Gang Meng
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Chao-Yong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Leclair P, Lim CJ. CD47 (Cluster of differentiation 47): an anti-phagocytic receptor with a multitude of signaling functions. Anim Cells Syst (Seoul) 2020; 24:243-252. [PMID: 33224442 PMCID: PMC7654641 DOI: 10.1080/19768354.2020.1818618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD47 is a tumor-associated antigen best known for its ability to bind counter-receptors on the surface of professional phagocytes as an immune-evasion strategy. Recently, CD47 has been shown to play a role as a signaling receptor, involving a number of cell physiological processes. This review provides a comprehensive survey of the signaling pathways triggered by CD47 ligand-mediated cell death in tumor cells. Such an understanding should lead to improvement of CD47-targeted anti-tumor therapeutics able to both neutralize the anti-phagocytic role and trigger autonomous tumor cell death.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, and, Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, and, Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
20
|
Targeting chronic lymphocytic leukemia with N-methylated thrombospondin-1-derived peptides overcomes drug resistance. Blood Adv 2020; 3:2920-2933. [PMID: 31648314 DOI: 10.1182/bloodadvances.2019000350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia in Western countries, is a very heterogeneous disease characterized by a peripheral accumulation of abnormal CD5+ B lymphocytes in the immune system. Despite new therapeutic developments, there remains an unmet medical need for CLL. Here, we demonstrate that the use of N-methylated thrombospondin-1 (TSP-1)-derived peptides is an efficient way to kill the malignant CLL cells, including those from high-risk individuals with poor clinical prognosis, del11q, del17p, 2p gain, or complex karyotype. PKT16, our hit N-methylated peptide, triggers the elimination of the leukemic cells, sparing the nontumor cells, including the hematopoietic precursors, and reduces the in vivo tumor burden of a CLL-xenograft mice model. A complementary analysis underscores the improved cytotoxic efficiency of PKT16 compared with the previously described TSP-1-derived probes, such as PKHB1. PKT16 elicits an original caspase-independent programmed necrotic mode of cell death, different from necroptosis or ferroptosis, implicating an intracellular Ca2+ deregulation that provokes mitochondrial damage, cell cycle arrest, and the specific death of the malignant CLL cells. The activation of the Gαi proteins and the subsequent drop of cyclic adenosine monophosphate levels and protein kinase A activity regulate this cytotoxic cascade. Remarkably, PKT16 induces the molecular hallmarks of immunogenic cell death, as defined by the calreticulin plasma membrane exposure and the release of adenosine triphosphate and high-mobility group box 1 protein from the dying CLL cells. Thus, PKT16 appears to be able to stimulate an anticancer in vivo immune response. Collectively, our results pave the way toward the development of an efficient strategy against CLL.
Collapse
|
21
|
Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A, Chang H. Role of CD47 in Hematological Malignancies. J Hematol Oncol 2020; 13:96. [PMID: 32677994 PMCID: PMC7364564 DOI: 10.1186/s13045-020-00930-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
CD47, or integrin-associated protein, is a cell surface ligand expressed in low levels by nearly all cells of the body. It plays an integral role in various immune responses as well as autoimmunity, by sending a potent "don't eat me" signal to prevent phagocytosis. A growing body of evidence demonstrates that CD47 is overexpressed in various hematological malignancies and its interaction with SIRPα on the phagocytic cells prevents phagocytosis of cancer cells. Additionally, it is expressed by different cell types in the tumor microenvironment and is required for establishing tumor metastasis. Overexpression of CD47 is thus often associated with poor clinical outcomes. CD47 has emerged as a potential therapeutic target and is being investigated in various preclinical studies as well as clinical trials to prove its safety and efficacy in treating hematological neoplasms. This review focuses on different therapeutic mechanisms to target CD47, either alone or in combination with other cell surface markers, and its pivotal role in impairing tumor growth and metastatic spread of various types of hematological malignancies.
Collapse
Affiliation(s)
- Entsar Eladl
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Rosemarie Tremblay-LeMay
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Nasrin Rastgoo
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Rumina Musani
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
22
|
Ramchandani D, Mittal V. Thrombospondin in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:133-147. [PMID: 32845506 DOI: 10.1007/978-3-030-48457-6_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombospondins (TSPs) are multifaceted proteins that contribute to physiologic as well as pathologic conditions. Due to their multiple receptor-binding domains, TSPs display both oncogenic and tumor-suppressive qualities and are thus essential components of the extracellular matrix. Known for their antiangiogenic capacity, TSPs are an important component of the tumor microenvironment. The N- and C-terminal domains of TSP are, respectively, involved in cell adhesion and spreading, an important feature of wound healing as well as cancer cell migration. Previously known for the activation of TGF-β to promote tumor growth and inflammation, TSP-1 has recently been found to be transcriptionally induced by TGF-β, implying the presence of a possible feedback loop. TSP-1 is an endogenous inhibitor of T cells and also mediates its immunosuppressive effects via induction of Tregs. Given the diverse roles of TSPs in the tumor microenvironment, many therapeutic strategies have utilized TSP-mimetic peptides or antibody blockade as anti-metastatic approaches. This chapter discusses the diverse structural domains, functional implications, and anti-metastatic therapies in the context of the role of TSP in the tumor microenvironment.
