1
|
Moss FJ, Zhao P, Salameh AI, Taki S, Wass AB, Jacobberger JW, Huffman DE, Meyerson HJ, Occhipinti R, Boron WF. Role of channels in the O 2 permeability of murine red blood cells II. Morphological and proteomic studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.639962. [PMID: 40462928 PMCID: PMC12132290 DOI: 10.1101/2025.03.05.639962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
In this second of three papers, we examine red blood cell (RBC) morphometry and RBC-membrane proteomics from our laboratory mouse strain (C57BL/6Case). In paper #1, using stopped-flow absorbance spectroscopy to ascertain the rate constant for oxyhemoglobin (HbO2) deoxygenationk HbO 2 , we find substantialk HbO 2 reductions with (1) membrane-protein inhibitors p-chloromercuribenzenesulfonate (pCMBS) or 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS); (2) knockouts of aquaporin-1 (AQP1-KO), or Rhesus blood-group-associated A-glycoprotein (RhAG-KO), or double knockouts (dKO); or (3) inhibitor+dKO. In paper #3, reaction-diffusion mathematical modeling/simulations reveal thatk HbO 2 could fall secondary to slowed intracellular O2/HbO2/Hb diffusion. Here in paper #2, blood smears as well as still/video images and imaging flow cytometry (IFC) of living RBCs show that ~97.5% to ~98.6% of control (not drug-treated) cells are biconcave disks (BCDs) across all genotypes. Pretreatment with pCMBS raises non-BCD abundance to ~8.7% for WT and ~5.7% for dKO; for DIDS pretreatment, the figures are ~41% and ~21%, respectively. Modeling (paper #3) accommodates for these shape changes. Light-scattering flow cytometry shows no significant difference in RBC size or shape among genotypes. IFC reveals minor differences among genotypes in RBC major diameter∅ Major , which (along with mean corpuscular volume, paper #1) yields RBC thickness for simulations in paper #3. Label-free liquid chromatography/tandem mass spectrometry (LC/MS/MS) proteomic analyses of RBC plasma-membrane ghosts confirm the deletion of proteins targeted by our knockouts, and rule out changes in the 100 proteins of greatest inferred abundance. Thus, genetically induced changes ink HbO 2 must reflect altered abundance of AQP1 and /or the Rh complex.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Pan Zhao
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Ahlam I. Salameh
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Sara Taki
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Amanda B. Wass
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | | | - Dale E. Huffman
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Howard J. Meyerson
- Department of Pathology, Case Western Reserve University School of Medicine
| | - Rossana Occhipinti
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
| | - Walter F. Boron
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine
- Department of Medicine, Case Western Reserve University School of Medicine
- Department of Biochemistry, Case Western Reserve University School of Medicine
| |
Collapse
|
2
|
Xiaoli Z, Xi Q, Hongjun G, Ziqing Z, Yuxuan S, Yi Q, Anming L, Jianfeng Z, Yayun S, Junling H, Lingbao G. Rh null blood group caused by novel base deletion and comprehensive pedigree analysis. Int Immunopharmacol 2025; 147:113993. [PMID: 39755105 DOI: 10.1016/j.intimp.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE The objective of this study was to rigorously investigate and elucidate the genetic mechanisms underlying the formation of the RHnull blood group in a specific case and to systematically analyse the RH blood group genes among the family members of the proband. METHODS Serological methods were used to determine the RH blood group phenotype of the proband. To elucidate the underlying genetic mechanism responsible for the RHnull phenotype, a comprehensive approach was undertaken, including RHCE genotyping, sequencing of RHD and RHCE genes, and exon sequencing of RHAG. For a comparative analysis, the same methodologies were applied to two family members of the proband. RESULTS The genotype of the proband was determined as CcDEe. Subsequent RHAG exon sequencing analysis revealed a homozygous frameshift mutation in exon 5. Specifically, a nucleotide deletion at position c.732 in RHAG resulted in an amino acid substitution from phenylalanine to serine, followed by a frameshift and premature termination at codon 245 (p.Phe245Serfs*16). This mutation was confirmed as a novel genetic variant in the NCBI database. Furthermore, serological findings, genotyping results, and RHAG exon sequencing data obtained from the proband's sister were identical to those of the proband. In contrast, the proband's son exhibited a serological phenotype of CCDee with a corresponding genotyping result for CCDee. RHAG exon sequencing of the son revealed a heterozygous frameshift mutation, which was consistent with the findings observed in the proband. CONCLUSION A novel mutation, specifically c.732delC, was identified in RHAG. The RHnull phenotype observed in this subject was attributed to a homozygous frameshift mutation in this gene. This mutation results in a truncated and nonfunctional RHAG protein, which subsequently disrupts the expression of other RH antigens on the cell membrane. Therefore, the serological phenotype associated with this genetic anomaly was classified as RHnull.
Collapse
Affiliation(s)
- Zhu Xiaoli
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Qi Xi
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Gao Hongjun
- Transfusion Medicine Institute, Jiangsu Zojiwat Biopharmaceutical Co., Ltd., Wuxi 214400, Jiangsu, China
| | - Zhu Ziqing
- College of Health and Nursing, Wuxi Taihu University, No. 68 Qianrong Road, Wuxi 214400, Jiangsu Province, China
| | - Sha Yuxuan
- College of Health and Nursing, Wuxi Taihu University, No. 68 Qianrong Road, Wuxi 214400, Jiangsu Province, China
| | - Qin Yi
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Li Anming
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Zhu Jianfeng
- Department of Hematology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Sha Yayun
- Department of Infectious Disease, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Han Junling
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Gao Lingbao
- Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
3
|
Floch A, Galochkina T, Pirenne F, Tournamille C, de Brevern AG. Molecular dynamics of the human RhD and RhAG blood group proteins. Front Chem 2024; 12:1360392. [PMID: 38566898 PMCID: PMC10985258 DOI: 10.3389/fchem.2024.1360392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Blood group antigens of the RH system (formerly known as "Rhesus") play an important role in transfusion medicine because of the severe haemolytic consequences of antibodies to these antigens. No crystal structure is available for RhD proteins with its partner RhAG, and the precise stoichiometry of the trimer complex remains unknown. Methods: To analyse their structural properties, the trimers formed by RhD and/or RhAG subunits were generated by protein modelling and molecular dynamics simulations were performed. Results: No major differences in structural behaviour were found between trimers of different compositions. The conformation of the subunits is relatively constant during molecular dynamics simulations, except for three large disordered loops. Discussion: This work makes it possible to propose a reasonable stoichiometry and demonstrates the potential of studying the structural behaviour of these proteins to investigate the hundreds of genetic variants relevant to transfusion medicine.
