1
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025; 45:882-900. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
2
|
Singh P, Sun J, Cavalera M, Al-Sharify D, Matthes F, Barghouth M, Tengryd C, Dunér P, Persson A, Sundius L, Nitulescu M, Bengtsson E, Rattik S, Engelbertsen D, Orho-Melander M, Nilsson J, Monaco C, Goncalves I, Edsfeldt A. Dysregulation of MMP2-dependent TGF-ß2 activation impairs fibrous cap formation in type 2 diabetes-associated atherosclerosis. Nat Commun 2024; 15:10464. [PMID: 39653743 PMCID: PMC11628557 DOI: 10.1038/s41467-024-50753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 diabetes is associated with cardiovascular disease, possibly due to impaired vascular fibrous repair. Yet, the mechanisms are elusive. Here, we investigate alterations in the fibrous repair processes in type 2 diabetes atherosclerotic plaque extracellular matrix by combining multi-omics from the human Carotid Plaque Imaging Project cohort and functional studies. Plaques from type 2 diabetes patients have less collagen. Interestingly, lower levels of transforming growth factor-ß distinguish type 2 diabetes plaques and, in these patients, lower levels of fibrous repair markers are associated with cardiovascular events. Transforming growth factor-ß2 originates mostly from contractile vascular smooth muscle cells that interact with synthetic vascular smooth muscle cells in the cap, leading to collagen formation and vascular smooth muscle cell differentiation. This is regulated by free transforming growth factor-ß2 which is affected by hyperglycemia. Our findings underscore the importance of transforming growth factor-ß2-driven fibrous repair in type 2 diabetes as an area for future therapeutic strategies.
Collapse
MESH Headings
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Humans
- Transforming Growth Factor beta2/metabolism
- Matrix Metalloproteinase 2/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Female
- Animals
- Middle Aged
- Aged
- Collagen/metabolism
- Extracellular Matrix/metabolism
- Mice
- Cell Differentiation
Collapse
Affiliation(s)
- Pratibha Singh
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Jiangming Sun
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Michele Cavalera
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Dania Al-Sharify
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Frank Matthes
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Mohammad Barghouth
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Christoffer Tengryd
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ana Persson
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Lena Sundius
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Sara Rattik
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden
- Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.
- Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Ajay AK, Zhu LJ, Zhao L, Liu Q, Ding Y, Chang YC, Shah SI, Hsiao LL. Local vascular Klotho mediates diabetes-induced atherosclerosis via ERK1/2 and PI3-kinase-dependent signaling pathways. Atherosclerosis 2024; 396:118531. [PMID: 38996716 DOI: 10.1016/j.atherosclerosis.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND AIMS Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-β, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-β, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-β, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-β expression. CONCLUSIONS Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.
Collapse
MESH Headings
- Klotho Proteins/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Glucuronidase/metabolism
- Glucuronidase/genetics
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Signal Transduction
- Cells, Cultured
- Aorta/pathology
- Aorta/metabolism
- MAP Kinase Signaling System
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Proliferation
Collapse
Affiliation(s)
- Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| | - Lang-Jing Zhu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinghua Liu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Yu-Chun Chang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| |
Collapse
|
4
|
Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res 2024; 206:107285. [PMID: 38942342 DOI: 10.1016/j.phrs.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Maria Helena Barbosa Pontes
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Manoel Benedito Sousa Cantão
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Alejandro Ferraz Prado
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
5
|
Baek KI, Ryu K. Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development. J Cardiovasc Transl Res 2024; 17:609-623. [PMID: 38010480 DOI: 10.1007/s12265-023-10463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Biotechnology, The University of Suwon, 17, Wauan-Gil, Bongdam-Eup, Hwaseong-Si, Gyeonggi-Do, 18323, Republic of Korea.
| |
Collapse
|
6
|
Marder M, Remmert C, Perschel JA, Otgonbayar M, von Toerne C, Hauck S, Bushe J, Feuchtinger A, Sheikh B, Moussus M, Meier M. Stem cell-derived vessels-on-chip for cardiovascular disease modeling. Cell Rep 2024; 43:114008. [PMID: 38536819 DOI: 10.1016/j.celrep.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.
Collapse
Affiliation(s)
- Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Julius A Perschel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Stefanie Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Judith Bushe
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Bilal Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany; Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
8
|
Utsunomiya T, Ishibazawa A, Yoshioka T, Song YS, Yoshida K. Assessing effects of mechanical stimulation of fluid shear stress on inducing matrix Metalloproteinase-9 in cultured corneal epithelial cells. Exp Eye Res 2023; 234:109571. [PMID: 37468028 DOI: 10.1016/j.exer.2023.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Blinking is regarded as mechanical stimulation of fluid shear stress on the corneal epithelial cells. Therefore, we evaluated whether fluid shear stress affects matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in cultured human corneal epithelial cells (HCECs). No other study has shown the influence of fluid shear stress on HCECs regarding mRNA expression and the protein levels of MMPs. Cultured HCECs were exposed to shear stress (0, 1.2, 12 dyne/cm2) for 12 and 24 h with the parallel-plate type of flow chamber. Gene expression of MMPs and TIMPs was measured by real-time polymerase reaction. Concentrations of MMP-1 and MMP-9 in cell lysates were determined using bead-based amplified luminescent proximity homogenous assay-linked immunosorbent assay. The expression of MMP-9 and MMP-1 in HCECs exposed to low and high flow for 12 and 24 h, respectively, increased significantly compared with those under static conditions. The expression of MMP-9 in the cells exposed to high flow for 24 h increased significantly compared with those under static and low flow conditions. Levels of MMP-9 in cell lysates exposed to fluid flow for 24 h were elevated significantly with increasing shear stress. Fluid shear stress exerted on HCECs affected MMPs, which was associated with inflammation and pathogenesis. Mechanical stress induced by blinking might influence expression of MMPs on the ocular surface. Further studies are warranted to establish the molecular mechanism of shear stress-induced alternations of MMPs.
Collapse
Affiliation(s)
- Tsugiaki Utsunomiya
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Akihiro Ishibazawa
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takafumi Yoshioka
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Young-Seok Song
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Koichi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan; Department of Hospital Pharmacy & Pharmacology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
9
|
Liu S, Ortiz A, Stavrou A, Talusan AR, Costa M. Extracellular Vesicles as Mediators of Nickel-Induced Cancer Progression. Int J Mol Sci 2022; 23:ijms232416111. [PMID: 36555753 PMCID: PMC9785150 DOI: 10.3390/ijms232416111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified as a human group I carcinogen; however, the underlying mechanisms governing Ni-induced carcinogenesis are still being elucidated. Here, we present data demonstrating that Ni exposure generates EVs that contribute to Ni-mediated carcinogenesis and cancer progression. Human bronchial epithelial (BEAS-2B) cells and human embryonic kidney-293 (HEK293) cells were chronically exposed to Ni to generate Ni-treated cells (Ni-6W), Ni-transformed BEAS-2B cells (Ni-3) and Ni-transformed HEK293 cells (HNi-4). The signatures of EVs isolated from Ni-6W, Ni-3, HNi-4, BEAS-2B, and HEK293 were analyzed. Compared to their respective untreated cells, Ni-6W, Ni-3, and HNi-4 released more EVs. This change in EV release coincided with increased transcription of the EV biogenesis markers CD82, CD63, and flotillin-1 (FLOT). Additionally, EVs from Ni-transformed cells had enriched protein and RNA, a phenotype also observed in other studies characterizing EVs from cancer cells. Interestingly, both epithelial cells and human umbilical vein endothelial (HUVEC) cells showed a preference for taking up Ni-altered EVs compared to EVs released from the untreated cells. Moreover, these Ni-altered EVs induced inflammatory responses in both epithelial and endothelial cells and increased the expression of coagulation markers in endothelial cells. Prolonged treatment of Ni-alerted EVs for two weeks induced the epithelial-to-mesenchymal transition (EMT) in BEAS-2B cells. This study is the first to characterize the effect of Ni on EVs and suggests the potential role of EVs in Ni-induced cancer progression.