Collapse
Affiliation(s)
- Divya Ramchandani
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Araujo TT, Barbosa Silva Pereira HA, Dionizio A, Sanchez CDC, de Souza Carvalho T, da Silva Fernandes M, Rabelo Buzalaf MA. Changes in energy metabolism induced by fluoride: Insights from inside the mitochondria. CHEMOSPHERE 2019; 236:124357. [PMID: 31325826 DOI: 10.1016/j.chemosphere.2019.124357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms involved in changes in energy metabolism caused by excessive exposure to fluoride (F) are not completely understood. The present study employed proteomic tools to investigate the molecular mechanisms underlying the dose- and time-dependency of the effects of F in the rat liver mitochondria. Thirty-six male Wistar rats received water containing 0, 15 or 50 mgF/L (as NaF) for 20 or 60 days. Rat liver mitochondria were isolated and the proteome profiles were examined using label-free quantitative nLC-MS/MS. PLGS software was used to detect changes in protein expression among the different groups. The bioinformatics analysis was done using the software CYTOSCAPE® 3.0.7 (Java®) with the aid of ClueGo plugin. The dose of 15 mgF/L, when administered for 20 days, reduced glycolysis, which was counterbalanced by an increase in other energetic pathways. At 60 days, however, an increase in all energy pathways was observed. On the other hand, the dose of 50 mgF/L, when administered for 20 days, reduced the enzymes involved in all energetic pathways, indicating a lower rate of energy production, with less generation of ROS and consequent reduction of antioxidant enzymes. However, when the 50 mgF/L dose was administered for 60 days, an increase in energy metabolism was seen but in general no changes were observed in the antioxidant enzymes. Except for the group treated with 50 mgF/L for 20 days, all the other groups had alterations in proteins in attempt to maintain calcium homeostasis and avoid apoptosis. The results suggest that the organism seems to adapt to the effects of F over time, activating pathways to reduce the toxicity of this ion. Ultimately, our findings corroborate the safety of the use of fluoride for caries control.
Collapse
Affiliation(s)
- Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Heloisa Aparecida Barbosa Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Mileni da Silva Fernandes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
24
|
Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunol Res 2019; 7:1547-1561. [PMID: 31362997 DOI: 10.1158/2326-6066.cir-18-0367] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
Abstract
Elevated CD47 expression in some cancers is associated with decreased survival and limited clearance by phagocytes expressing the CD47 counterreceptor SIRPα. In contrast, elevated CD47 mRNA expression in human melanomas was associated with improved survival. Gene-expression data were analyzed to determine a potential mechanism for this apparent protective function and suggested that high CD47 expression increases recruitment of natural killer (NK) cells into the tumor microenvironment. The CD47 ligand thrombospondin-1 inhibited NK cell proliferation and CD69 expression in vitro Cd47 -/- NK cells correspondingly displayed augmented effector phenotypes, indicating an inhibitory function of CD47 on NK cells. Treating human NK cells with a CD47 antibody that blocks thrombospondin-1 binding abrogated its inhibitory effect on NK cell proliferation. Similarly, treating wild-type mice with a CD47 antibody that blocks thrombospondin-1 binding delayed B16 melanoma growth, associating with increased NK cell recruitment and increased granzyme B and interferon-γ levels in intratumoral NK but not CD8+ T cells. However, B16 melanomas grew faster in Cd47 -/- than in wild-type mice. Melanoma-bearing Cd47 -/- mice exhibited decreased splenic NK cell numbers, with impaired effector protein expression and elevated exhaustion markers. Proapoptotic gene expression in Cd47-/- NK cells was associated with stress-mediated increases in mitochondrial proton leak, reactive oxygen species, and apoptosis. Global gene-expression profiling in NK cells from tumor-bearing mice identified CD47-dependent transcriptional responses that regulate systemic NK activation and exhaustion. Therefore, CD47 positively and negatively regulates NK cell function, and therapeutic antibodies that block inhibitory CD47 signaling can enhance NK immune surveillance of melanomas.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, Maryland
| | - Anthony L Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Leclair P, Liu CC, Monajemi M, Reid GS, Sly LM, Lim CJ. CD47-ligation induced cell death in T-acute lymphoblastic leukemia. Cell Death Dis 2018; 9:544. [PMID: 29748606 PMCID: PMC5945676 DOI: 10.1038/s41419-018-0601-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Chi-Chao Liu
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Mahdis Monajemi
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Gregor S Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
- Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Laura M Sly
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4.
- Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
26
|
Romano E, Rufo N, Korf H, Mathieu C, Garg AD, Agostinis P. BNIP3 modulates the interface between B16-F10 melanoma cells and immune cells. Oncotarget 2018; 9:17631-17644. [PMID: 29707136 PMCID: PMC5915144 DOI: 10.18632/oncotarget.24815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/27/2018] [Indexed: 01/10/2023] Open
Abstract
The hypoxia responsive protein BNIP3, plays an important role in promoting cell death and/or autophagy, ultimately resulting in a cancer type-dependent, tumour-enhancer or tumour-suppressor activity. We previously reported that in melanoma cells, BNIP3 regulates cellular morphology, mitochondrial clearance, cellular viability and maintains protein expression of CD47, a pro-cancerous, immunosuppressive 'don't eat me' signal. Surface exposed CD47 is often up-regulated by cancer cells to avoid clearance by phagocytes and to suppress immunogenic cell death (ICD) elicited by anticancer therapies. However, whether melanoma-associated BNIP3 modulates CD47-associated immunological effects or ICD has not been explored properly. To this end, we evaluated the impact of the genetic ablation of BNIP3 (i.e. BNIP3KD) in melanoma cells, on macrophage-based phagocytosis, polarization and chemotaxis. Additionally, we tested its effects on crucial determinants of chemotherapy-induced ICD (i.e. danger signals), as well as in vivo anticancer vaccination effect. Interestingly, loss of BNIP3 reduced the expression of CD47 both in normoxic and hypoxic conditions while macrophage phagocytosis and chemotaxis were accentuated only when BNIP3KD melanoma cells were exposed to hypoxia. Moreover, when exposed to the ICD inducer mitoxantrone, the loss of melanoma cell-associated BNIP3 did not alter apoptosis induction, but significantly prevented ATP secretion and reduced phagocytic clearance of dying cells. In line with this, prophylactic vaccination experiments showed that the loss of BNIP3 tends to increase the intrinsic resistance of B16-F10 melanoma cells to ICD-associated anticancer vaccination effect in vivo. Thus, normoxic vs. hypoxic and live vs. dying cell contexts influence the ultimate immunomodulatory roles of melanoma cell-associated BNIP3.
Collapse
Affiliation(s)
- Erminia Romano
- Laboratory for Cell Death Research and Therapy (CDRT), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nicole Rufo
- Laboratory for Cell Death Research and Therapy (CDRT), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Death Research and Therapy (CDRT), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy (CDRT), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
28
|
Zhang J, Zhang D, Yan T, Jiang X, Zhang C, Zhao L, Li L, Tang D, Zhang Q, Jia J, Zhang J, Huang Y. BNIP3 promotes the motility and migration of keratinocyte under hypoxia. Exp Dermatol 2017; 26:416-422. [PMID: 27783443 DOI: 10.1111/exd.13248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Junhui Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Dongxia Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Tiantian Yan
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Xupin Jiang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Can Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Liping Zhao
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Lingfei Li
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Di Tang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Qiong Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Jiezhi Jia
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Jiaping Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yuesheng Huang
- Institute of Burn Research; State Key Laboratory of Trauma, Burns and Combined Injury; Southwest Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
29
|
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 2016; 428:3305-3324. [PMID: 27345664 DOI: 10.1016/j.jmb.2016.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Glycoconjugates, glycans, carbohydrates, and sugars: these terms encompass a class of biomolecules that are diverse in both form and function ranging from free oligosaccharides, glycoproteins, and proteoglycans, to glycolipids that make up a complex glycan code that impacts normal physiology and disease. Recent data suggest that one mechanism by which glycoconjugates impact physiology is through the regulation of the process of autophagy. Autophagy is a degradative pathway necessary for differentiation, organism development, and the maintenance of cell and tissue homeostasis. In this review, we will highlight what is known about the regulation of autophagy by glycoconjugates focusing on signaling mechanisms from the extracellular surface and the regulatory roles of intracellular glycans. Glycan signaling from the extracellular matrix converges on "master" regulators of autophagy including AMPK and mTORC1, thus impacting their localization, activity, and/or expression. Within the intracellular milieu, gangliosides are constituents of the autophagosome membrane, a subset of proteins composing the autophagic machinery are regulated by glycosylation, and oligosaccharide exposure in the cytosol triggers an autophagic response. The examples discussed provide some mechanistic insights into glycan regulation of autophagy and reveal areas for future investigation.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