Collapse
Affiliation(s)
- Aline Floch
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, DSIMB Bioinformatics team, Paris, France
| | - France Pirenne
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Christophe Tournamille
- University Paris Est Créteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Créteil, France
- Laboratoire de Biologie Médicale de Référence en Immuno-Hématologie Moléculaire, Etablissement Français du Sang Ile-de-France, Créteil, France
| | - Alexandre G. de Brevern
- Université Paris Cité and Université des Antilles and Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, DSIMB Bioinformatics team, Paris, France
| |
Collapse
|
4
|
Trueba-Gómez R, Rosenfeld-Mann F, Baptista-González HA, Domínguez-López ML, Estrada-Juárez H. Use of computational biology to compare the theoretical tertiary structures of the most common forms of RhCE and RhD. Vox Sang 2023; 118:881-890. [PMID: 37559188 DOI: 10.1111/vox.13509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Computational biology analyses the theoretical tertiary structure of proteins and identifies the 'topological' differences between RhD and RhCE. Our aim was to identify the theoretical structural differences between the four isoforms of RhCE and RhD using computational biological tools. MATERIALS AND METHODS Physicochemical profile was determined by hydrophobicity and electrostatic potential analysis. Secondary and tertiary structures were generated using computational biology tools. The structures were evaluated and validated using Ramachandran algorithm, which calculates the single score, p-value and root mean square deviation (RMSD). Structures were overlaid on local refinement of 'RhAG-RhCE-ANK' (PBDID 7uzq) and RhAG to compare their spatial distribution within the membrane. RESULTS All proteins differed in surface area and electrostatic distance due to variations in hydrophobicity and electrostatic potential. The RMSD between RhD and RhCE was 0.46 ± 0.04 Å, and the comparison within RhCE was 0.57 ± 0.08 Å. The percentage of amino acids in the hydrophobic thickness was 50.24% for RhD while for RhCE it ranged between 73.08% and 76.68%. The RHAG hydrophobic thickness was 34.2 Å, and RhCE's hydrophobic thickness was 33.83 Å. We suggest that the C/c antigens differ exofacially at loops L1 and L2. For the E/e antigens, the difference lies in L6. By contrast, L4 is the same for all proteins except Rhce. CONCLUSION The physicochemical properties of Rh proteins made them different, although their genes are homologous. Using computational biology, we model structures with sufficient precision, similar to those obtained experimentally. An amino acid variation alters the folding of the tertiary structure and the interactions with other proteins, modifying the electrostatic environment, the spatial conformations and therefore the antigenic recognition.
Collapse
Affiliation(s)
- Rocio Trueba-Gómez
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Coordinación de Hematología Perinatal, Mexico City, Mexico
- Posgrado en Ciencias Químico Biológicas, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fany Rosenfeld-Mann
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Coordinación de Hematología Perinatal, Mexico City, Mexico
| | - Hector A Baptista-González
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Coordinación de Hematología Perinatal, Mexico City, Mexico
| | - María L Domínguez-López
- Posgrado en Ciencias Químico Biológicas, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Higinio Estrada-Juárez
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Coordinación de Hematología Perinatal, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
6
|
Bernecker C, Lima M, Kolesnik T, Lampl A, Ciubotaru C, Leita R, Kolb D, Fröhlich E, Schlenke P, Holzapfel GA, Dorn I, Cojoc D. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front Physiol 2022; 13:979298. [PMID: 36051915 PMCID: PMC9424772 DOI: 10.3389/fphys.2022.979298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young’s modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Maria Lima
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- University of Trieste, Physics Department, Trieste, Italy
| | - Tatjana Kolesnik
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Annika Lampl
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Catalin Ciubotaru
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Riccardo Leita
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabel Dorn
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| |
Collapse
|
7
|
Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, Clarke OB. Architecture of the human erythrocyte ankyrin-1 complex. Nat Struct Mol Biol 2022; 29:706-718. [PMID: 35835865 PMCID: PMC10373098 DOI: 10.1038/s41594-022-00792-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Kookjoo Kim
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center (PNC), University of Padua, Padua, Italy.,Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
OBJECTIVE A 77 year old female was admitted with a subdural hematoma requiring 1 unit of apheresis platelets. She was a study subject in the 1960s and was found to be Rhnull, along with another individual who previously served as a directed donor for her. METHODS Serologic testing performed by the immunohematology reference laboratory (IRL) confirmed that the patient was Rhnull and expressed anti-Rh29 antibodies. While searching for red blood cells (RBCs) for possible transfusion, it was discovered that the individual from the original study had recently donated an autologous unit. RESULTS The IRL discovered that the donor's antigen typing was r'r'. Testing had been performed using a molecular human erythrocyte antigen BeadChip (HBC). Due to the discrepancy between current and historical testing results, a donor segment was thawed and by tube testing confirmed to be Rhnull. A limitation of HBC is that many null phenotypes will be missed. CONCLUSION This case demonstrated that Rhnull evaluation of the donor required both serological and molecular methods.
Collapse
Affiliation(s)
- Richard R Gammon
- Immunohematology Reference Laboratory-Cypress Creek, OneBlood, Inc., Ft. Lauderdale, Florida
| | - Alexander Delk
- Scientific Medical and Technical Administration, OneBlood, Inc., Orlando, Florida
| | | | | | - Nancy Benitez
- Immunohematology Reference Laboratory-Cypress Creek, OneBlood, Inc., Ft. Lauderdale, Florida
| |
Collapse
|
9
|
Grishin D, Kasap E, Izotov A, Lisitsa A. Multifaceted ammonia transporters. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- D.V. Grishin
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - E.Y. Kasap
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.A. Izotov
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
10
|
Erythrocytes as markers of oxidative stress related pathologies. Mech Ageing Dev 2020; 191:111333. [PMID: 32814082 DOI: 10.1016/j.mad.2020.111333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Erythrocytes are deeply sensitive cells and important health indicators. During inflammatory response RBC, as a part of haematological system, are exposed to circulating inflammatory mediators and related oxidative stress. They present a highly specialized and organized cell membrane that interacts with inflammatory mediators and oxidative agents, leading to a variety of structural changes that promptly signal an abnormal situation. This review is aimed to provide an overview on erythrocyte involvement in physiological and pathological processes related to oxidative stress, such as aging, Down syndrome, neurodegenerative diseases, for instance Alzheimer Disease, erectile dysfunction and cardiovascular diseases. In particular this review will focus on the effects of oxidative stress on structural changes in the cell membrane and also on in the activity of erythrocyte enzymes such as membrane-bound, cytosolic glycohydrolases and RBC-eNOS. This review also underlines the potential clinical application of erythrocyte specific related parameters, which can be important tools not only for the study but also for the monitoring of several oxidative stress related diseases.