Collapse
Affiliation(s)
| | | | | | | | - Max Costa
- Correspondence: ; Tel.: +1-646-754-9443
| |
Collapse
|
10
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
11
|
Linville RM, Sklar MB, Grifno GN, Nerenberg RF, Zhou J, Ye R, DeStefano JG, Guo Z, Jha R, Jamieson JJ, Zhao N, Searson PC. Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels. Fluids Barriers CNS 2022; 19:87. [PMID: 36333694 PMCID: PMC9636829 DOI: 10.1186/s12987-022-00377-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Matthew B Sklar
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle N Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renée F Nerenberg
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Ye
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Wu B, Zhong Y, Chen J, Pan X, Fan X, Chen P, Fu C, Ou C, Chen M. A dual-targeting peptide facilitates targeting anti-inflammation to attenuate atherosclerosis in ApoE -/- mice. Chem Commun (Camb) 2022; 58:8690-8693. [PMID: 35833251 DOI: 10.1039/d2cc01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Yuanzhi Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Jinmin Chen
- Cardiovascular Department of The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xianmei Pan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Xianglin Fan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Peier Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Chenxing Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523059, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| |
Collapse
|
13
|
Laboratory evidence on a direct correlation between acute central serous chorioretinopathy and tenascin C, metalloprotein 1, BAX, BCL2, subfatin and asprosin. J Fr Ophtalmol 2022; 45:314-322. [PMID: 35123814 DOI: 10.1016/j.jfo.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
|
14
|
Jansen J, Escriva X, Godeferd F, Feugier P. Multiscale bio-chemo-mechanical model of intimal hyperplasia. Biomech Model Mechanobiol 2022; 21:709-734. [DOI: 10.1007/s10237-022-01558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
15
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
16
|
Dosta P, Tamargo I, Ramos V, Kumar S, Kang DW, Borrós S, Jo H. Delivery of Anti-microRNA-712 to Inflamed Endothelial Cells Using Poly(β-amino ester) Nanoparticles Conjugated with VCAM-1 Targeting Peptide. Adv Healthc Mater 2021; 10:e2001894. [PMID: 33448151 PMCID: PMC8277885 DOI: 10.1002/adhm.202001894] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are an important target for therapy in a wide range of diseases, most notably atherosclerosis. Developing efficient nanoparticle (NP) systems that deliver RNA interference (RNAi) drugs specifically to dysfunctional ECs in vivo to modulate their gene expression remains a challenge. To date, several lipid-based NPs are developed and shown to deliver RNAi to ECs, but few of them are optimized to specifically target dysfunctional endothelium. Here, a novel, targeted poly(β-amino ester) (pBAE) NP is demonstrated. This pBAE NP is conjugated with VHPK peptides that target vascular cell adhesion molecule 1 protein, overexpressed on inflamed EC membranes. To test this approach, the novel NPs are used to deliver anti-microRNA-712 (anti-miR-712) specifically to inflamed ECs both in vitro and in vivo, reducing the high expression of pro-atherogenic miR-712. A single administration of anti-miR-712 using the VHPK-conjugated-pBAE NPs in mice significantly reduce miR-712 expression, while preventing the loss of its target gene, tissue inhibitor of metalloproteinase 3 (TIMP3) in inflamed endothelium. miR-712 and TIMP3 expression are unchanged in non-inflamed endothelium. This novel, targeted-delivery platform may be used to deliver RNA therapeutics specifically to dysfunctional endothelium for the treatment of vascular disease.
Collapse
Affiliation(s)
- Pere Dosta
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Ian Tamargo
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Victor Ramos
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Dong Won Kang
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Salvador Borrós
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
17
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
18
|
MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020; 21:ijms21207710. [PMID: 33081056 PMCID: PMC7589112 DOI: 10.3390/ijms21207710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC’s role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.
Collapse
|
19
|
The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm 2020; 2020:3872367. [PMID: 33082709 PMCID: PMC7557896 DOI: 10.1155/2020/3872367] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.
Collapse
|
20
|
Jiang S, Awadasseid A, Narva S, Cao S, Tanaka Y, Wu Y, Fu W, Zhao X, Wei C, Zhang W. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure. Life Sci 2020; 258:118252. [PMID: 32791149 DOI: 10.1016/j.lfs.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to analyze the impact of four synthesized benzoxazinone derivatives as screening drugs on c-Myc-overexpressed cancer cells (H7402, HeLa, SK-RC-42, SGC7901, and A549) and to explore their interaction mechanisms in detail. MATERIALS AND METHODS Using morphological analysis, real-time cytotoxicity analysis, wound healing assay, reverse transcription PCR, electrophoretic mobility shift assay, and circular dichroism spectroscopy techniques. KEY FINDINGS Results revealed that these four compounds could inhibit proliferation of SK-RC-42, SGC7901, and A549 cells in five cancer cell lines to varying degrees and significantly hinder migration. More importantly, the RT-PCR assay showed that the compounds could surprisingly downregulate the expression of c-Myc mRNA in a dose-dependent manner in the five cancer cells, which may be one of the causes of cancer cell proliferation in vitro inhibition. Further EMSA assays demonstrated that at the molecular level of DNA, four compounds can induce the formation of G-quadruplexes (G4-DNAs) in the c-Myc gene promoter. In addition, the CD result of compound 1 clearly indicates that it specifically induces a c-Myc GC-rich 36mer double-stranded DNA in the c-Myc promoter to form a G-quadruplex hybrid configuration. In conclusion, the compounds studied could dose-dependently inhibit the growth and migration of the cancer cells being investigated. This is positively associated with the reduction of overexpression of the c-Myc gene, which may be significantly regulated by the association of compounds with the G-quadruplexes produced in the c-Myc gene promoter region. SIGNIFICANCE We conclude that three compounds merit further study, particularly against non-small-cell lung cancer, as leading compounds of anticancer drugs.
