1
|
Han P, Mo S, Wang Z, Xu J, Fu X, Tian Y. UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front Oncol 2023; 13:1179947. [PMID: 37152054 PMCID: PMC10154696 DOI: 10.3389/fonc.2023.1179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance.
Collapse
Affiliation(s)
- Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiale Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Yanzhang Tian,
| |
Collapse
|
2
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
3
|
Thomas PA, Schafler ED, Ruff SE, Voisin M, Ha S, Logan SK. UXT in Sertoli cells is required for blood-testis barrier integrity†. Biol Reprod 2021; 103:880-891. [PMID: 32678429 DOI: 10.1093/biolre/ioaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 01/01/2023] Open
Abstract
Spermatogenesis is a complex process that establishes male fertility and involves proper communication between the germline (spermatozoa) and the somatic tissue (Sertoli cells). Many factors that are important for spermatozoa production are also required for Sertoli cell function. Recently, we showed that the transcriptional cofactor ubiquitously expressed transcript (UXT) encodes a protein that is essential in germ cells for spermatogenesis and fertility. However, the role of UXT within Sertoli cells and how it affects Sertoli cell function was still unclear. Here we describe a novel role for UXT in the Sertoli cell's ability to support spermatogenesis. We find that the conditional deletion of Uxt in Sertoli cells results in smaller testis size and weight, which coincided with a loss of germ cells in a subset of seminiferous tubules. In addition, the deletion of Uxt has no impact on Sertoli cell abundance or maturity, as they express markers of mature Sertoli cells. Gene expression analysis reveals that the deletion of Uxt in Sertoli cells reduces the transcription of genes involved in the tight junctions of the blood-testis barrier (BTB). Furthermore, tracer experiments and electron microscopy reveal that the BTB is permeable in UXT KO animals. These findings broaden our understanding of UXT's role in Sertoli cells and its contribution to the structural integrity of the BTB.
Collapse
Affiliation(s)
- Phillip A Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Eric D Schafler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sophie E Ruff
- Department of Urology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Maud Voisin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Susan Ha
- Department of Urology, New York University School of Medicine, New York, NY, USA
| | - Susan K Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
5
|
Foschini MP, Morandi L, Sanchez AM, Santoro A, Mulè A, Zannoni GF, Varga Z, Moskovszky L, Cucchi MC, Moelans CB, Giove G, van Diest PJ, Masetti R. Methylation Profile of X-Chromosome-Related Genes in Male Breast Cancer. Front Oncol 2020; 10:784. [PMID: 32626651 PMCID: PMC7313421 DOI: 10.3389/fonc.2020.00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Androgen receptor (AR) has been described to play a prominent role in male breast cancer (MBC). It maps on chromosome X, and recent reports indicate that X-chromosome polysomy is frequent in MBC. Since the response to anti-androgen therapy may depend on AR polysomy and on its overexpression similarly to prostate cancer, the aim of the present study was to investigate the DNA methylation level of AR and its coregulators, especially those mapped on the X-chromosome, that may influence the activity of AR in MBC. Methods: The DNA methylation level of AR, MAGEA2, MAGEA11, MAGEC1, MAGEC2, FLNA, HDAC6, and UXT, mapped on the X-chromosome, was evaluated by quantitative bisulfite-NGS. Bioinformatic analysis was performed in a Galaxy Project environment using BWA-METH, MethylDackel, and Methylation Plotter tools. The study population consisted of MBC (41 cases) compared with gynecomastia (17 cases). Results:MAGEA family members, especially MAGEA2, MAGEA11, MAGEC, and UXT and HDAC6 showed hypomethylation of several CpGs, reaching statistical significance by the Kruskal–Wallis test (p < 0.01) in MBC when compared to gynecomastia. AR showed almost no methylation at all. Conclusions: Our study demonstrated for the first time that MAGEA family members mapped on the X-chromosome and coregulators of AR are hypomethylated in MBC. This may lead to their overexpression, enhancing AR activity.