Collapse
|
11
|
Mechanisms and Alterations of Cardiac Ion Channels Leading to Disease: Role of Ankyrin-B in Cardiac Function. Biomolecules 2020; 10:biom10020211. [PMID: 32023981 PMCID: PMC7072516 DOI: 10.3390/biom10020211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Ankyrin-B (encoded by ANK2), originally identified as a key cytoskeletal-associated protein in the brain, is highly expressed in the heart and plays critical roles in cardiac physiology and cell biology. In the heart, ankyrin-B plays key roles in the targeting and localization of key ion channels and transporters, structural proteins, and signaling molecules. The role of ankyrin-B in normal cardiac function is illustrated in animal models lacking ankyrin-B expression, which display significant electrical and structural phenotypes and life-threatening arrhythmias. Further, ankyrin-B dysfunction has been associated with cardiac phenotypes in humans (now referred to as “ankyrin-B syndrome”) including sinus node dysfunction, heart rate variability, atrial fibrillation, conduction block, arrhythmogenic cardiomyopathy, structural remodeling, and sudden cardiac death. Here, we review the diverse roles of ankyrin-B in the vertebrate heart with a significant focus on ankyrin-B-linked cell- and molecular-pathways and disease.
Collapse
|
12
|
Jia W, Burns JM, Villantay B, Tang JC, Vankayala R, Lertsakdadet B, Choi B, Nelson JS, Anvari B. Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:275-287. [PMID: 31820920 PMCID: PMC7028219 DOI: 10.1021/acsami.9b18624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.
Collapse
Affiliation(s)
- Wangcun Jia
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | - Betty Villantay
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | | | - Ben Lertsakdadet
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697
| | - J. Stuart Nelson
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| |
Collapse
|
13
|
Desrames A, Genetet S, Delcourt MP, Goossens D, Mouro-Chanteloup I. Detergent-free isolation of native red blood cell membrane complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183126. [PMID: 31738902 DOI: 10.1016/j.bbamem.2019.183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Abstract
Over the past few decades, studies on the red blood cell (RBC) membrane gave rise to increasingly sophisticated although divergent models of its structural organization, since investigations were often performed in denaturing conditions using detergents. To access soluble isolated RBC membrane complexes with the preservation of their interactions and conformations, we decided to apply the recent SMALP (Styrene Maleic Acid Lipid Particles) technology to RBC ghosts. Depending on the ionic strength of buffers in which ghost membranes were resuspended, the isolated proteins within SMALPs could differ on Coomassie-stained gels, but with few changes when compared to ghost membrane SDS lysates. We subsequently produced SMALPs derived from ghosts from two different blood group phenotypes, RhD-positive and RhD-negative, both types of RBC expressing the RhCE proteins but only RhD-positive cells being able to express the RhD proteins. This allowed the isolation, by size exclusion chromatography (SEC), of soluble fractions containing the Rh complex, including the RhD protein or not, within SMALPs. The use a conformation-dependent anti-RhD antibody in immunoprecipitation studies performed on SEC fractions of SMALPs containing Rh proteins clearly demonstrated that the RhD protein, which was only present in SMALPs prepared from RhD-positive RBC ghosts, has preserved at least one important conformational RhD epitope. This approach opens new perspectives in the field of the erythroid membrane study, such as visualization of RBC membrane complexes in native conditions by cryo-electron microscopy (CryoEM) or immuno-tests with conformation-dependent antibodies against blood group antigens on separated and characterized SMALPs containing RBC membrane proteins.
Collapse
Affiliation(s)
- Alexandra Desrames
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la transfusion sanguine, F-75015 Paris, France
| | - Sandrine Genetet
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la transfusion sanguine, F-75015 Paris, France
| | - Maëlenn Païline Delcourt
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la transfusion sanguine, F-75015 Paris, France
| | | | - Isabelle Mouro-Chanteloup
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la transfusion sanguine, F-75015 Paris, France.
| |
Collapse
|
14
|
Lecompte M, Cattaert D, Vincent A, Birman S, Chérif-Zahar B. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system. J Comp Neurol 2019; 528:81-94. [PMID: 31273786 DOI: 10.1002/cne.24742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Rhesus glycoproteins (Rh50) have been shown to be ammonia transporters in many species from bacteria to human. They are involved in various physiological processes including acid excretion and pH regulation. Rh50 proteins can also provide a structural link between the cytoskeleton and the plasma membranes that maintain cellular integrity. Although ammonia plays essential roles in the nervous system, in particular at glutamatergic synapses, a potential role for Rh50 proteins at synapses has not yet been investigated. To better understand the function of these proteins in vivo, we studied the unique Rh50 gene of Drosophila melanogaster, which encodes two isoforms, Rh50A and Rh50BC. We found that Drosophila Rh50A is expressed in larval muscles and enriched in the postsynaptic regions of the glutamatergic neuromuscular junctions. Rh50 inactivation by RNA interference selectively in muscle cells caused muscular atrophy in larval stages and pupal lethality. Interestingly, Rh50-deficiency in muscles specifically increased glutamate receptor subunit IIA (GluRIIA) level and the frequency of spontaneous excitatory postsynaptic potentials. Our work therefore highlights a new role for Rh50 proteins in the maintenance of Drosophila muscle architecture and synaptic physiology, which could be conserved in other species.
Collapse
Affiliation(s)
- Mathilde Lecompte
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Daniel Cattaert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Bordeaux University, Bordeaux, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS, Toulouse University, UPS, Toulouse, France
| | - Serge Birman
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Baya Chérif-Zahar
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
15
|
Abstract
The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of cells with distinct and complementary functions. CD principal cells traditionally have been considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC function has improved significantly owing to new research findings. Thus, we now have a new model for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis, and acid-base status between principal cells and ICs. There are three main types of ICs (type A, type B, and non-A, non-B), which first appear in the late distal convoluted tubule or in the connecting segment in a species-dependent manner. ICs can be detected in CD from cortex to the initial part of the inner medulla, although some transport proteins that are key components of ICs also are present in medullary CD, cells considered inner medullary. Of the three types of ICs, each has a distinct morphology and expresses different complements of membrane transport proteins that translate into very different functions in homeostasis and contributions to CD luminal pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine signaling that contributes to acid-base regulation as well as Na+, Cl-, K+, and Ca2+ homeostasis. Thus, these new findings highlight the potential role of ICs as targets for potential hypertension treatments.