30
|
Liu KE, Frazier WA. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS One 2015; 10:e0129667. [PMID: 26102349 PMCID: PMC4477977 DOI: 10.1371/journal.pone.0129667] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022] Open
Abstract
BNIP3 is a dual function protein, able to activate autophagy and induce cell death. Upon expression of BNIP3, which is upregulated by hypoxia, the protein induces mitochondrial dysfunction, often leading to cell death. However, some highly respiring cells and cancer cells tolerate BNIP3 expression, suggesting that a yet unknown mechanism exists to restrain the lethal effects of BNIP3 on mitochondria. Here we present evidence that BNIP3 undergoes several phosphorylation events at its C-terminus, adjacent to the transmembrane domain. Phosphorylation at these residues inhibits BNIP3-induced mitochondrial damage, preventing a loss of mitochondrial mass and mitochondrial membrane potential, as well as preventing an increase in reactive oxygen species. This decrease in mitochondrial damage, as well as the reduction of cell death upon C-terminal BNIP3 phosphorylation, can be explained by a diminished interaction between BNIP3 and OPA1, a key regulator of mitochondrial fusion and mitochondrial inner membrane structure. Importantly, phosphorylation of these C-terminal BNIP3 residues blocks cell death without preventing autophagy, providing evidence that the two functional roles of BNIP3 can be regulated independently. These findings establish phosphorylation as a switch to determine the pro-survival and pro-death effects of the protein. Our findings also suggest a novel target for the regulation of these activities in transformed cells where BNIP3 is often highly expressed.
Collapse
Affiliation(s)
- Katherine E. Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Berkovits BD, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature 2015; 522:363-7. [PMID: 25896326 PMCID: PMC4697748 DOI: 10.1038/nature14321] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 02/10/2015] [Indexed: 12/24/2022]
Abstract
About half of human genes use alternative cleavage and polyadenylation (ApA) to generate mRNA transcripts that differ in the length of their 3' untranslated regions (3'UTRs) while producing the same protein 1–3. Here we show in human cell lines that alternative 3' UTRs differentially regulate the localization of membrane proteins. The long 3'UTR of CD47 enables efficient cell surface expression of CD47 protein, whereas the short 3'UTR primarily localizes CD47 protein to the endoplasmic reticulum. CD47 protein localization occurs post-translationally and independently of RNA localization. In our model of 3' UTR-dependent protein localization, the long 3' UTR of CD47 acts as a scaffold to recruit a protein complex containing the RNA-binding protein HuR (also known as ELAVL1) and SET4 to the site of translation. This facilitates interaction of SET with the newly translated cytoplasmic domains of CD47 and results in subsequent translocation of CD47 to the plasma membrane via activated RAC1 5. We also show that CD47 protein has different functions depending on whether it was generated by the short or long 3'UTR isoforms. Thus, ApA contributes to the functional diversity of the proteome without changing the amino acid sequence. 3' UTR-dependent protein localization has the potential to be a widespread trafficking mechanism for membrane proteins because HuR binds to thousands of mRNAs6–9, and we show that the long 3' UTRs of CD44, ITGA1 and TNFRSF13C, which are bound by HuR, increase surface protein expression compared to their corresponding short 3' UTRs. We propose that during translation the scaffold function of 3' UTRs facilitates binding of proteins to nascent proteins to direct their transport or function—and that this role of 3' UTRs can be regulated by ApA.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, USA
| |
Collapse
|
32
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
33
|
Structure, function, and epigenetic regulation of BNIP3: a pathophysiological relevance. Mol Biol Rep 2014; 41:7705-14. [PMID: 25096512 DOI: 10.1007/s11033-014-3664-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/27/2014] [Indexed: 12/31/2022]
Abstract
BCL-2 [B-cell leukemia/lymphoma 2]/adenovirus E1B 19KD interacting protein 3 (BNIP3) is an atypical BH3 domain only containing member of Bcl2 family of proteins. BNIP3 is known to be involved in various cellular processes depending on the cell type and conditions and also shown to play a role in various disease conditions including myocardial ischemia, autophagy and apoptosis. Though its role in autophagy and its pro-death activity have been reported in various studies, recent findings have shown its contradictory role in the regulation of these cellular processes. The various studies have shown its epigenetic regulation in disease development and progression and also found to be cytoprotective. In this review, we have focused on the structural and functional aspects of BNIP3 in relation to recent advances of its role in autophagy and apoptosis. Also its role of epigenetic regulation of several genes involved in various diseases was also discussed.