Collapse
Affiliation(s)
- Maria P Foschini
- Anatomic Pathology Section "M. Malpighi", Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, Department of Biomedical and Neuromotor Sciences, IRCCS Istituto delle Scienze Neurologiche di Bologna, University of Bologna, Bologna, Italy
| | - Alejandro M Sanchez
- Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Multidisciplinary Breast Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Santoro
- Pathology Unit, Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonino Mulè
- Pathology Unit, Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Franco Zannoni
- Pathology Unit, Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Zsuzsanna Varga
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Linda Moskovszky
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Maria C Cucchi
- Unit of Breast Surgery, Department of Oncology, Bellaria Hospital, AUSL Bologna, Bologna, Italy
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gianluca Giove
- Anatomic Pathology Section "M. Malpighi", Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Riccardo Masetti
- Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Multidisciplinary Breast Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
6
|
Zeng J, Xiang W, Zhang Y, Huang C, Chen K, Chen Z. Ubiquitous expressed transcript promotes tumorigenesis by acting as a positive modulator of the polycomb repressive complex 2 in clear cell renal cell carcinoma. BMC Cancer 2019; 19:874. [PMID: 31481081 PMCID: PMC6724258 DOI: 10.1186/s12885-019-6069-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The ubiquitous expressed transcript (UXT) plays a key role in various tumors by regulating transcriptional activity of multiple transcription factors, including androgen receptor (AR). However, the role of UXT in clear cell renal cell carcinoma (ccRCC) is still unknown. METHODS Yeast two-hybrid screening, GST pull-down and co-immunoprecipitation assays were performed to detect the interacting protein of UXT. Chromatin immunoprecipitation (ChIP) was performed to investigate the levels of histone H3 lysine 27 trimethylation at the HOXA9 promoters. CCK-8 assays, colony formation assays and Transwell assays were performed to detect the proliferation, colony formation, migration and invasion of renal cancer cells. Quantitative PCR analysis was performed to detect the expressions of UXT in human ccRCC samples. RESULTS The enhancer of zeste homolog 2 (EZH2) is a novel UXT interacting protein and UXT interacts with EZH2 in the nucleus. In addition, UXT interacts with the polycomb repressive complex 2 (PRC2) through directly binding to EZH2 and suppressor of zeste 12 homolog (SUZ12), but not to embryonic ectoderm development (EED). Moreover, the UXT activates EZH2 histone methyltransferase activity by facilitating EZH2 binding with SUZ12. We further provided striking evidences that knockdown of UXT inhibits proliferation, colony formation, migration and invasion of renal cancer cells, in an EZH2-dependent manner. Importantly, the upregulation of UXT expression was observed in clinical ccRCC samples, and the high expression level of UXT was associated with advanced stage, distant metastasis and poor overall survival in patients with ccRCC. CONCLUSION The UXT is a novel regulator of the PRC2 and acts as a renal cancer oncogene that affects the progression and survival of ccRCC patients.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000 People’s Republic of China
| | - Wei Xiang
- College of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yucong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Department of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Chunhua Huang
- College of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
7
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Schafler ED, Thomas PA, Ha S, Wang Y, Bermudez-Hernandez K, Tang Z, Fenyö D, Vigodner M, Logan SK. UXT is required for spermatogenesis in mice. PLoS One 2018; 13:e0195747. [PMID: 29649254 PMCID: PMC5896988 DOI: 10.1371/journal.pone.0195747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
Male mammals must simultaneously produce prodigious numbers of sperm and maintain an adequate reserve of stem cells to ensure continuous production of gametes throughout life. Failures in the mechanisms responsible for balancing germ cell differentiation and spermatogonial stem cell (SSC) self-renewal can result in infertility. We discovered a novel requirement for Ubiquitous Expressed Transcript (UXT) in spermatogenesis by developing the first knockout mouse model for this gene. Constitutive deletion of Uxt is embryonic lethal, while conditional knockout in the male germline results in a Sertoli cell-only phenotype during the first wave of spermatogenesis that does not recover in the adult. This phenotype begins to manifest between 6 and 7 days post-partum, just before meiotic entry. Gene expression analysis revealed that Uxt deletion downregulates the transcription of genes governing SSC self-renewal, differentiation, and meiosis, consistent with its previously defined role as a transcriptional co-factor. Our study has revealed the first in vivo function for UXT in the mammalian germline as a regulator of distinct transcriptional programs in SSCs and differentiating spermatogonia.