Collapse
Affiliation(s)
- Renee Rao
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Núria M Pastor-Soler
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
16
|
Petkova-Kirova P, Hertz L, Danielczok J, Huisjes R, Makhro A, Bogdanova A, Mañú-Pereira MDM, Vives Corrons JL, van Wijk R, Kaestner L. Red Blood Cell Membrane Conductance in Hereditary Haemolytic Anaemias. Front Physiol 2019; 10:386. [PMID: 31040790 PMCID: PMC6477063 DOI: 10.3389/fphys.2019.00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Congenital haemolytic anaemias are inherited disorders caused by red blood cell membrane and cytoskeletal protein defects, deviant hemoglobin synthesis and metabolic enzyme deficiencies. In many cases, although the causing mutation might be known, the pathophysiology and the connection between the particular mutation and the symptoms of the disease are not completely understood. Thus effective treatment is lagging behind. As in many cases abnormal red blood cell cation content and cation leaks go along with the disease, by direct electrophysiological measurements of the general conductance of red blood cells, we aimed to assess if changes in the membrane conductance could be a possible cause. We recorded whole-cell currents from 29 patients with different types of congenital haemolytic anaemias: 14 with hereditary spherocytosis due to mutations in α-spectrin, β-spectrin, ankyrin and band 3 protein; 6 patients with hereditary xerocytosis due to mutations in Piezo1; 6 patients with enzymatic disorders (3 patients with glucose-6-phosphate dehydrogenase deficiency, 1 patient with pyruvate kinase deficiency, 1 patient with glutamate-cysteine ligase deficiency and 1 patient with glutathione reductase deficiency), 1 patient with β-thalassemia and 2 patients, carriers of several mutations and a complex genotype. While the patients with β-thalassemia and metabolic enzyme deficiencies showed no changes in their membrane conductance, the patients with hereditary spherocytosis and hereditary xerocytosis showed largely variable results depending on the underlying mutation.
Collapse
Affiliation(s)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Jens Danielczok
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Rick Huisjes
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | | | - Joan-Lluis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Richard van Wijk
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Wen J, Verhagen OJ, Jia S, Liang Q, Wang Z, Wei L, Luo H, Luo G, Vidarsson G, Akker E, Ji Y, Schoot CE. A variant RhAG protein encoded by theRHAG*572Aallele causes serological weak D expression while maintaining normal RhCE phenotypes. Transfusion 2018; 59:405-411. [DOI: 10.1111/trf.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Jizhi Wen
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Onno J.H.M. Verhagen
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Shuangshuang Jia
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Qianni Liang
- Department of Blood TransfusionGuangdong No. 2 Provincial People's Hospital Guangzhou People's Republic of China
| | - Zhen Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Ling Wei
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Hong Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Guangping Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Emile Akker
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Yanli Ji
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - C. Ellen Schoot
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
18
|
Huisjes R, Satchwell TJ, Verhagen LP, Schiffelers RM, van Solinge WW, Toye AM, van Wijk R. Quantitative measurement of red cell surface protein expression reveals new biomarkers for hereditary spherocytosis. Int J Lab Hematol 2018; 40:e74-e77. [PMID: 29746727 DOI: 10.1111/ijlh.12841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - T J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, Bristol, UK
| | - L P Verhagen
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A M Toye
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, Bristol, UK
| | - R van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Mu S, Cui Y, Wang W, Wang L, Xu H, Zhu O, Zhu D. A RHAG point mutation selectively disrupts Rh antigen expression. Transfus Med 2018; 29:121-127. [PMID: 29508504 DOI: 10.1111/tme.12519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/29/2017] [Accepted: 02/11/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to characterise a novel mutation in the gene encoding RhAG in order to elucidate a molecular mechanism for Rh antigen expression and spherocytosis. BACKGROUND Rhesus-associated glycoprotein (RhAG) is critical for maintaining the structure and stability of erythrocytes. Single missense mutations in the gene encoding RhAG are sufficient to induce spherocytosis and deficiencies in Rh complex formation. We report a novel missense mutation that incompletely disrupts Rh antigen expression and selectively knocks out RhD antigen expression. METHODS Blood samples were taken from a 38-year-old male, his brother, his wife and his daughter in Xi'an, China. To detect the proband's RhAG and D antigen expression, the RBC were stained with anti-D and anti-RhAG and analysed by flow cytometry. Red blood cell morphology was detected with atomic force microscopy (AFM). Genomic DNA was isolated from whole blood samples, and the RHD, RHCE and RHAG alleles were sequenced and analysed. The mutation was mapped onto a predicted crystal structure of RhAG by the I-TASSER server and visualised using PyMOL. RESULTS Morphological testing by AFM found clear evidence of spherocytosis in the proband's erythrocytes. RHAG gene sequencing identified the mutation at sequence 236G > A, resulting in a serine to asparagine substitution at residue 79 (S79N). Family survey indicated that inheriting this allele is necessary and sufficient to cause the condition. Mapping the mutation onto a predicted crystal structure of RhAG revealed the proximity of the mutation to the critical structural elements of the protein. CONCLUSIONS A novel RHAG mutation significantly lowers RhAG antigen expression and antigen-mediated agglutination intensity.
Collapse
Affiliation(s)
- S Mu
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Y Cui
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - W Wang
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - L Wang
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - H Xu
- Shanxi Blood Center, Xi'an, China
| | - O Zhu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - D Zhu
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Srivastava K, Stiles DA, Wagner FF, Flegel WA. Two large deletions extending beyond either end of the RHD gene and their red cell phenotypes. J Hum Genet 2018; 63:27-35. [PMID: 29215093 PMCID: PMC5764804 DOI: 10.1038/s10038-017-0345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/22/2023]
Abstract
Only two partial deletions longer than 655 nucleotides had been reported for the RHD gene, constrained within the gene and causing DEL phenotypes. Using a combination of quantitative PCR and long-range PCR, we examined three distinct deletions affecting parts of the RHD gene in three blood donors. Their RHD nucleotide sequences and exact boundaries of the breakpoint regions were determined. DEL phenotypes were caused by a novel 18.4 kb deletion and a previously published 5.4 kb deletion of the RHD gene; a D-negative phenotype was caused by a novel 7.6 kb deletion. Examination of the deletion-flanking regions suggested microhomology-mediated end-joining, replication slippage, and non-homologous end-joining, respectively, as the most likely mechanisms for the three distinct deletions. We described two new deletions affecting parts of the RHD gene, much longer than any previously reported partial deletion: one was the first deletion observed at the 5' end of the RHD gene extending into the intergenic region, and the other the second deletion observed at its 3' end. Large deletions present at either end are a mechanism for a much reduced RhD protein expression or its complete loss. Exact molecular characterization of such deletions is instrumental for accurate RHD genotyping.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA
| | - David Alan Stiles
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA
| | - Franz Friedrich Wagner
- Red Cross Blood Service NSTOB, Institute Springe, Eldagsener Strasse 38, 31830, Springe, Germany
| | - Willy Albert Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA.