Collapse
Affiliation(s)
- Shikun Jiang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song Cao
- College of Pharmacy, East China University of Science and Technology, Shanghai 021, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wei Fu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuanhe Wei
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Sano H, Watanabe M, Yamashita T, Tanishita K, Sudo R. Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro. Biofabrication 2020; 12:045008. [DOI: 10.1088/1758-5090/ab9316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Strassheim D, Karoor V, Nijmeh H, Weston P, Lapel M, Schaack J, Sullivan T, Dempsey EC, Stenmark KR, Gerasimovskaya E. c-Jun, Foxo3a, and c-Myc Transcription Factors are Key Regulators of ATP-Mediated Angiogenic Responses in Pulmonary Artery Vasa Vasorum Endothelial Cells. Cells 2020; 9:cells9020416. [PMID: 32054096 PMCID: PMC7072142 DOI: 10.3390/cells9020416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiogenic vasa vasorum (VV) expansion plays an essential role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH), a cardiovascular disease. We previously showed that extracellular ATP released under hypoxic conditions is an autocrine/paracrine, the angiogenic factor for pulmonary artery (PA) VV endothelial cells (VVECs), acting via P2Y purinergic receptors (P2YR) and the Phosphoinositide 3-kinase (PI3K)-Akt-Mammalian Target of Rapamycin (mTOR) signaling. To further elucidate the molecular mechanisms of ATP-mediated VV angiogenesis, we determined the profile of ATP-inducible transcription factors (TFs) in VVECs using a TranSignal protein/DNA array. C-Jun, c-Myc, and Foxo3 were found to be upregulated in most VVEC populations and formed nodes connecting several signaling networks. siRNA-mediated knockdown (KD) of these TFs revealed their critical role in ATP-induced VVEC angiogenic responses and the regulation of downstream targets involved in tissue remodeling, cell cycle control, expression of endothelial markers, cell adhesion, and junction proteins. Our results showed that c-Jun was required for the expression of ATP-stimulated angiogenic genes, c-Myc was repressive to anti-angiogenic genes, and Foxo3a predominantly controlled the expression of anti-apoptotic and junctional proteins. The findings from our study suggest that pharmacological targeting of the components of P2YR-PI3K-Akt-mTOR axis and specific TFs reduced ATP-mediated VVEC angiogenic response and may have a potential translational significance in attenuating pathological vascular remodeling.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Hala Nijmeh
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Philip Weston
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Martin Lapel
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
23
|
Angelini G, Flego D, Vinci R, Pedicino D, Trotta F, Ruggio A, Piemontese GP, Galante D, Ponzo M, Biasucci LM, Liuzzo G, Crea F. Matrix metalloproteinase-9 might affect adaptive immunity in non-ST segment elevation acute coronary syndromes by increasing CD31 cleavage on CD4+ T-cells. Eur Heart J 2019; 39:1089-1097. [PMID: 29211854 PMCID: PMC5915953 DOI: 10.1093/eurheartj/ehx684] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Aims In patients with acute coronary syndrome (ACS), the higher activity of effector T-cells suggests that mechanisms involving adaptive immunity dysregulation might play a role in coronary instability. The shedding of the functional CD31 domain 1–5 leads to uncontrolled lymphocyte activation. In experimental models, matrix metalloproteinase-9 (MMP-9) has been implicated in endothelial CD31 cleavage. Interestingly, higher serum levels of MMP-9 have been observed in ACS. We aim to investigate the mechanisms underlying CD31 dysregulation in ACS. Methods and results To assess CD31 cleavage on CD4+ T-cells, we analysed by flow cytometry CD4+ T-cells of 30 ACS, 25 stable angina (SA) patients, and 28 controls (CTRL) using two different CD31 antibodies that specifically recognize domain 1–5 or the non-functional membrane-proximal domain 6. The ratio between the domains was significantly lower in ACS than in SA and CTRL (P = 0.002 ACS vs. SA; P = 0.002 ACS vs. CTRL). After stimulation with anti-CD3/CD28, the 1–5/6 domain ratio was significantly lower in ACS than in SA (P = 0.005). ELISA of supernatants obtained from T-cell receptor-stimulated CD4+ T-cells showed higher production of MMP-9 in ACS than in SA (P < 0.001). CD31 domain 1–5 expression in activated CD4+ T-cells from ACS patients increased after treatment with a specific MMP-9 inhibitor (P = 0.042). Conclusion Our study suggest that enhanced MMP-9 release plays a key role in determining the cleavage and shedding of the functional CD31 domain 1–5 in CD4+ T-cells of ACS patients. This mechanism might represent an important therapeutic target to modulate T-cell dysregulation in ACS. ![]()
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Davide Flego
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Francesco Trotta
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Aureliano Ruggio
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Giuseppe P Piemontese
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Domenico Galante
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Myriana Ponzo
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Luigi M Biasucci
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| |
Collapse
|
24
|
Expression of Alpha-Enolase (ENO1), Myc Promoter-Binding Protein-1 (MBP-1) and Matrix Metalloproteinases (MMP-2 and MMP-9) Reflect the Nature and Aggressiveness of Breast Tumors. Int J Mol Sci 2019; 20:ijms20163952. [PMID: 31416219 PMCID: PMC6720302 DOI: 10.3390/ijms20163952] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a complex and heterogeneous disease: Several molecular alterations cause cell proliferation and the acquisition of an invasive phenotype. Extracellular matrix (ECM) is considered essential for sustaining tumor growth and matrix metalloproteinases (MMPs) have been identified as drivers of many aspects of the tumor phenotype. Mounting evidence indicates that both α-enolase (ENO1) and Myc promoter-binding protein-1 (MBP-1) also played pivotal roles in tumorigenesis, although as antagonists. ENO1 is involved in cell growth, hypoxia tolerance and autoimmune activities besides its major role in the glycolysis pathway. On the contrary, MBP-1, an alternative product of ENO1, suppresses cell proliferation and the invasive ability of cancer cells. Since an important task in personalized medicine is to discriminate a different subtype of patients with different clinical outcomes including chances of recurrence and metastasis, we investigated the functional relationship between ENO1/MBP-1 expression and MMP-2 and MMP-9 activity levels in both tissues and sera of breast cancer patients. We focused on the clinical relevance of ENO1 and MMPs (MMP-2 and MMP-9) overexpression in breast cancer tissues: The association between the higher ENO1, MMP-2 and MMP-9 expression with a worse prognosis suggest that the elevated ENO1 and MMPs expression are promising biomarkers for breast cancer. A relationship seems to exist between MBP-1 expression and the decrease in the activity levels of MMP-9 in cancer tissues and MMP-2 in sera. Moreover, the sera of breast cancer patients grouped for MBP-1 expression differentially induced, in vitro, cell proliferation and migration. Our findings support the hypothesis of patient’s stratification based on ENO1, MBP-1 and MMPs expression. Elucidating the molecular pathways through which MBP-1 influences MMPs expression and breast cancer regression can lead to the discovery of new management strategies.