Collapse
Affiliation(s)
- Eric D. Schafler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Pathobiology and Translational Medicine Training Program, New York University School of Medicine, New York, NY, United States of America
| | - Phillip A. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
| | - Susan Ha
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
| | - Yu Wang
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Keria Bermudez-Hernandez
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Zuojian Tang
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
9
|
Thomas PA, Mita P, Ha S, Logan SK. Role of the Unconventional Prefoldin Proteins URI and UXT in Transcription Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:85-94. [PMID: 30484154 DOI: 10.1007/978-3-030-00737-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Unconventional prefoldin RPB5 interacting protein (URI), also known as RPB5-Mediating Protein (RMP) has been shown to play several regulatory roles in different cellular compartments including the mitochondria, as a phosphatase binding protein; in the cytoplasm, as a chaperone-like protein; and in the nucleus, as a transcriptional regulator through binding to RPB5 and RNA polymerase II (polII). This chapter focuses on the role URI plays in transcriptional regulation in the prostate cell. In prostate cells, URI is tightly bound to another prefoldin-like protein called UXT, a known androgen receptor (AR) cofactor. Part of a multiprotein complex, URI and UXT act as transcriptional repressors, and URI regulates KAP1 through PP2A phosphatase activity. The discovery of the interaction of URI and UXT with KAP1, AR, and PP2A, as well as the numerous interactions between URI and components of the R2TP/prefoldin-like complex, RPB5, and nuclear proteins involved in DNA damage response, chromatin remodeling and gene transcription, reveal a pleiotropic effect of the URI/UXT complex on nuclear processes. The mechanisms by which URI/UXT affect transcription, chromatin structure and regulation, and genome stability, remain to be elucidated but will be of fundamental importance considering the many processes affected by alterations of URI/UXT and other prefoldins and prefoldin-like proteins.
Collapse
Affiliation(s)
- Phillip A Thomas
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA
| | - Paolo Mita
- Institute for Systems Genetics, New York University School of Medicine, New York, NY, USA
| | - Susan Ha
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA
| | - Susan K Logan
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Payán-Bravo L, Peñate X, Chávez S. Functional Contributions of Prefoldin to Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:1-10. [PMID: 30484149 DOI: 10.1007/978-3-030-00737-9_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prefoldin is a co-chaperone that evolutionarily originates in archaea, is universally present in all eukaryotes and acts as a co-chaperone by facilitating the supply of unfolded or partially folded substrates to class II chaperonins. Eukaryotic prefoldin is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, the role of prefoldin in chaperonin-mediated folding is not restricted to cytoskeleton components, but extends to both the assembly of other cytoplasmic complexes and the maintenance of functional proteins by avoiding protein aggregation and facilitating proteolytic degradation. Evolution has favoured the diversification of prefoldin subunits, and has allowed the so-called prefoldin-like complex, with specialised functions, to appear. Subunits of both canonical and prefoldin-like complexes have also been found in the nucleus of yeast and metazoan cells, where they have been functionally connected with different gene expression steps. Plant prefoldin has also been detected in the nucleus and is physically associated with a gene regulator. Here we summarise information available on the functional involvement of prefoldin in gene expression, and discuss the implications of these results for the relationship between prefoldin structure and function.
Collapse
Affiliation(s)
- Laura Payán-Bravo
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
11
|
Gauthier MS, Cloutier P, Coulombe B. Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:25-36. [PMID: 30484151 DOI: 10.1007/978-3-030-00737-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PAQosome, formerly known as the R2TP/PFDL complex, is an eleven-subunit cochaperone complex that assists HSP90 in the assembly of numerous large multisubunit protein complexes involved in essential cellular functions such as protein synthesis, ribosome biogenesis, transcription, splicing, and others. In this review, we discuss possible mechanisms of action and role of phosphorylation in the assembly of client complexes by the PAQosome as well as its potential role in cancer, ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
| | | | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada.
| |
Collapse
|
12
|
Roles and Functions of the Unconventional Prefoldin URI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:95-108. [PMID: 30484155 DOI: 10.1007/978-3-030-00737-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208-1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.