| |
Collapse
|
21
|
Shakya B, Penn WD, Nakayasu ES, LaCount DJ. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1. Mol Biochem Parasitol 2017; 216:5-13. [PMID: 28627360 PMCID: PMC5738903 DOI: 10.1016/j.molbiopara.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Wesley D Penn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
22
|
Narla J, Mohandas N. Red cell membrane disorders. Int J Lab Hematol 2017; 39 Suppl 1:47-52. [PMID: 28447420 DOI: 10.1111/ijlh.12657] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Significant advances have been made in our understanding of the structural basis for altered cell function in various inherited red cell membrane disorders with reduced red cell survival and resulting hemolytic anemia. The current review summarizes these advances as they relate to defining the molecular and structural basis for disorders involving altered membrane structural organization (hereditary spherocytosis [HS] and hereditary elliptocytosis [HE]) and altered membrane transport function (hereditary overhydrated stomatocytosis and hereditary xerocytosis). Mutations in genes encoding membrane proteins that account for these distinct red cell phenotypes have been identified. These molecular insights have led to improved understanding of the structural basis for altered membrane function in these disorders. Weakening of vertical linkage between the lipid bilayer and spectrin-based membrane skeleton leads to membrane loss in HS. In contrast, weakening of lateral linkages among different skeletal proteins leads to membrane fragmentation and decreased surface area in HE. The degrees of membrane loss and resultant increases in cell sphericity determine the severity of anemia in these two disorders. Splenectomy leads to amelioration of anemia by increasing the circulatory red cell life span of spherocytic red cells that are normally sequestered by the spleen. Disordered membrane cation permeability and resultant increase or decrease in red cell volume account for altered cellular deformability of hereditary overhydrated stomatocytosis and hereditary xerocytosis, respectively. Importantly, splenectomy is not beneficial in these two membrane transport disorders and in fact contraindicated due to severe postsplenectomy thrombotic complications.
Collapse
Affiliation(s)
- J Narla
- Regional Medical Center, San Jose, CA, USA
| | - N Mohandas
- New York Blood Center, New York, NY, USA
| |
Collapse
|
23
|
Langeveld TJC, van Rossum AP, van der Zwaag B, van Wijk R, Vlasveld LT. Profound spherocytosis in adulthood: Acquired, hereditary or both? Int J Lab Hematol 2017; 39:e117-e120. [PMID: 28488802 DOI: 10.1111/ijlh.12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T J C Langeveld
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A P van Rossum
- Department of Clinical Chemistry, HMC (Haaglanden Medical Center), location Bronovo, The Hague, The Netherlands
| | - B van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R van Wijk
- Department of Clinical Chemistry and Haematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Th Vlasveld
- Department of Internal Medicine, HMC (Haaglanden Medical Center), location Bronovo, The Hague, The Netherlands
| |
Collapse
|
24
|
Huang HM, Bauer DC, Lelliott PM, Greth A, McMorran BJ, Foote SJ, Burgio G. A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice. Sci Rep 2016; 6:37197. [PMID: 27848995 PMCID: PMC5111128 DOI: 10.1038/srep37197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the “bystander effect”. This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance.
Collapse
Affiliation(s)
- Hong Ming Huang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | | | - Patrick M Lelliott
- IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Andreas Greth
- synaps studios GmbH, Rebmoosweg 73A, CH-5200 Brugg, Switzerland
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| |
Collapse
|
25
|
Giger K, Habib I, Ritchie K, Low PS. Diffusion of glycophorin A in human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2839-2845. [PMID: 27580023 DOI: 10.1016/j.bbamem.2016.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that glycophorin A (GPA) interacts with band 3 in human erythrocyte membranes including: i) the existence of an epitope shared between band 3 and GPA in the Wright b blood group antigen, ii) the fact that antibodies to GPA inhibit the diffusion of band 3, iii) the observation that expression of GPA facilitates trafficking of band 3 from the endoplasmic reticulum to the plasma membrane, and iv) the observation that GPA is diminished in band 3 null erythrocytes. Surprisingly, there is also evidence that GPA does not interact with band 3, including data showing that: i) band 3 diffusion increases upon erythrocyte deoxygenation whereas GPA diffusion does not, ii) band 3 diffusion is greatly restricted in erythrocytes containing the Southeast Asian Ovalocytosis mutation whereas GPA diffusion is not, and iii) most anti-GPA or anti-band 3 antibodies do not co-immunoprecipitate both proteins. To try to resolve these apparently conflicting observations, we have selectively labeled band 3 and GPA with fluorescent quantum dots in intact erythrocytes and followed their diffusion by single particle tracking. We report here that band 3 and GPA display somewhat similar macroscopic and microscopic diffusion coefficients in unmodified cells, however perturbations of band 3 diffusion do not cause perturbations of GPA diffusion. Taken together the collective data to date suggest that while weak interactions between GPA and band 3 undoubtedly exist, GPA and band 3 must have separate interactions in the membrane that control their lateral mobility.
Collapse
Affiliation(s)
- Katie Giger
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ibrahim Habib
- INSERM, UMR_S1134, Laboratory of Excellence GR-Ex, Université Paris-Diderot, Institut National de la Transfusion Sanguine, 75015 Paris, France
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
26
|
Polin H, Matzhold EM, Schlenke P, Gabriel C, Danzer M, Wagner T. RHD Tyr311Stop encoded by a novel nonsense mutation. Transfusion 2016; 56:2389-90. [PMID: 27351456 DOI: 10.1111/trf.13702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/27/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Helene Polin
- Red Cross Transfusion Service of Upper Austria and the, Linz. .,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; and the, Linz.
| | - Eva Maria Matzhold
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Christian Gabriel
- Red Cross Transfusion Service of Upper Austria and the, Linz.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; and the, Linz
| | - Martin Danzer
- Red Cross Transfusion Service of Upper Austria and the, Linz.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; and the, Linz
| | - Thomas Wagner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Satchwell TJ, Bell AJ, Hawley BR, Pellegrin S, Mordue KE, van Deursen CTBM, Braak NHT, Huls G, Leers MPG, Overwater E, Tamminga RYJ, van der Zwaag B, Fermo E, Bianchi P, van Wijk R, Toye AM. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts. Haematologica 2016; 101:1018-27. [PMID: 27247322 DOI: 10.3324/haematol.2016.146209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialized erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting ANK1 to generate erythroblasts and reticulocytes with a novel ankyrin-R 'near null' human phenotype with less than 5% of normal ankyrin expression. Using this model, we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins, including band 3, glycophorin A, spectrin, adducin and, more strikingly, protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorization of hereditary spherocytosis arising from ankyrin deficiency.