Collapse
|
25
|
Palmieri B, Vadalà M, Laurino C. Review of the molecular mechanisms in wound healing: new therapeutic targets? J Wound Care 2019; 26:765-775. [PMID: 29244975 DOI: 10.12968/jowc.2017.26.12.765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The restoration of the skin barrier in acute and chronic wounds is controlled by several molecular mechanisms that synergistically regulate cell kinetics, enzymatic functions, and neurovascular activation. These pathways include genetic and epigenetic activation, which modulate physiological wound healing. Our review describes the genetic background of skin repair, namely transcription-independent diffusible damage signals, individual variability, epigenetic mechanism, controlled qualitative traits, post-translational mechanisms, antioxidants, nutrients, DNA modifications, bacteria activation, mitochondrial activity, and oxidative stress. The DNA background modulating skin restoration could be used to plan new diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Palmieri
- Associated Professor, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - M Vadalà
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - C Laurino
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| |
Collapse
|
26
|
Kumar S, Williams D, Sur S, Wang JY, Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 2019; 114:76-92. [PMID: 30300747 PMCID: PMC6905428 DOI: 10.1016/j.vph.2018.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction, ischemic stroke, and peripheral artery disease. The disease preferentially occurs in arterial regions exposed to disturbed blood flow, in part, by altering expression of flow-sensitive coding- and non-coding genes. In this review, we summarize the role of noncoding RNAs, [microRNAs (miRNAs) and long noncoding RNAs(lncRNAs)], as regulators of gene expression and outline their relationship to the pathogenesis of atherosclerosis. While miRNAs are small noncoding genes that post-transcriptionally regulate gene expression by targeting mRNA transcripts, the lncRNAs regulate gene expression by diverse mechanisms, which are still emerging and incompletely understood. We focused on multiple flow-sensitive miRNAs such as, miR-10a, -19a, -23b, -17~92, -21, -663, -92a, -143/145, -101, -126, -712, -205, and -155 that play a critical role in endothelial function and atherosclerosis by targeting inflammation, cell cycle, proliferation, migration, apoptosis, and nitric oxide signaling. Flow-dependent regulation of lncRNAs is just emerging, and their role in vascular dysfunction and atherosclerosis is unknown. Here, we discuss the flow-sensitive lncRNA STEEL along with other lncRNAs studied in the context of vascular pathophysiology and atherosclerosis such as MALAT1, MIAT1, ANRIL, MYOSLID, MEG3, SENCR, SMILR, LISPR1, and H19. Also discussed is the use of these noncoding RNAs as potential biomarkers and therapeutics to reduce and regress atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Darian Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Sanjoli Sur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Jun-Yao Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA; Division of Cardiology, Emory University, Atlanta, USA.
| |
Collapse
|
27
|
Functional pathways associated with human carotid atheroma: a proteomics analysis. Hypertens Res 2019; 42:362-373. [PMID: 30617313 DOI: 10.1038/s41440-018-0192-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
Abstract
Advances in large-scale analysis are becoming very useful in understanding health and disease. Here, we used high-throughput mass spectrometry to identify differentially expressed proteins between early and advanced lesions. Carotid endarterectomy samples were collected and dissected into early and advanced atherosclerotic lesion portions. Proteins were extracted and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Differentially expressed proteins were identified and verified using multiple reaction monitoring (MRM), on which advanced systems biology and enrichment analyses were performed. The identified proteins were further compared to the transcriptomic data of 32 paired samples obtained from early and advanced atherosclerotic lesions. A total of 95 proteins were upregulated, and 117 proteins were downregulated in advanced lesions compared to early atherosclerotic lesions (p < 0.05). The upregulated proteins were associated with proatherogenic processes, whereas downregulated proteins were involved in extracellular matrix organization and vascular smooth muscle cytoskeleton. Many of the identified proteins were linked to various "upstream regulators", among which TGFβ had the highest connections. Specifically, a total of 19 genes were commonly upregulated, and 30 genes were downregulated at the mRNA and protein levels. These genes were involved in vascular smooth muscle cell activity, for which enriched transcription factors were identified. This study deciphers altered pathways in atherosclerosis and identifies upstream regulators that could be candidate targets for treatment.
Collapse
|
28
|
Storch AS, Rocha HNM, Garcia VP, Batista GMDS, Mattos JD, Campos MO, Fuly AL, Nóbrega ACLD, Fernandes IA, Rocha NG. Oscillatory shear stress induces hemostatic imbalance in healthy men. Thromb Res 2018; 170:119-125. [DOI: 10.1016/j.thromres.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/28/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023]
|
29
|
Cooper S, Emmott A, McDonald KK, Campeau MA, Leask RL. Increased MMP activity in curved geometries disrupts the endothelial cell glycocalyx creating a proinflammatory environment. PLoS One 2018; 13:e0202526. [PMID: 30138400 PMCID: PMC6107195 DOI: 10.1371/journal.pone.0202526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/03/2018] [Indexed: 12/03/2022] Open
Abstract
Wall shear stress gradients (WSSGs) induce an inflammatory phenotype in endothelial cells (ECs) which is hypothesized to be mediated by mechanotransduction through the EC glycocalyx (GCX). We used a three-dimensional in vitro cell culture model with a 180o curved geometry to investigate if WSSGs created by curvature can cause EC inflammation and disruption of the GCX. The hydrodynamics of the model elicited a morphological response in ECs as well as a pattern of leukocyte adhesion towards the inner wall of curvature that was attenuated with enzymatic removal of GCX components. GCX degradation was also observed in regions of curvature which corresponded to increased activity of MMPs. Together, these results support the hypothesis that the EC GCX is involved in mechanotransduction of WSSGs and that components of the GCX are regulated by MMP activity in regions of curvature.
Collapse
Affiliation(s)
- Scott Cooper
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| | - Alexander Emmott
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Karli K. McDonald
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| | | | - Richard L. Leask
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
30
|
Moritz MNDO, Eustáquio LMS, Micocci KC, Nunes ACC, Dos Santos PK, de Castro Vieira T, Selistre-de-Araujo HS. Alternagin-C binding to α 2β 1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J Venom Anim Toxins Incl Trop Dis 2018; 24:13. [PMID: 29713337 PMCID: PMC5917863 DOI: 10.1186/s40409-018-0150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2β1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2β1 integrin. Herein, we used ALT-C as a α2β1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2β1 integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results Our data demonstrate that ALT-C, after binding to α2β1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion These results demonstrate that α2β1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies. Electronic supplementary material The online version of this article (10.1186/s40409-018-0150-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lívia Mara Santos Eustáquio
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kelli Cristina Micocci
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Ana Carolina Caetano Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Tamires de Castro Vieira
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | | |
Collapse
|
31
|
Cristóbal I, Torrejón B, Rojo F, García-Foncillas J. Potential contribution of SET and c-MYC deregulation to promote extracellular matrix remodelling in hepatocellular carcinoma. Br J Pharmacol 2018; 175:573-574. [PMID: 29313882 DOI: 10.1111/bph.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/22/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz', Madrid, Spain
| | - Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz', Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz', Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz', Madrid, Spain
| |
Collapse
|
32
|
Stenosis Hemodynamics Disrupt the Endothelial Cell Glycocalyx by MMP Activity Creating a Proinflammatory Environment. Ann Biomed Eng 2017; 45:2234-2243. [PMID: 28474270 DOI: 10.1007/s10439-017-1846-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Abstract
Hemodynamic forces are known to be able to induce an inflammatory phenotype in endothelial cells (ECs). The EC glycocalyx (GCX) is a dynamic structure which is regulated in response to different stimuli and hypothesized as an important contributor to the mechanotransduction of wall shear stresses (WSS). In this work, we used a three dimensional in vitro EC culture model with a 50% asymmetric stenosis to investigate degradation of the GCX by increased matrix metalloproteinase (MMP) activity in regions of WSS gradients and how this degradation might create a proinflammatory environment. Experiments showed GCX degradation was observed in regions of WSSGs created by a 50% asymmetric stenosis. Furthermore, inhibition of MMP activity abolished this regional degradation. The integrity of the GCX altered EC morphological elongation to flow and leukocyte adhesion patterns. These results help strengthen the hypothesis that the EC GCX is involved in the mechanotransduction of hemodynamic forces and that the GCX is regulated by MMP activity in regions of WSSGs.