Collapse
|
13
|
Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson É, Bouchard A, Faubert D, Chabot B, Coulombe B. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 2017; 8:15615. [PMID: 28561026 PMCID: PMC5460035 DOI: 10.1038/ncomms15615] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1–TSC2 complex and the U5 small nuclear ribonucleoprotein (snRNP). The interaction between R2TP/PFDL and the U5 snRNP is mostly mediated by the previously uncharacterized factor ZNHIT2. A more general function for the zinc-finger HIT domain in binding RUVBL2 is exposed. Disruption of ZNHIT2 and RUVBL2 expression impacts the protein composition of the U5 snRNP suggesting a function for these proteins in promoting the assembly of the ribonucleoprotein. A possible implication of R2TP/PFDL as a major effector of stress-, energy- and nutrient-sensing pathways that regulate anabolic processes through the regulation of its chaperoning activity is discussed. The R2TP/Prefoldin-like cochaperone complex is involved in the assembly of a number of protein complexes. Here the authors provide evidence that RUVBL1/RUVBL2, subunits of that cochaperone complex, directly interact with ZNHIT2 to regulate assembly of U5 small ribonucleoprotein.
Collapse
Affiliation(s)
- Philippe Cloutier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Omid Hekmat
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Émilie Fiola-Masson
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Annie Bouchard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Denis Faubert
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Benoit Chabot
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8.,Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7.,Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| |
Collapse
|
14
|
Sánchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE. UXT Is a LOX-PP Interacting Protein That Modulates Estrogen Receptor Alpha Activity in Breast Cancer Cells. J Cell Biochem 2017; 118:2347-2356. [PMID: 28106301 DOI: 10.1002/jcb.25893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The lysyl oxidase proenzyme propeptide region (LOX-PP) is a tumor suppressor protein whose mechanism of action is not completely understood. Here, the Ubiquitously expressed Transcript (UXT) was identified in a yeast two-hybrid assay with LOX-PP as bait and confirmed as a novel LOX-PP associating protein. UXT, a prefoldin-like protein, is ubiquitous in human and mouse. Since UXT modulates androgen receptor transcriptional activity in prostate cancer, we studied its role in breast cancer. Breast tumors and derived cell lines overexpressed UXT. UXT was able to associate with the estrogen receptor alpha (ER) and decrease its transcriptional activity and target gene expression. Conversely, UXT knockdown increased ER element-dependent transcriptional activity. Ectopic LOX-PP relocalized UXT to the cytoplasm and decreased its stability. UXT ubiquitination and depletion in the presence of LOX-PP was rescued by a proteasomal inhibitor. In summary, proteasome-mediated turnover of UXT upon interaction with LOX-PP releases repression of ER transcriptional activity. J. Cell. Biochem. 118: 2347-2356, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nuria Sánchez-Morgan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kathrin H Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Gail E Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
15
|
Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, Deng M, Vogel W, von Mässenhausen A, Kristiansen G, Duensing S, Kirfel J, Lengerke C, Perner S. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene 2016; 36:1573-1584. [PMID: 27617580 DOI: 10.1038/onc.2016.325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/08/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men in the western world. Mutations in tumor suppressor genes and in oncogenes are important for PCa progression, whereas the role of stem cell proteins in prostate carcinogenesis is insufficiently examined. This study investigates the role of the transcriptional regulator Ecotropic Viral Integration site 1 (EVI1), known as an essential modulator of hematopoietic and leukemic stem cell biology, in prostate carcinogenesis. We show that in healthy prostatic tissue, EVI1 expression is confined to the prostate stem cell compartment located at the basal layer, as identified by the stem cell marker CD44. Instead, in a PCa progression cohort comprising 219 samples from patients with primary PCa, lymph node and distant metastases, EVI1 protein was heterogeneously distributed within samples and high expression is associated with tumor progression (P<0.001), suggesting EVI1 induction as a driver event. Functionally, short hairpin RNA-mediated knockdown of EVI1 inhibited proliferation, cell cycle progression, migratory capacity and anchorage-independent growth of human PCa cells, while enhancing their apoptosis sensitivity. Interestingly, modulation of EVI1 expression also strongly regulated stem cell properties (including expression of the stem cell marker SOX2) and in vivo tumor initiation capacity. Further emphasizing a functional correlation between EVI1 induction and tumor progression, upregulation of EVI1 expression was noted in experimentally derived docetaxel-resistant PCa cells. Importantly, knockdown of EVI1 in these cells restored sensitivity to docetaxel, in part by downregulating anti-apoptotic BCL2. Together, these data indicate EVI1 as a novel molecular regulator of PCa progression and therapy resistance that may control prostate carcinogenesis at the stem cell level.