Collapse
Affiliation(s)
- Timothy J Satchwell
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | - Bethan R Hawley
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Stephanie Pellegrin
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | | | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry and Hematology, Atrium Medical Center Parkstad, Heerlen, The Netherlands
| | - Eline Overwater
- Department of Clinical Genetics, VU University Medical Center, and Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rienk Y J Tamminga
- Department of Pediatric Hematology, Beatrix Childrens Hospital, University Medical Center Groningen, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, The Netherlands
| | - Elisa Fermo
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, The Netherlands
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| |
Collapse
|
28
|
Filosa L, Beley S, Chiaroni J, Bailly P, Silvy M. New silent and weak D alleles: molecular characterization and associated antigen density. Transfusion 2016; 56:2154-5. [PMID: 27189905 DOI: 10.1111/trf.13655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Lugdivine Filosa
- Laboratoire d'Hématologie Moléculaire: Biologie des Groupes Sanguins, Établissement Français du Sang Alpes Méditerranée, Marseille, France
| | - Sophie Beley
- Laboratoire d'Hématologie Moléculaire: Biologie des Groupes Sanguins, Établissement Français du Sang Alpes Méditerranée, Marseille, France.,UMR 7268 ADÉS, Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - Jacques Chiaroni
- Laboratoire d'Hématologie Moléculaire: Biologie des Groupes Sanguins, Établissement Français du Sang Alpes Méditerranée, Marseille, France.,UMR 7268 ADÉS, Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - Pascal Bailly
- Laboratoire d'Hématologie Moléculaire: Biologie des Groupes Sanguins, Établissement Français du Sang Alpes Méditerranée, Marseille, France.,UMR 7268 ADÉS, Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - Monique Silvy
- Laboratoire d'Hématologie Moléculaire: Biologie des Groupes Sanguins, Établissement Français du Sang Alpes Méditerranée, Marseille, France.,UMR 7268 ADÉS, Aix-Marseille Université-EFS-CNRS, Marseille, France
| |
Collapse
|
29
|
Genetet S, Ripoche P, Le Van Kim C, Colin Y, Lopez C. Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells. J Biol Chem 2015; 290:6925-36. [PMID: 25616663 DOI: 10.1074/jbc.m114.610048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The renal ammonium transporter RhBG and anion exchanger 1 kAE1 colocalize in the basolateral domain of α-intercalated cells in the distal nephron. Although we have previously shown that RhBG is linked to the spectrin-based skeleton through ankyrin-G and that its NH3 transport activity is dependent on this association, there is no evidence for an interaction of kAE1 with this adaptor protein. We report here that the kAE1 cytoplasmic N terminus actually binds to ankyrin-G, both in yeast two-hybrid analysis and by coimmunoprecipitation in situ in HEK293 cells expressing recombinant kAE1. A site-directed mutagenesis study allowed the identification of three dispersed regions on kAE1 molecule linking the third and fourth repeat domains of ankyrin-G. One secondary docking site corresponds to a major interacting loop of the erythroid anion exchanger 1 (eAE1) with ankyrin-R, whereas the main binding region of kAE1 does not encompass any eAE1 determinant. Stopped flow spectrofluorometry analysis of recombinant HEK293 cells revealed that the Cl(-)/HCO3 (-) exchange activity of a kAE1 protein mutated on the ankyrin-G binding site was abolished. This disruption impaired plasma membrane expression of kAE1 leading to total retention on cytoplasmic structures in polarized epithelial Madin-Darby canine kidney cell transfectants. kAE1 also directly interacts with RhBG without affecting its surface expression and NH3 transport function. This is the first description of a structural and functional RhBG·kAE1·ankyrin-G complex at the plasma membrane of kidney epithelial cells, comparable with the well known Rh·eAE1·ankyrin-R complex in the red blood cell membrane. This renal complex could participate in the regulation of acid-base homeostasis.
Collapse
Affiliation(s)
- Sandrine Genetet
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Pierre Ripoche
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Caroline Le Van Kim
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Yves Colin
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Claude Lopez
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| |
Collapse
|
30
|
Zhu F, Shi L, Li H, Eksi R, Engel JD, Guan Y. Modeling dynamic functional relationship networks and application to ex vivo human erythroid differentiation. ACTA ACUST UNITED AC 2014; 30:3325-33. [PMID: 25115705 DOI: 10.1093/bioinformatics/btu542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MOTIVATION Functional relationship networks, which summarize the probability of co-functionality between any two genes in the genome, could complement the reductionist focus of modern biology for understanding diverse biological processes in an organism. One major limitation of the current networks is that they are static, while one might expect functional relationships to consistently reprogram during the differentiation of a cell lineage. To address this potential limitation, we developed a novel algorithm that leverages both differentiation stage-specific expression data and large-scale heterogeneous functional genomic data to model such dynamic changes. We then applied this algorithm to the time-course RNA-Seq data we collected for ex vivo human erythroid cell differentiation. RESULTS Through computational cross-validation and literature validation, we show that the resulting networks correctly predict the (de)-activated functional connections between genes during erythropoiesis. We identified known critical genes, such as HBD and GATA1, and functional connections during erythropoiesis using these dynamic networks, while the traditional static network was not able to provide such information. Furthermore, by comparing the static and the dynamic networks, we identified novel genes (such as OSBP2 and PDZK1IP1) that are potential drivers of erythroid cell differentiation. This novel method of modeling dynamic networks is applicable to other differentiation processes where time-course genome-scale expression data are available, and should assist in generating greater understanding of the functional dynamics at play across the genome during development. AVAILABILITY AND IMPLEMENTATION The network described in this article is available at http://guanlab.ccmb.med.umich.edu/stageSpecificNetwork.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| | - Lihong Shi
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| | - Hongdong Li
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| | - Ridvan Eksi
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| | - James Douglas Engel
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA Department of Computational Medicine and Bioinformatics, Department of Cell and Developmental Biology, Department of Internal Medicine and Department of Computer Science and Engineering, University of Michigan, MI48109, USA
| |
Collapse
|
31
|
Spectrin and phospholipids - the current picture of their fascinating interplay. Cell Mol Biol Lett 2014; 19:158-79. [PMID: 24569979 PMCID: PMC6276000 DOI: 10.2478/s11658-014-0185-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
The spectrin-based membrane skeleton is crucial for the mechanical stability and resilience of erythrocytes. It mainly contributes to membrane integrity, protein organization and trafficking. Two transmembrane protein macro-complexes that are linked together by spectrin tetramers play a crucial role in attaching the membrane skeleton to the cell membrane, but they are not exclusive. Considerable experimental data have shown that direct interactions between spectrin and membrane lipids are important for cell membrane cohesion. Spectrin is a multidomain, multifunctional protein with several distinctive structural regions, including lipid-binding sites within CH tandem domains, a PH domain, and triple helical segments, which are excellent examples of ligand specificity hidden in a regular repetitive structure, as recently shown for the ankyrin-sensitive lipid-binding domain of beta spectrin. In this review, we summarize the state of knowledge about interactions between spectrin and membrane lipids.
Collapse
|
32
|
Goossens D, da Silva N, Metral S, Cortes U, Callebaut I, Picot J, Mouro-Chanteloup I, Cartron JP. Mice expressing RHAG and RHD human blood group genes. PLoS One 2013; 8:e80460. [PMID: 24260394 PMCID: PMC3832391 DOI: 10.1371/journal.pone.0080460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously.