Collapse
|
33
|
Pascarella L, Penn A, Schmid-Schönbein GW. Venous Hypertension and the Inflammatory Cascade: Major Manifestations and Trigger Mechanisms. Angiology 2016; 56 Suppl 1:S3-10. [PMID: 16193224 DOI: 10.1177/00033197050560i102] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent histologic and immunocytochemical evidence of venous leg ulcers supports the hypothesis that lesions observed at different stages of chronic venous insufficiency may be associated with, and possibly caused by, an inflammatory process. Evidence has been obtained that venous valve deficiency may be associated with leukocyte infiltration into valve leaflets; therefore, it is hypothesized that an essential event in the inflammatory cascade is the enzymatic degradation of the valve leaflets and venous wall. The metalloproteinases (MMP) in veins exposed to elevated pressures up to 6 weeks were examined in a rat femoral fistula model with venous hypertension. Zymography shows increased activity of pro-MMP-2 at 3 and 6 weeks. MMP-2 and MMP-9 activity was predominantly observed at days 7 and 21 after creation of the fistula. The degree of extracellular matrix remodeling correlates with the morphological finding of macroscopic lesions. Therefore, the MMP-2 and MMP-9 activation is already present in veins days after exposure to elevated blood pressure and coincides with periods of early alterations in the valve morphology and early forms of reflux.
Collapse
Affiliation(s)
- Luigi Pascarella
- Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | | | | |
Collapse
|
34
|
Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 2016; 252:136-146. [PMID: 27529818 DOI: 10.1016/j.atherosclerosis.2016.07.930] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. METHODS 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE(-/-)) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. RESULTS Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71 ± 23%, non-plaque: 97 ± 3%, p = 0.02; thickness plaque: 0.85 ± 0.15 μm, non-plaque: 1.2 ± 0.21 μm, p = 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92 ± 3%, p = 0.7 vs. non-plaque ApoE(-/-), thickness WT: 1.1 ± 0.06 μm, p = 0.2 vs. non-plaque ApoE(-/-)). Endothelial cell apoptosis was significantly increased in ApoE(-/-) mice compared to wild type mice (ApoE(-/-):64.3 ± 33.0, WT: 1.1 ± 0.5 TUNEL-pos/cm, p = 2 × 10(-7)). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p = 3 × 10(-5)). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. CONCLUSIONS Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Eno E Ebong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon Mensah
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carly Hirschberg
- Graduate Division Summer Undergraduate Research Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
35
|
Korai M, Kitazato KT, Tada Y, Miyamoto T, Shimada K, Matsushita N, Kanematsu Y, Satomi J, Hashimoto T, Nagahiro S. Hyperhomocysteinemia induced by excessive methionine intake promotes rupture of cerebral aneurysms in ovariectomized rats. J Neuroinflammation 2016; 13:165. [PMID: 27349749 PMCID: PMC4924228 DOI: 10.1186/s12974-016-0634-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Background Hyperhomocysteinemia (HHcy) is associated with inflammation and a rise in the expression of matrix metalloproteinase-9 (MMP-9) in the vascular wall. However, the role of HHcy in the growth and rupture of cerebral aneurysms remains unclear. Methods Thirteen-week-old female Sprague-Dawley rats were subject to bilateral ovariectomy and ligation of the right common carotid artery and fed an 8 % high-salt diet to induce cerebral aneurysms. Two weeks later, they underwent ligation of the bilateral posterior renal arteries. They were divided into two groups and methionine (MET) was or was not added to their drinking water. In another set of experiments, the role of folic acid (FA) against cerebral aneurysms was assessed. Results During a 12-week observation period, subarachnoid hemorrhage due to aneurysm rupture was observed at the anterior communicating artery (AcomA) or the posterior half of the circle of Willis. HHcy induced by excessive MET intake significantly increased the incidence of ruptured aneurysms at 6–8 weeks. At the AcomA of rats treated with MET, we observed the promotion of aneurysmal growth and infiltration by M1 macrophages. Furthermore, the mRNA level of MMP-9, the ratio of MMP-9 to the tissue inhibitor of metalloproteinase-2, and the level of interleukin-6 were higher in these rats. Treatment with FA abolished the effect of MET, suggesting that the inflammatory response and vascular degradation at the AcomA is attributable to HHcy due to excessive MET intake. Conclusions We first demonstrate that in hypertensive ovariectomized rats, HHcy induced by excessive MET intake may be associated with the propensity of the aneurysm wall to rupture. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0634-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaaki Korai
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| | - Keiko T Kitazato
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Nobuhisa Matsushita
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Junichiro Satomi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomoki Hashimoto
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shinji Nagahiro
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
36
|
NABAEI MALIKEH, FATOURAEE NASSER. A 3D MODEL FOR MURAL-CELL-MEDIATED DESTRUCTIVE REMODELING DURING EARLY DEVELOPMENT OF A CEREBRAL ANEURYSM. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Development of a diagnostic tool for predicting the behavior of cerebral aneurysms was the inspiration of many research groups in recent years. In the present study a fluid–solid-growth (FSG) model for the early development of a cerebral aneurysm was presented in a 3D model of the internal carotid artery (ICA). This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodeling and second, full coupling of the wall and the blood flow. Taking into account the shear dependent nature of elastin degradation and mural-cell-mediated destructive activities, here, the degradation process has been linked to high effective stress of the vascular wall. The evolving properties of the elastinous and collagenous constituents have been predicted during the early development of the aneurysm and the code is applicable to more complicated aneurismal growth models.
Collapse
Affiliation(s)
- MALIKEH NABAEI
- Biological Fluid Mechanics Research Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, P. O. Box 15875-3413, I.R. Iran, Postal Code 15914, Iran
| | - NASSER FATOURAEE
- Biological Fluid Mechanics Research Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, P. O. Box 15875-3413, I.R. Iran, Postal Code 15914, Iran
| |
Collapse
|
37
|
Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther 2015; 22:729-38. [PMID: 25965392 DOI: 10.1038/gt.2015.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
Abstract
Recent researches demonstrate that microRNAs (miRNAs) are deregulated in numerous cancers and involved in tumorigenesis, whereas their influences on pancreatic cancer (PC) still need further elucidation. The present research revealed that miR-494 was significantly decreased in PC cell lines and tissues. Functional study showed that overexpressed miR-494 could remarkably inhibit proliferation of PC cells both in vitro and in vivo, which was due to induction of apoptosis, G1-phase arrest and senescence. Moreover, upregulated miR-494 significantly prohibited invasion of PC cells. Meanwhile, both c-Myc and SIRT1 was identified as targets of miR-494 through dual luciferase assay and further confirmed by the reverse correlation between miR-494 and c-Myc/SIRT1 in PC samples. Furthermore, co-transfection with c-Myc-RNAi and SIRT1-RNAi synergistically reduced c-Myc and SIRT1 expression, and inhibited proliferation of PC, which simulated the effects of miR-494 overexpression. On the contrary, co-overexpression of c-Myc and SIRT1 effectively rescued inhibition of overexpressed miR-494 on PC cells. The clinical characteristics further revealed that low miR-494 correlated with larger tumor size, late tumor node metastasis stage, lymphatic invasion, distant metastasis and poor prognosis. In conclusion, the present study indicated that miR-494 might serve as predictor and inhibitor in PC by directy downregulating the loop of c-Myc and SIRT1.