Collapse
|
34
|
BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death Dis 2014; 5:e1127. [PMID: 24625986 PMCID: PMC3973222 DOI: 10.1038/cddis.2014.94] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/23/2023]
Abstract
BNIP3 is an atypical BH3-only member of the BCL-2 family of proteins with reported pro-death as well as pro-autophagic and cytoprotective functions, depending on the type of stress and cellular context. In line with this, the role of BNIP3 in cancer is highly controversial and increased BNIP3 levels in cancer patients have been linked with both good as well as poor prognosis. In this study, using small hairpin RNA (shRNA) lentiviral transduction to stably knockdown BNIP3 (BNIP3-shRNA) expression levels in melanoma cells, we show that BNIP3 supports cancer cell survival and long-term clonogenic growth. Although BNIP3-shRNA increased mitochondrial mass and baseline levels of reactive oxygen species production, which are features associated with aggressive cancer cell behavior, it also prevented cell migration and completely abolished the ability to form a tubular-like network on matrigel, a hallmark of vasculogenic mimicry (VM). We found that this attenuated aggressive behavior of these melanoma cells was underscored by severe changes in cell morphology and remodeling of the actin cytoskeleton associated with loss of BNIP3. Indeed, BNIP3-silenced melanoma cells displayed enhanced formation of actin stress fibers and membrane ruffles, while lamellopodial protrusions and filopodia, tight junctions and adherens junctions were reduced. Moreover, loss of BNIP3 resulted in re-organization of focal adhesion sites associated with increased levels of phosphorylated focal adhesion kinase. Remarkably, BNIP3 silencing led to a drop of the protein levels of the integrin-associated protein CD47 and its downstream signaling effectors Rac1 and Cdc42. These observations underscore that BNIP3 is required to maintain steady-state levels of intracellular complexes orchestrating the plasticity of the actin cytoskeleton, which is integral to cell migration and other vital processes stimulating cancer progression. All together these results unveil an unprecedented pro-tumorigenic role of BNIP3 driving melanoma cell's aggressive features, like migration and VM.
Collapse
|
35
|
CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN HEMATOLOGY 2013; 2013:614619. [PMID: 23401787 PMCID: PMC3564380 DOI: 10.1155/2013/614619] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion.
Collapse
|
36
|
Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 2013; 17:89-103. [PMID: 23101472 PMCID: PMC3564224 DOI: 10.1517/14728222.2013.733699] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CD47 is a ubiquitously expressed cell surface receptor that serves as a counter-receptor for SIRPα in recognition of self by the innate immune system. Independently, CD47 also functions as an important signaling receptor for regulating cell responses to stress. AREAS COVERED We review the expression, molecular interactions, and pathophysiological functions of CD47 in the cardiovascular and immune systems. CD47 was first identified as a potential tumor marker, and we examine recent evidence that its dysregulation contributes to cancer progression and evasion of anti-tumor immunity. We further discuss therapeutic strategies for enhancing or inhibiting CD47 signaling and applications of such agents in preclinical models of ischemia and ischemia/reperfusion injuries, organ transplantation, pulmonary hypertension, radioprotection, and cancer. EXPERT OPINION Ongoing studies are revealing a central role of CD47 for conveying signals from the extracellular microenvironment that limit cell and tissue survival upon exposure to various types of stress. Based on this key function, therapeutics targeting CD47 or its ligands thrombospondin-1 and SIRPα could have broad applications spanning reconstructive surgery, engineering of tissues and biocompatible surfaces, vascular diseases, diabetes, organ transplantation, radiation injuries, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
- David R. Soto-Pantoja
- Cancer Research Training Award Fellow, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500
| | - Erica V. Stein
- Predoctoral Cancer Research Training Award Fellow, Laboratoryof Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500 and Microbiology and Immunology Program of the Institute for Biomedical Sciences, Departments of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St., N.W., Ross Hall, Washington, D.C. 20037
| | - Natasha M. Rogers
- Visiting Research Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Maryam Sharifi-Sanjani
- Post-doctoral Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey S. Isenberg
- Associate Professor of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1258, 200 Lothrop Street, Pittsburgh, PA 15261
| | - David D. Roberts
- Chief, Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2A33, Bethesda, MD 20892-1500
| |
Collapse
|
37
|
Rogers NM, Thomson AW, Isenberg JS. Activation of parenchymal CD47 promotes renal ischemia-reperfusion injury. J Am Soc Nephrol 2012; 23:1538-50. [PMID: 22859854 DOI: 10.1681/asn.2012020137] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) contributes to decreased allograft function and allograft rejection in transplanted kidneys. Thrombospondin-1 is a stress protein typically secreted in response to hypoxia and the ligand activator for the ubiquitously expressed receptor CD47. The function of activated CD47 in IRI remains completely unknown. Here, we found that both CD47 and its ligand thrombospondin-1 were upregulated after renal IRI in mice. CD47-knockout mice were protected against renal dysfunction and tubular damage, suggesting that the development of IRI requires intact CD47 signaling. Chimeric CD47-knockout mice engrafted with wild-type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild-type controls after IRI, suggesting that CD47 signaling in parenchymal cells predominantly mediates renal damage. Treatment with a CD47-blocking antibody protected mice from renal dysfunction and tubular damage compared with an isotype control. Taken together, these data imply that CD47 on parenchymal cells promotes injury after renal ischemia and reperfusion. Therefore, CD47 blockade may have therapeutic potential to prevent or suppress ischemia-reperfusion-mediated damage.