Collapse
Affiliation(s)
- Dominique Goossens
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- * E-mail:
| | - Nelly da Silva
- Institut National de la Transfusion Sanguine, Paris, France
| | - Sylvain Metral
- Institut National de la Transfusion Sanguine, Paris, France
| | - Ulrich Cortes
- Institut National de la Transfusion Sanguine, Paris, France
| | - Isabelle Callebaut
- IInstitut de Minéralogie et de Physique des milieux Condensés UMR 7590 CNRS, Université Pierre et Marie Curie, Paris, France
| | - Julien Picot
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | | |
Collapse
|
33
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
34
|
Initiation and regulation of complement during hemolytic transfusion reactions. Clin Dev Immunol 2012; 2012:307093. [PMID: 23118779 PMCID: PMC3479954 DOI: 10.1155/2012/307093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022]
Abstract
Hemolytic transfusion reactions represent one of the most common causes of transfusion-related mortality. Although many factors influence hemolytic transfusion reactions, complement activation represents one of the most common features associated with fatality. In this paper we will focus on the role of complement in initiating and regulating hemolytic transfusion reactions and will discuss potential strategies aimed at mitigating or favorably modulating complement during incompatible red blood cell transfusions.
Collapse
|
35
|
Mankelow TJ, Satchwell TJ, Burton NM. Refined views of multi-protein complexes in the erythrocyte membrane. Blood Cells Mol Dis 2012; 49:1-10. [PMID: 22465511 PMCID: PMC4443426 DOI: 10.1016/j.bcmd.2012.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022]
Abstract
The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level.
Collapse
Affiliation(s)
- T J Mankelow
- Bristol Institute for Transfusion Sciences, N.H.S. Blood & Transplant, UK
| | | | | |
Collapse
|
36
|
Fichou Y, Chen JM, Le Maréchal C, Jamet D, Dupont I, Chuteau C, Durousseau C, Loirat MJ, Bailly P, Férec C. Weak D caused by a founder deletion in the RHD gene. Transfusion 2012; 52:2348-55. [PMID: 22420867 DOI: 10.1111/j.1537-2995.2012.03606.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The RhD blood group system exemplifies a genotype-phenotype correlation by virtue of its highly polymorphic and immunogenic nature. Weak D phenotypes are generally thought to result from missense mutations leading to quantitative change of the D antigen in the red blood cell membrane or intracellularly. STUDY DESIGN AND METHODS Different sets of polymerase chain reaction primers were designed to map and clone a deletion involving RHD Exon 10, which was found in approximately 3% of approximately 2000 RHD hemizygous subjects with D phenotype ambiguity. D antigen density was measured by flow cytometry. Transcript analysis was carried out by 3'-rapid amplification of complementary DNA ends. Haplotype analysis was performed by microsatellite genotyping. RESULTS A 5405-bp deletion that removed nearly two-thirds of Intron 9 and almost all of Exon 10 of the RHD gene was characterized. It is predicted to result in the replacement of the last eight amino acids of the wild-type RhD protein by another four amino acids. The mean RhD antigen density from two deletion carriers was determined to be only 30. A consensus haplotype could be deduced from the deletion carriers based on the microsatellite genotyping data. CONCLUSION The currently reported deletion was derived from a common founder. This deletion appears to represent not only the first large deletion associated with weak D but also the weakest of weak D alleles so far reported. This highly unusual genotype-phenotype relationship may be attributable to the additive effect of three distinct mechanisms that affect mRNA formation, mRNA stability, and RhD/ankyrin-R interaction, respectively.
Collapse
Affiliation(s)
- Yann Fichou
- Etablissement Français du Sang (EFS)-Bretagne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Silvy M, Chapel-Fernandes S, Callebaut I, Beley S, Durousseau C, Simon S, Lauroua P, Dubosc-Marchenay N, Babault C, Mouchet C, Ferrera V, Chiaroni J, Bailly P. Characterization of novel RHD alleles: relationship between phenotype, genotype, and trimeric architecture. Transfusion 2012; 52:2020-9. [DOI: 10.1111/j.1537-2995.2011.03544.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Genetet S, Ripoche P, Picot J, Bigot S, Delaunay J, Armari-Alla C, Colin Y, Mouro-Chanteloup I. Human RhAG ammonia channel is impaired by the Phe65Ser mutation in overhydrated stomatocytic red cells. Am J Physiol Cell Physiol 2011; 302:C419-28. [PMID: 22012326 DOI: 10.1152/ajpcell.00092.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ∼50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.
Collapse
|
39
|
Wolny M, Grzybek M, Bok E, Chorzalska A, Lenoir M, Czogalla A, Adamczyk K, Kolondra A, Diakowski W, Overduin M, Sikorski AF. Key amino acid residues of ankyrin-sensitive phosphatidylethanolamine/phosphatidylcholine-lipid binding site of βI-spectrin. PLoS One 2011; 6:e21538. [PMID: 21738695 PMCID: PMC3125217 DOI: 10.1371/journal.pone.0021538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that “opening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton.
Collapse
Affiliation(s)
- Marcin Wolny
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Michał Grzybek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Bok
- Department of Molecular Biology, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Chorzalska
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Marc Lenoir
- Henry Wellcome Building for Biomolecular NMR Spectroscopy, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Klaudia Adamczyk
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Adam Kolondra
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Witold Diakowski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Michael Overduin
- Henry Wellcome Building for Biomolecular NMR Spectroscopy, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksander F. Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
40
|
Burton NM, Bruce LJ. Modelling the structure of the red cell membraneThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:200-15. [DOI: 10.1139/o10-154] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The red cell membrane has long been the focus of extensive study. The macromolecules embedded within the membrane carry the blood group antigens and perform many functions including the vital task of gas exchange. Links between the intramembrane macromolecules and the underlying cytoskeleton stabilize the biconcave morphology of the red cell and allow deformation during microvascular transit. Much is now known about the proteins of the red cell membrane and how they are organised. In many cases we have an understanding of which proteins are expressed, the number of each protein per cell, their oligomeric state(s), and how they are collected in large multi-protein complexes. However, our typical view of these structures is as cartoon shapes in schematic figures. In this study we have combined knowledge of the red cell membrane with a wealth of protein structure data from crystallography, NMR, and homology modelling to generate the first, tentative models of the complexes which link the membrane to the cytoskeleton. Measurement of the size of these complexes and comparison with known cytoskeletal distance parameters suggests the idea of interaction between the membrane complexes, which may have profound implications for understanding red cell function and deformation.