Collapse
|
38
|
Pereg D, Fefer P, Samuel M, Wolff R, Czarnecki A, Deb S, Sparkes JD, Fremes SE, Strauss BH. Native coronary artery patency after coronary artery bypass surgery. JACC Cardiovasc Interv 2015; 7:761-7. [PMID: 25060019 DOI: 10.1016/j.jcin.2014.01.164] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of the study was to determine native coronary artery patency 1 year after coronary artery bypass grafting and to identify clinical and angiographic predictors for the development of a chronic total occlusion (CTO). BACKGROUND In contrast to the large body of information regarding graft patency, data regarding atherosclerosis progression and vessel patency in surgically bypassed native coronary arteries are less clear. METHODS Of the 440 patients who underwent 1-year follow-up angiography as part of the multicenter RAPS (Radial Artery Patency Study), included in our study were 388 patients (88%) for whom angiograms were available for review. Angiograms were reviewed for native coronary artery patency in an independent blinded manner. RESULTS On the pre-operative angiogram, CTO of at least 1 native coronary vessel was demonstrated in 240 patients (61.9%) having 305 occluded vessels. At 1 year after coronary artery bypass grafting, at least 1 new native coronary artery CTO occurred in 169 patients (43.6%). In 7.5% of patients, the native artery and the graft supplying that territory were both occluded. A new CTO was almost 5 times more likely to occur in coronary vessels with a pre-operative proximal stenosis >90% compared with vessels with proximal stenosis <90% (45.5% vs. 9.5%, respectively, p < 0.001). Patients with a new CTO had significantly more baseline Canadian Cardiovascular Society class 4 angina compared with patients without a new CTO. A new CTO was less likely to occur in the left anterior descending artery (18.4%), supplied by the left internal thoracic artery. When comparing radial artery and saphenous vein grafts, neither the type of graft nor graft patency had any association with native coronary artery occlusion. CONCLUSIONS CTO of surgically bypassed coronary arteries 1 year after coronary artery bypass grafting is extremely common.
Collapse
Affiliation(s)
- David Pereg
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul Fefer
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Leviev Heart Center, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Michelle Samuel
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rafael Wolff
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Czarnecki
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Saswata Deb
- Division of Cardiovascular Surgery, Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - John D Sparkes
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Stephan E Fremes
- Division of Cardiovascular Surgery, Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Bernard S. Goldman Chair in Cardiovascular Surgery, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Bradley H Strauss
- Division of Cardiology, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Reichmann Chair in Cardiovascular Sciences, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Davis CA, Zambrano S, Anumolu P, Allen ACB, Sonoqui L, Moreno MR. Device-Based In Vitro Techniques for Mechanical Stimulation of Vascular Cells: A Review. J Biomech Eng 2015; 137:040801. [DOI: 10.1115/1.4029016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/07/2014] [Indexed: 01/19/2023]
Abstract
The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, “An in Vitro Study of Flow Response by Cells,” J. Biomech., 4(1), pp. 31–36 and Meikle et al., 1979, “Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress,” Calcif. Tissue Int., 28(2), pp. 13–144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.
Collapse
Affiliation(s)
- Caleb A. Davis
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Steve Zambrano
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Pratima Anumolu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Alicia C. B. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1801 e-mail:
| | - Leonardo Sonoqui
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Michael R. Moreno
- Department of Mechanical Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:
| |
Collapse
|
40
|
Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, Han J, Lauridsen HM, Mejean CO, Eichmann A, Thomas JL, Humphrey JD, Schwartz MA. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 2015; 4. [PMID: 25643397 PMCID: PMC4337723 DOI: 10.7554/elife.04645] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo. DOI:http://dx.doi.org/10.7554/eLife.04645.001 Blood and lymphatic vessels remodel their shape, diameter and connections during development, and throughout life in response to growth, exercise and disease. This process is called vascular remodeling. The endothelial cells that line the inside of blood and lymphatic vessels are constantly exposed to the frictional force from flowing blood, termed fluid shear stress. Changes in shear stress are sensed by the endothelial cells, which trigger vascular remodeling to return the stress to the original level. It has been proposed that remodeling is governed by a preferred level of fluid shear stress, or set point, against which deviations in the shear stress are compared. Thus, changing the fluid flow through a blood vessel increases or decreases shear stress, which results in the vessel remodeling to restore the original level of shear stress. Like all remodeling, this process involves inflammation to recruit white blood cells, which assist with the process. Baeyens et al. investigated whether such a shear stress set point exists and what its biological basis might be using cultured endothelial cells from human umbilical veins. These cells remained stable and in a resting state when a particular level of shear stress was applied to them; above or below this shear stress level, the cells produced an inflammatory response like that seen during vascular remodeling. This suggests that these cells do indeed have a set point for shear stress. The same response occurred in human lymphatic endothelial cells, although in these cells the shear stress set point was much lower, correlating with the low flow in lymphatic vessels. Baeyens et al. then discovered that the shear stress set point is related to the level of a protein called VEGFR3 in the cells, which was recently found to participate in shear stress sensing. Endothelial cells from lymphatic vessels normally produce much greater quantities of VEGFR3 than those from blood vessels. Reducing the amount of VEGFR3 in lymphatic endothelial cells increased the set point shear stress, while increasing the levels in blood vessel cells decreased the set point. This suggests that the levels of this protein account for the difference in the response of these two cell types. Baeyens et al. then tested this pathway by reducing the levels of VEGFR3 in zebrafish embryos and in adult mice. In both animals, this caused arteries to narrow, showing that VEGFR3 levels also control sensitivity to shear stress—and hence vascular remodeling—inside living creatures. Understanding in detail how vascular remodeling is regulated could help improve treatments for a wide range of cardiovascular conditions. To do so, further work will be needed to develop methods to control the sensitivity of endothelial cells to shear stress and to identify other proteins that might specifically control the narrowing or the expansion of vessels in human patients. DOI:http://dx.doi.org/10.7554/eLife.04645.002
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Stefania Nicoli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Brian G Coon
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Tyler D Ross
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Koen Van den Dries
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jinah Han
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Holly M Lauridsen
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Cecile O Mejean
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
41
|
Abstract
This review examines the emerging role of endothelial shear stress (ESS) and blood viscosity on the initiation and progression of atherosclerosis in peripheral arterial disease. Among the variables determining ESS, blood viscosity has to date been the most overlooked by clinical researchers. Blood viscosity is a laboratory assessment that is minimally invasive and modifiable using pharmacologic therapy as well as by hemodilution. Monitoring and controlling blood viscosity not only modulates ESS, but also reduces peripheral vascular resistance and increases blood flow to the lower extremities.