Collapse
Affiliation(s)
- Natasha M Rogers
- Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1258, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
38
|
Van VQ, Baba N, Rubio M, Wakahara K, Panzini B, Richard C, Soucy G, Franchimont D, Fortin G, Torres ACM, Cabon L, Susin S, Sarfati M. CD47(low) status on CD4 effectors is necessary for the contraction/resolution of the immune response in humans and mice. PLoS One 2012; 7:e41972. [PMID: 22870271 PMCID: PMC3411572 DOI: 10.1371/journal.pone.0041972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/29/2012] [Indexed: 12/14/2022] Open
Abstract
How do effector CD4 T cells escape cell death during the contraction of the immune response (IR) remain largely unknown. CD47, through interactions with thrombospondin-1 (TSP-1) and SIRP-α, is implicated in cell death and phagocytosis of malignant cells. Here, we reported a reduction in SIRP-α-Fc binding to effector memory T cells (T(EM)) and in vitro TCR-activated human CD4 T cells that was linked to TSP-1/CD47-induced cell death. The reduced SIRP-α-Fc binding (CD47(low) status) was not detected when CD4 T cells were stained with two anti-CD47 mAbs, which recognize distinct epitopes. In contrast, increased SIRP-α-Fc binding (CD47(high) status) marked central memory T cells (T(CM)) as well as activated CD4 T cells exposed to IL-2, and correlated with resistance to TSP-1/CD47-mediated killing. Auto-aggressive CD4 effectors, which accumulated in lymph nodes and at mucosal sites of patients with Crohn's disease, displayed a CD47(high) status despite a high level of TSP-1 release in colonic tissues. In mice, CD47 (CD47(low) status) was required on antigen (Ag)-specific CD4 effectors for the contraction of the IR in vivo, as significantly lower numbers of Ag-specific CD47(+/+)CD4 T cells were recovered when compared to Ag-specific CD47(-/-) CD4 T cells. In conclusion, we demonstrate that a transient change in the status of CD47, i.e. from CD47(high) to CD47(low), on CD4 effectors regulates the decision-making process that leads to CD47-mediated cell death and contraction of the IR while maintenance of a CD47(high) status on tissue-destructive CD4 effectors prevents the resolution of the inflammatory response.