Collapse
Affiliation(s)
- Nicholas M. Burton
- School of Biochemistry, University of Bristol, BS8 1TD, UK
- Bristol Institute for Transfusion Sciences, N.H.S. Blood and Transplant, North Bristol Park, Filton, Bristol, BS34 7QH, UK
| | - Lesley J. Bruce
- School of Biochemistry, University of Bristol, BS8 1TD, UK
- Bristol Institute for Transfusion Sciences, N.H.S. Blood and Transplant, North Bristol Park, Filton, Bristol, BS34 7QH, UK
| |
Collapse
|
41
|
Baines AJ. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [PMID: 20688550 DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
A group of four proteins - spectrin, ankyrin, 4.1 and adducin - evolved with the metazoa. These membrane-cytoskeletal proteins cross-link actin on the cytoplasmic face of plasma membranes and link a variety of transmembrane proteins to the cytoskeleton. In this paper, the evolution of these proteins is analysed. Genomics indicate that spectrin was the first to appear, since the genome of the choanoflagellate Monosiga brevicolis contains genes for alpha, beta and betaH spectrin. This organism represents a lineage of free-living and colonial protists from which the metazoa are considered to have diverged. This indicates that spectrin emerged in evolution before the animals. Simple animals such as the placozoan Trichoplax adherens also contain recognizable precursors of 4.1, ankyrin and adducin, but these could probably not bind spectrin. Ankyrin and adducin seem to have acquired spectrin-binding activity with the appearance of tissues since they appear to have largely the same domain structure in all eumetazoa. 4.1 was adapted more recently, with the emergence of the vertebrates, to bind spectrin and promote its interaction with actin. A simple hypothesis is that spectrin was prerequisite (but not sufficient) for animal life; that spectrin interaction with ankyrin and adducin was required for evolution of major tissues; and that 4.1 acquired a spectrin-actin binding activity as animal size increased with the appearance of vertebrates. The spectrin/ankyrin/adducin/4.1 complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- A J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, CT2 7NJ, Canterbury, United Kingdom.
| |
Collapse
|
42
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
43
|
|
44
|
|
45
|
van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol Dis 2010; 45:1-8. [DOI: 10.1016/j.bcmd.2010.02.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
|
46
|
Huang CH, Ye M. The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 2010; 67:1203-18. [PMID: 19953292 PMCID: PMC11115862 DOI: 10.1007/s00018-009-0217-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
Abstract
The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.
Collapse
Affiliation(s)
- Cheng-Han Huang
- Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | | |
Collapse
|
47
|
The effect of the lipid-binding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures. Cell Mol Biol Lett 2010; 15:406-23. [PMID: 20352359 PMCID: PMC6275669 DOI: 10.2478/s11658-010-0012-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 03/10/2010] [Indexed: 11/20/2022] Open
Abstract
It was previously shown that the beta-spectrin ankyrin-binding domain binds lipid domains rich in PE in an ankyrin-dependent manner, and that its N-terminal sequence is crucial in interactions with phospholipids. In this study, the effect of the full-length ankyrin-binding domain of β-spectrin on natural erythrocyte and HeLa cell membranes was tested. It was found that, when encapsulated in resealed erythrocyte ghosts, the protein representing the full-length ankyrin-binding domain strongly affected the shape and barrier properties of the erythrocyte membrane, and induced partial spectrin release from the membrane, while truncated mutants had no effect. As found previously (Bok et al. Cell Biol. Int. 31 (2007) 1482–94), overexpression of the full-length GFP-tagged ankyrin-binding domain aggregated and induced aggregation of endogenous spectrin, but this was not the case with overexpression of proteins truncated at their N-terminus. Here, we show that the aggregation of spectrin was accompanied by the aggregation of integral membrane proteins that are known to be connected to spectrin via ankyrin, i.e. Na+K+ATP-ase, IP3 receptor protein and L1 CAM. By contrast, the morphology of the actin cytoskeleton remained unchanged and aggregation of cadherin E or N did not occur upon the overexpression of either full-length or truncated ankyrin-binding domain proteins. The obtained results indicate a substantial role of the lipid-binding part of the β-spectrin ankyrin-binding domain in the determination of the membrane and spectrin-based skeleton functional properties.
Collapse
|
48
|
Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 2010; 116:267-9. [PMID: 20339087 DOI: 10.1182/blood-2010-02-264127] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During erythroblast enucleation, membrane proteins distribute between extruded nuclei and reticulocytes. In hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), deficiencies of membrane proteins, in addition to those encoded by the mutant gene, occur. Elliptocytes, resulting from protein 4.1R gene mutations, lack not only 4.1R but also glycophorin C, which links the cytoskeleton and bilayer. In HS resulting from ankyrin-1 mutations, band 3, Rh-associated antigen, and glycophorin A are deficient. The current study was undertaken to explore whether aberrant protein sorting, during enucleation, creates these membrane-spanning protein deficiencies. We found that although glycophorin C sorts to reticulocytes normally, it distributes to nuclei in 4.1R-deficient HE cells. Further, glycophorin A and Rh-associated antigen, which normally partition predominantly to reticulocytes, distribute to both nuclei and reticulocytes in an ankyrin-1-deficient murine model of HS. We conclude that aberrant protein sorting is one mechanistic basis for protein deficiencies in HE and HS.
Collapse
|
49
|
Aberrant RNA splicing in RHD 7-9 exons of DEL individuals in Taiwan: a mechanism study. Biochim Biophys Acta Gen Subj 2010; 1800:565-73. [PMID: 20188798 DOI: 10.1016/j.bbagen.2010.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/28/2010] [Accepted: 02/16/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Rh blood D group provides a clinically important model of aberrant splicing with skipped exons. Approximately 30% of serologically D-negative Chinese individuals have an intact RHD gene (DEL phenotype) and induce allo-immunization in transfusions. The RHD1227GNA polymorphism occurs in >95% DEL phenotype of Asian descent. The effects of RHD 1227A and a novel allele on exon 9 splicing were examined. RESULTS Amplified DEL RNA products revealed that 3 transcripts involved skipping of exons 8-9, exon 9, or exon 9 with an inserted 170-bp cryptic exon located between exons 7 and 8. A novel, single nucleotide polymorphism was identified in the 7th intron, (IVS7) 923C>T, and present in all DEL patients. The odds ratio of RHD1227G>A allele with DEL phenotype was 2711. Splicing analysis of transcripts from minigenes containing the 1227GNA allele, but not the (IVS7) 923C>T allele, demonstrated aberrant exon 9 skipping. CONCLUSIONS A combined haplotype of 1227G>A and IVS7 923C>T alleles was apparent in >95% DEL Chinese individuals. RHD1227A mutation significantly increased aberrant mRNA splicing, producing a hybrid RHD mRNA lacking exon 9. These results provide a molecular basis of the DEL phenotype in the Chinese population.
Collapse
|
50
|
Mouro-Chanteloup I, Cochet S, Chami M, Genetet S, Zidi-Yahiaoui N, Engel A, Colin Y, Bertrand O, Ripoche P. Functional reconstitution into liposomes of purified human RhCG ammonia channel. PLoS One 2010; 5:e8921. [PMID: 20126667 PMCID: PMC2812482 DOI: 10.1371/journal.pone.0008921] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/08/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Rh glycoproteins (RhAG, RhBG, RhCG) are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH(3), human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. METHODOLOGY/PRINCIPAL FINDINGS An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C(12)E(8) detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively). This strong NH(3) transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. CONCLUSIONS/SIGNIFICANCE This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent Punit(NH3) (around 1x10(-3) microm(3)xs(-1)) is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60x10(-3) microm(3)xs(-1)), and in human red blood cells endogenously expressing RhAG (2.18x10(-3) microm(3)xs(-1)). The major finding of this study is that RhCG protein is active as an NH(3) channel and that this function does not require any protein partner.
Collapse
|