Collapse
|
42
|
Nabaei M, Fatouraee N. Microstructural modelling of cerebral aneurysm evolution through effective stress mediated destructive remodelling. J Theor Biol 2014; 354:60-71. [PMID: 24657628 DOI: 10.1016/j.jtbi.2014.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/25/2022]
Abstract
Recently, researchers have shown an increased interest in the biomechanical modelling of cerebral aneurysm development. In the present study a fluid-solid-growth model for the formation of a fusiform aneurysm has been presented in an axi-symmetric geometry of the internal carotid artery. This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodelling and second, full coupling of the wall and the blood flow. Here for the first time the degradation of elastin has been defined as a function of vascular wall effective stress to take into account the shear dependent nature of degradation and the mural-cell-mediated destructive activities. The model has been stabilized in size and mechanical properties and is consistent with other computational or clinical studies. Furthermore, the evolving microstructural properties of the wall during the evolution process have been predicted.
Collapse
|
43
|
Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34:2206-16. [PMID: 25012134 DOI: 10.1161/atvbaha.114.303425] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed flow, in part, due to alterations in gene expression. MicroRNAs (miRNAs) are small, noncoding genes that post-transcriptionally regulate gene expression by targeting messenger RNA transcripts. Emerging evidence indicates that alteration of flow conditions regulate expression of miRNAs in endothelial cells both in vitro and in vivo. These flow-sensitive miRNAs, known as mechano-miRs, regulate endothelial gene expression and can regulate endothelial dysfunction and atherosclerosis. MiRNAs such as, miR-10a, miR-19a, miR-23b, miR-17-92, miR-21, miR-663, miR-92a, miR-143/145, miR-101, miR-126, miR-712, miR-205, and miR-155, have been identified as mechano-miRs. Many of these miRNAs were initially identified as flow sensitive in vitro and were later found to play a critical role in endothelial function and atherosclerosis in vivo through either gain-of-function or loss-of-function approaches. The key signaling pathways that are targeted by these mechano-miRs include the endothelial cell cycle, inflammation, apoptosis, and nitric oxide signaling. Furthermore, we have recently shown that the miR-712/205 family, which is upregulated by disturbed flow, contributes to endothelial inflammation and vascular hyperpermeability by targeting tissue inhibitor of metalloproteinase-3, which regulates metalloproteinases and a disintegrin and metalloproteinases. The mechano-miRs that are implicated in atherosclerosis are termed as mechanosensitive athero-miRs and are potential therapeutic targets to prevent or treat atherosclerosis. This review summarizes the current knowledge of mechanosensitive athero-miRs and their role in vascular biology and atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Chan Woo Kim
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Rachel D Simmons
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA.
| |
Collapse
|
44
|
The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 2014; 4:3000. [PMID: 24346612 PMCID: PMC3923891 DOI: 10.1038/ncomms4000] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) regulate cardiovascular biology and disease, but the role of flow-sensitive microRNAs in atherosclerosis is still unclear. Here we identify miRNA-712 (miR-712) as a mechanosensitive miRNA upregulated by disturbed flow (d-flow) in endothelial cells, in vitro and in vivo. We also show that miR-712 is derived from an unexpected source, pre-ribosomal RNA, in an exoribonuclease-dependent but DiGeorge Syndrome Critical Region-8 (DGCR8)-independent manner, suggesting that it is an atypical miRNA. Mechanistically, d-flow-induced miR-712 downregulates tissue inhibitor of metalloproteinase-3 (TIMP3) expression, which in turn activates the downstream matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs) and stimulate pro-atherogenic responses, endothelial inflammation and permeability. Furthermore, silencing miR-712 by anti-miR-712 rescues TIMP3 expression and prevents atherosclerosis in murine models of atherosclerosis. Finally, we report that human miR-205 shares the same “seed sequence” as murine-specific miR-712, and also targets TIMP3 in a flow-dependent manner. Targeting these mechanosensitive “athero-miRs” may provide a new treatment paradigm in atherosclerosis.
Collapse
|
45
|
Ventura I, Vega A, Chacón P, Chamorro C, Aroca R, Gómez E, Bellido V, Puente Y, Blanca M, Monteseirín J. Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy 2014; 69:898-905. [PMID: 24773508 DOI: 10.1111/all.12414] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Asthma is characterized by airway inflammation and remodelling in which matrix metalloproteinases (MMPs) play an important role. MMP-9 is the major MMP found in the bronchoalveolar lavage fluids and bronchial biopsies from patients with allergic asthma after allergen challenge, where it correlates with the count of neutrophils and macrophages. However, the cellular sources of MMP-9 in this inflammatory condition have not yet been clearly identified. This work was undertaken to analyse whether neutrophils may be a source of MMP-9 in the allergic asthma condition upon allergen challenge. METHODS Neutrophils from allergic asthmatic patients were in vitro stimulated, and the levels of MMP-9 release were measured in the cell culture supernatants using enzyme-linked immunosorbent assay (ELISA) and zymography. RESULTS We show that MMP-9 is released by neutrophils, but not by eosinophils from allergic asthmatic patients in response to allergens to which the patients were sensitized. Neutrophils also released MMP-9 in response to anti-IgE Abs, and agonist Abs against FcεRI, FcεRII/CD23 and galectin-3. Inhibitors of transcription and translation, actinomycin D and cycloheximide, partially cancelled this process, suggesting that MMP-9 is also de novo synthesized in response to stimuli. We also show evidence that the MAPKs, p38 and extracellular signal-regulated kinase, as well as the transcription factor NF-κB, are involved, as specific chemical inhibitors of these cell-signalling pathways abolished the anti-IgE/allergen-dependent MMP-9 release. CONCLUSIONS These data demonstrate that the exposure of neutrophils to allergens leads to generation of MMP-9, which may then lead to remodelling in asthma.
Collapse
Affiliation(s)
- I. Ventura
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - A. Vega
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - P. Chacón
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - C. Chamorro
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - R. Aroca
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - E. Gómez
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - V. Bellido
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - Y. Puente
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
| | - M. Blanca
- Research Laboratory; Carlos Haya Hospital-Fundacion IMABIS; Málaga Spain
| | - J. Monteseirín
- Servicio Regional de Inmunología y Alergia; Hospital Universitario Virgen Macarena; Sevilla Spain
- Departamento de Medicina; Facultad de Medicina; Universidad de Sevilla; Sevilla Spain
| |
Collapse
|
46
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Wasse H, Huang R, Long Q, Zhao Y, Singapuri S, McKinnon W, Skardasis G, Tangpricha V. Very high-dose cholecalciferol and arteriovenous fistula maturation in ESRD: a randomized, double-blind, placebo-controlled pilot study. J Vasc Access 2014; 15:88-94. [PMID: 24101420 PMCID: PMC3979512 DOI: 10.5301/jva.5000187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/26/2022] Open
Abstract
PURPOSE While vitamin D is critical for optimal skeletal health, it also appears to play a significant role in vascular homeostasis. This pilot study compared arteriovenous (AV) access outcomes following cholecalciferol supplementation compared to placebo in end-stage renal disease patients preparing to undergo AV access creation. METHODS A total of 52 adult hemodialysis patients preparing for arteriovenous fistula (AVF) creation were randomized to receive perioperative high-dose cholecalciferol versus placebo in this double-blind, randomized, placebo-controlled pilot study. The primary outcome was mean response to high-dose oral cholecalciferol versus placebo, and secondary outcome AV access maturation at 6 months. Logistic regression was used to assess the association between AV access maturation and baseline, posttreatment and overall change in vitamin D concentration. RESULTS A total of 45% of cholecalciferol-treated and 54% of placebo-treated patients were successfully using their AVF or arteriovenous graft (AVG) at 6 months (p=0.8). Baseline serum concentrations of 25(OH)D and 1,25(OH)2D did not differ between those who experienced AVF or AVG maturation and those who did not (p=0.22 and 0.59, respectively). Similarly, there was no relationship between AVF or AVG maturation and posttreatment serum 25(OH)D and 1,25(OH)2D concentration (p=0.24 and 0.51, respectively). CONCLUSIONS Perioperative high-dose vitamin D3 therapy does correct 25(OH)D level but does not appear to have an association with AV access maturation rates. Future research may include extended preoperative vitamin D3 therapy in a larger population or in certain subpopulations at high risk for AVF failure.