Collapse
Affiliation(s)
- A Queisser
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - S Hagedorn
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - H Wang
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - T Schaefer
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - M Konantz
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - S Alavi
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - M Deng
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| | - W Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| | - A von Mässenhausen
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - G Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - S Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - J Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - C Lengerke
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - S Perner
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| |
Collapse
|
16
|
Wang Y, Dehigaspitiya DC, Levine PM, Profit AA, Haugbro M, Imberg-Kazdan K, Logan SK, Kirshenbaum K, Garabedian MJ. Multivalent Peptoid Conjugates Which Overcome Enzalutamide Resistance in Prostate Cancer Cells. Cancer Res 2016; 76:5124-32. [PMID: 27488525 DOI: 10.1158/0008-5472.can-16-0385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32. ©2016 AACR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urology, New York University School of Medicine, New York, New York
| | | | - Paul M Levine
- Department of Chemistry, New York University, New York, New York
| | - Adam A Profit
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, New York
| | - Michael Haugbro
- Department of Chemistry, New York University, New York, New York
| | - Keren Imberg-Kazdan
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Susan K Logan
- Department of Urology, New York University School of Medicine, New York, New York. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York
| | - Michael J Garabedian
- Department of Urology, New York University School of Medicine, New York, New York. Department of Microbiology, New York University School of Medicine, New York, New York.
| |
Collapse
|
17
|
Wang C, Sun H, Zou R, Zhou T, Wang S, Sun S, Tong C, Luo H, Li Y, Li Z, Wang E, Chen Y, Cao L, Li F, Zhao Y. MDC1 functionally identified as an androgen receptor co-activator participates in suppression of prostate cancer. Nucleic Acids Res 2015; 43:4893-908. [PMID: 25934801 PMCID: PMC4446443 DOI: 10.1093/nar/gkv394] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Mediator of DNA damage checkpoint protein 1 (MDC1) is essential for DNA damage response. However, the role of MDC1 in modulating gene transcription independently of DNA damage and the underlying mechanisms have not been fully defined. Androgen receptor (AR) is the central signaling pathway in prostate cancer (PCa) and its target genes are involved in both promotion and suppression of PCa. Here, we functionally identified MDC1 as a co-activator of AR. We demonstrate that MDC1 facilitates the association between AR and histone acetyltransferase GCN5, thereby increasing histone H3 acetylation level on cis-regulatory elements of AR target genes. MDC1 knockdown promotes PCa cells growth and migration. Moreover, depletion of MDC1 results in decreased expression of a subset of the endogenous androgen-induced target genes, including cell cycle negative regulator p21 and PCa metastasis inhibitor Vinculin, in AR positive PCa cell lines. Finally, the expression of MDC1 and p21 correlates negatively with aggressive phenotype of clinical PCa. These studies suggest that MDC1 as an epigenetic modifier regulates AR transcriptional activity and MDC1 may function as a tumor suppressor of PCa, and provide new insight into co-factor-AR-signaling pathway mechanism and a better understanding of the function of MDC1 on PCa.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Tingting Zhou
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Shengli Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Shiying Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Changci Tong
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Hao Luo
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yanshu Li
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhenhua Li
- Department of Urology, the First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Enhua Wang
- Department of Pathology, the First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuhua Chen
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Liu Cao
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Feng Li
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yue Zhao
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
18
|
Abstract
The androgen receptor (AR), ligand-induced transcription factor, is expressed in primary prostate cancer and in metastases. AR regulates multiple cellular events, proliferation, apoptosis, migration, invasion, and differentiation. Its expression in prostate cancer cells is regulated by steroid and peptide hormones. AR downregulation by various compounds which are contained in fruits and vegetables is considered a chemopreventive strategy for prostate cancer. There is a bidirectional interaction between the AR and micro-RNA (miRNA) in prostate cancer; androgens may upregulate or downregulate the selected miRNA, whereas the AR itself is a target of miRNA. AR mutations have been discovered in prostate cancer, and their incidence may increase with tumor progression. AR mutations and increased expression of selected coactivators contribute to the acquisition of agonistic properties of anti-androgens. Expression of some of the coactivators is enhanced during androgen ablation. AR activity is regulated by peptides such as cytokines or growth factors which reduce the concentration of androgen required for maximal stimulation of the receptor. In prostate cancer, variant ARs which exhibit constitutive activity were detected. Novel therapies which interfere with intracrine synthesis of androgens or inhibit nuclear translocation of the AR have been introduced in the clinic.