Collapse
Affiliation(s)
- Vu Quang Van
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Nobuyasu Baba
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Keiko Wakahara
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Benoit Panzini
- Department of Gastroenterology, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Carole Richard
- Department of Digestive Tract Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Genevieve Soucy
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Denis Franchimont
- Department de Gastroenterology, Erasme Hospital, Université Libre de Bruxelles (ULB), Bruxelles, Belgique
| | - Genevieve Fortin
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Ana Carolina Martinez Torres
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Lauriane Cabon
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Santos Susin
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Roberts DD, Miller TW, Rogers NM, Yao M, Isenberg JS. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 2012; 31:162-9. [PMID: 22266027 PMCID: PMC3295899 DOI: 10.1016/j.matbio.2012.01.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 01/31/2023]
Abstract
Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Thomas W. Miller
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Natasha M. Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| | - Mingyi Yao
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
41
|
Lyu SY, Park WB. Gene network analysis on the effect of Viscum album var. coloratum in T cells stimulated with anti-CD3/CD28 antibodies. Arch Pharm Res 2011; 34:1735-49. [DOI: 10.1007/s12272-011-1018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 01/15/2023]
|
42
|
Soto-Pantoja DR, Isenberg JS, Roberts DD. Therapeutic Targeting of CD47 to Modulate Tissue Responses to Ischemia and Radiation. ACTA ACUST UNITED AC 2011; 2. [PMID: 22685691 DOI: 10.4172/2157-7412.1000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD47 is a widely expressed cell surface receptor that serves as a counter-receptor for signal regulatory protein-α and as a receptor for the secreted matricellular protein thrombospondin-1. Thrombospondin-1 signaling through CD47 regulates cellular signaling pathways that control cell survival, growth, motility, mitochondrial biogenesis, arterial vasoactive responses to physiologic vasodilators and blood flow, and responsiveness to growth factors. Studies employing mice lacking either thrombospondin-1 or CD47 have revealed an important role for this receptor-ligand interaction in tissue responses to injury and stress. These null mice show enhanced recovery from soft tissue fixed ischemic injuries, ischemia reperfusion injuries, and radiation injuries. These studies have led to development of antisense strategies to locally or globally suppress CD47 gene expression. A translation-blocking CD47 morpholino improves tissue survival in skin flap and hindlimb fixed ischemia models, full thickness skin grafts, and a liver ischemia/reperfusion model of organ transplantation in mice. Furthermore, the benefits of morpholino treatment extend to aged mice and mice with dysregulated fat metabolism that characteristically exhibit impaired recovery from ischemic injuries. Activity of the morpholino was also demonstrated for treatment of ischemic injury in miniature pigs. Treatment with the CD47 morpholino protects mice from major effects of ionizing radiation including alopecia, deterioration of muscle function, soft tissue and cutaneous fibrosis, and loss of hematopoietic stem cells in bone marrow. Remarkably, the same treatment does not protect tumors but instead enhances their ablation by irradiation. We discuss prospects for further development of CD47 antisense therapeutics for clinical applications including reconstructive surgery, organ transplantation, angioplasty, and cancer.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20982
| | | | | |
Collapse
|
43
|
Sagawa M, Shimizu T, Fukushima N, Kinoshita Y, Ohizumi I, Uno S, Kikuchi Y, Ikeda Y, Yamada-Okabe H, Kizaki M. A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1α pathway. Cancer Sci 2011; 102:1208-15. [DOI: 10.1111/j.1349-7006.2011.01925.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Zhang J, Ye J, Altafaj A, Cardona M, Bahi N, Llovera M, Cañas X, Cook SA, Comella JX, Sanchis D. EndoG links Bnip3-induced mitochondrial damage and caspase-independent DNA fragmentation in ischemic cardiomyocytes. PLoS One 2011; 6:e17998. [PMID: 21437288 PMCID: PMC3060094 DOI: 10.1371/journal.pone.0017998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-x(L). These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.
Collapse
Affiliation(s)
- Jisheng Zhang
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Junmei Ye
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | | | - Maria Cardona
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Núria Bahi
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Marta Llovera
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | | | - Stuart A. Cook
- Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Joan X. Comella
- Ciberned, Institut de Neurociències, Hospital Vall d'Hebró, UAB, Barcelona, Spain
| | - Daniel Sanchis
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| |
Collapse
|
45
|
Catani L, Sollazzo D, Ricci F, Polverelli N, Palandri F, Baccarani M, Vianelli N, Lemoli RM. The CD47 pathway is deregulated in human immune thrombocytopenia. Exp Hematol 2011; 39:486-94. [PMID: 21211546 DOI: 10.1016/j.exphem.2010.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVE A novel mechanism of platelet destruction involving the CD47/ signal regulatory protein-α (SIRPα) system has recently been suggested in a mouse model of immune thrombocytopenia (ITP). The CD47 molecule serves as ligand for SIRPα receptor and as receptor for thrombospondin acting as antagonistic to phagocyte activity and a regulator of apoptosis, respectively. In this study, we evaluated if the CD47/SIRPα axis may be involved in the apoptosis and clearance of platelets in human ITP. MATERIALS AND METHODS Using flow cytometry, we characterized whether expression of CD47 on fresh and in vitro-aged platelets- and of SIRPα receptor on CD14-derived dendritic cells (DCs), macrophages, circulating DCs, and monocytes is reduced is ITP; whether the in vitro platelet phagocytic capacity of CD14-derived DCs and macrophages is differentially modulated in the presence or absence of antibodies against CD47 and SIRPα in ITP; and whether platelets are more susceptible to the CD47-induced death signal in ITP. RESULTS We demonstrated that low platelet count in ITP is not due to increased phagocytosis associated with decreased expression of CD47 on the platelet surface and, despite reduced SIRPα expression, blockage of SIRPα on immature CD14-derived DCs or CD47 on platelets by specific antibodies failed to modify platelet uptake/phagocytosis of DCs. In contrast, targeting platelet CD47 with specific antibody significantly increases platelet phagocytosis of CD14-derived macrophages, and platelets are not healthy because they show increased apoptosis and are resistant to CD47-induced death signal. CONCLUSIONS Our results demonstrate that the CD47 pathway in ITP patients abnormally modulates platelet homeostasis.