Collapse
Affiliation(s)
| | - Rong Huang
- Emory University, Division of Nephrology, Atlanta, GA
| | - Qi Long
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yize Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | | | - William McKinnon
- Peachtree Vascular Associates, Emory University Hospital Midtown, Atlanta GA
| | - George Skardasis
- Peachtree Vascular Associates, Emory University Hospital Midtown, Atlanta GA
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Atlanta, GA and Staff Physician, Atlanta VA Medical Center, Atlanta, GA
| |
Collapse
|
48
|
Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL, Julia P, Maccario J, Boulanger CM, Mallat Z, Tedgui A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2013; 114:434-43. [PMID: 24255059 DOI: 10.1161/circresaha.114.302213] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE FOR STUDY MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. OBJECTIVE To identify miRNAs, called atheromiRs, which are selectively regulated by shear stress and oxidized low-density lipoproteins (oxLDL), and to determine their role in atherogenesis. METHODS AND RESULTS Large-scale miRNA profiling in HUVECs identified miR-92a as an atheromiR candidate, whose expression is preferentially upregulated by the combination of low shear stress (SS) and atherogenic oxLDL. Ex vivo analysis of atheroprone and atheroprotected areas of mouse arteries and human atherosclerotic plaques demonstrated the preferential expression of miR-92a in atheroprone low SS regions. In Ldlr(-/-) mice, miR-92a expression was markedly enhanced by hypercholesterolemia, in particular in atheroprone areas of the aorta. Assessment of endothelial inflammation in gain- and loss-of-function experiments targeting miR-92a expression revealed that miR-92a regulated endothelial cell activation by oxLDL, more specifically under low SS conditions, which was associated with modulation of Kruppel-like factor 2 (KLF2), Kruppel-like factor 4 (KLF4), and suppressor of cytokine signaling 5. miR-92a expression was regulated by signal transducer and activator of transcription 3 in SS- and oxLDL-dependent manner. Furthermore, specific in vivo blockade of miR-92a expression in Ldlr(-/-) mice reduced endothelial inflammation and altered the development of atherosclerosis, decreasing plaque size and promoting a more stable lesion phenotype. CONCLUSIONS Upregulation of miR-92a by oxLDL in atheroprone areas promotes endothelial activation and the development of atherosclerotic lesions. Therefore, miR-92a antagomir seems as a new atheroprotective therapeutic strategy.
Collapse
Affiliation(s)
- Xavier Loyer
- From the INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France (X.L., S.P., A.-C.V., C.L.G., S.B., P.-E.R., B.R., B.E., M.D., C.M.B., Z.M., A.T.); AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France (J.-L.P.); AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Service de Chirurgie Cardiovasculaire, Paris, France (P.J.); INSERM U1018, Université Paris Sud 11, Villejuif, France (J.M.); and Department of Medicine, University of Cambridge, Cambridge, UK (Z.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alexander JS, Prouty L, Tsunoda I, Ganta CV, Minagar A. Venous endothelial injury in central nervous system diseases. BMC Med 2013; 11:219. [PMID: 24228622 PMCID: PMC3851779 DOI: 10.1186/1741-7015-11-219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023] Open
Abstract
The role of the venous system in the pathogenesis of inflammatory neurological/neurodegenerative diseases remains largely unknown and underinvestigated. Aside from cerebral venous infarcts, thromboembolic events, and cerebrovascular bleeding, several inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and optic neuritis, appear to be associated with venous vascular dysfunction, and the neuropathologic hallmark of these diseases is a perivenous, rather than arterial, lesion. Such findings raise fundamental questions about the nature of these diseases, such as the reasons why their pathognomonic lesions do not develop around the arteries and what exactly are the roles of cerebral venous inflammation in their pathogenesis. Apart from this inflammatory-based view, a new hypothesis with more focus on the hemodynamic features of the cerebral and extracerebral venous system suggests that MS pathophysiology might be associated with the venous system that drains the CNS. Such a hypothesis, if proven correct, opens new therapeutic windows in MS and other neuroinflammatory diseases. Here, we present a comprehensive review of the pathophysiology of MS, ADEM, pseudotumor cerebri, and optic neuritis, with an emphasis on the roles of venous vascular system programming and dysfunction in their pathogenesis. We consider the fundamental differences between arterial and venous endothelium, their dissimilar responses to inflammation, and the potential theoretical contributions of venous insufficiency in the pathogenesis of neurovascular diseases.
Collapse
Affiliation(s)
- Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Leonard Prouty
- Department of Pathology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Chaitanya Vijay Ganta
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Alireza Minagar
- Department of Neurology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
50
|
Holsworth RE, Cho YI, Weidman JJ, Sloop GD, Cyr JAS. Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion 2013; 29:102-16. [DOI: 10.1177/0267659113505637] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Renewed interest in the age-old concept of “bloodletting”, a therapeutic approach practiced until as recently as the 19th century, has been stimulated by the knowledge that blood loss, such as following regular donation, is associated with significant reductions in key hemorheological variables, including whole blood viscosity (WBV), plasma viscosity, hematocrit and fibrinogen. An elevated WBV appears to be both a strong predictor of cardiovascular disease and an important factor in the development of atherosclerosis. Elevated WBV through wall shear stress is the most direct physiological parameter that influences the rupture and erosion of vulnerable plaques. In addition to WBV reduction, phlebotomy may reduce an individual’s cardiovascular risk through reductions in excessive iron, oxidative stress and inflammation. Reflecting these findings, blood donation in males has shown significant drops in the incidence of cardiovascular events, as well as in procedures such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. Collectively, the available data on the benefits of therapeutic phlebotomy point to the importance of monitoring WBV as part of a cardiovascular risk factor, along with other risk-modifying measures, whenever an increased cardiovascular risk is detected. The development of a scanning capillary tube viscometer allows the measurement of WBV in a clinical setting, which can prove to be valuable in providing an early warning sign of an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- RE Holsworth
- Southeast Colorado Hospital, Springfield, CO, USA
| | - YI Cho
- Drexel University, Philadelphia, PA, USA
| | - J J Weidman
- Thomas Jefferson University, Philadelphia, PA, USA
| | - GD Sloop
- Benefis Hospitals, Great Falls, MT, USA
| | | |
Collapse
|