Collapse
Affiliation(s)
- Lucia Catani
- Department of Hematology and Oncological Sciences L. & A. Seràgnoli, Institute of Hematology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 2009; 20:314-31. [PMID: 19935772 DOI: 10.1038/cr.2009.129] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosis-inducing activity in various cells of different origins. Here, we present evidence that the underlying molecular mechanisms involve both programmed cell death I (PCD I, apoptosis) and PCD II (autophagy)-like death. Treatment of cells with S100A8/A9 caused the increase of Beclin-1 expression as well as Atg12-Atg5 formation. S100A8/A9-induced cell death was partially inhibited by the specific PI3-kinase class III inhibitor, 3-methyladenine (3-MA), and by the vacuole H(+)-ATPase inhibitor, bafilomycin-A1 (Baf-A1). S100A8/A9 provoked the translocation of BNIP3, a BH3 only pro-apoptotic Bcl2 family member, to mitochondria. Consistent with this finding, DeltaTM-BNIP3 overexpression partially inhibited S100A8/A9-induced cell death, decreased reactive oxygen species (ROS) generation, and partially protected against the decrease in mitochondrial transmembrane potential in S100A8/A9-treated cells. In addition, either DeltaTM-BNIP3 overexpression or N-acetyl-L-cysteine co-treatment decreased lysosomal activation in cells treated with S100A8/A9. Our data indicate that S100A8/A9-promoted cell death occurs through the cross-talk of mitochondria and lysosomes via ROS and the process involves BNIP3.
Collapse
|
48
|
Vereshaga YA, Volynsky PE, Pustovalova JE, Nolde DE, Arseniev AS, Efremov RG. Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study. Proteins 2009; 69:309-25. [PMID: 17600828 DOI: 10.1002/prot.21555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BNIP3 is a mitochondrial 19-kDa proapoptotic protein, a member of the Bcl-2 family. It has a single COOH-terminal transmembrane (TM) alpha-helical domain, which is required for membrane targeting, proapoptotic activity, hetero- and homo-dimerization in membrane. The role and the molecular details of association of TM helices of BNIP3 are yet to be established. Here, we present a molecular modeling study of helix interactions in its membrane domain. The approach combines Monte Carlo conformational search in an implicit hydrophobic slab followed by molecular dynamics simulations in a hydrated full-atom lipid bilayer. The former technique was used for exhaustive sampling of the peptides' conformational space and for generation of putative "native-like" structures of the dimer. The latter ones were taken as realistic starting points to assess stability and dynamic behavior of the complex in explicit lipid-water surrounding. As a result, several groups of tightly packed right-handed structures of the dimer were proposed. They have almost similar helix-helix interface, which includes the motif A(176)xxxG(180)xxxG(184) and agrees well with previous mutagenesis data and preliminary NMR analysis. Molecular dynamics simulations of these structures reveal perfect adaptation of most of them to heterogeneous membrane environment. A remarkable feature of the predicted dimeric structures is the occurrence of a cluster of H-bonded histidine 173 and serines 168 and 172 on the helix interface, near the N-terminus. Because of specific polar interactions between the monomers, this part of the dimer has no such dense packing as the C-terminal one, thus allowing penetration of water from the extramembrane side into the membrane interior. We propose that the ionization state of His(173) can mediate structural and dynamic properties of the dimer. This, in turn, may be related to pH-dependent proapoptotic activity of BNIP3, which is triggering on by acidosis appearing under hypoxic conditions.
Collapse
Affiliation(s)
- Yana A Vereshaga
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, 117997 GSP, Russia
| | | | | | | | | | | |
Collapse
|
49
|
Diversity of neurodegenerative processes in the model of brain cortex tissue ischemia. Neurochem Int 2009; 54:322-9. [DOI: 10.1016/j.neuint.2008.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
|
50
|
Ghavami S, Eshraghi M, Kadkhoda K, Mutawe MM, Maddika S, Bay GH, Wesselborg S, Halayko AJ, Klonisch T, Los M. Role of BNIP3 in TNF-induced cell death — TNF upregulates BNIP3 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:546-60. [DOI: 10.1016/j.bbamcr.2009.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/08/2008] [Accepted: 01/05/2009] [Indexed: 02/06/2023]
|