Collapse
Affiliation(s)
- Zoran Culig
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
19
|
Abstract
Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the chaperonin CCT. It is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, both canonical and prefoldin-like subunits of this heterohexameric complex have also been found in the nucleus, and are functionally connected with nuclear processes in yeast and metazoa. Plant prefoldin has also been detected in the nucleus and physically associated with a gene regulator. In this review, we summarize the information available on the involvement of prefoldin in nuclear phenomena, place special emphasis on gene transcription, and discuss the possibility of a global coordination between gene regulation and cytoplasmic dynamics mediated by prefoldin.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
20
|
Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K. Xenotransplantation models to study the effects of toxicants on human fetal tissues. ACTA ACUST UNITED AC 2014; 101:410-22. [PMID: 25477288 DOI: 10.1002/bdrb.21131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Carter DR, Buckle AD, Tanaka K, Perdomo J, Chong BH. Art27 interacts with GATA4, FOG2 and NKX2.5 and is a novel co-repressor of cardiac genes. PLoS One 2014; 9:e95253. [PMID: 24743694 PMCID: PMC3990687 DOI: 10.1371/journal.pone.0095253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
Transcription factors play a crucial role in regulation of cardiac biology. FOG-2 is indispensable in this setting, predominantly functioning through a physical interaction with GATA-4. This study aimed to identify novel co-regulators of FOG-2 to further elaborate on its inhibitory activity on GATA-4. The Art27 transcription factor was identified by a yeast-2-hybrid library screen to be a novel FOG-2 protein partner. Characterisation revealed that Art27 is co-expressed with FOG-2 and GATA-4 throughout cardiac myocyte differentiation and in multiple structures of the adult heart. Art27 physically interacts with GATA-4, FOG-2 and other cardiac transcription factors and by this means, down-regulates their activity on cardiac specific promoters α-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide. Regulation of endogenous cardiac genes by Art27 was shown using microarray analysis of P19CL6-Mlc2v-GFP cardiomyocytes. Together these results suggest that Art27 is a novel transcription factor that is involved in downregulation of cardiac specific genes by physically interacting and inhibiting the activity of crucial transcriptions factors involved in cardiac biology.
Collapse
Affiliation(s)
- Daniel R. Carter
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew D. Buckle
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Kumiko Tanaka
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jose Perdomo
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Beng H. Chong
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Haematology Department, St George and Sutherland Hospitals, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 2013; 456:55-66. [PMID: 23961993 DOI: 10.1042/bj20121711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss and/or inactivation of the VHL (von Hippel-Lindau) tumour suppressor causes various tumours. Using a yeast two-hybrid system, we have identified the AR (androgen receptor) co-activator UXT (ubiquitously expressed transcript), as a VHL-interacting protein. GST pull-down and co-immunoprecipitation assays show that UXT interacts with VHL. In addition, UXT recruits VHL to the nucleus. VHL associates with the DBD (DNA-binding domain) and hinge domains of the AR and induces AR ubiquitination. Moreover, VHL interaction with the AR activates AR transactivation upon DHT (dihydrotestosterone) treatment. VHL knockdown inhibits AR ubiquitination and decreases transcriptional activation of the AR. Our data suggest that the VHL-UXT interaction and VHL-induced ubiquitination of AR regulate transcriptional activation of the AR.
Collapse
|
23
|
Saffarini CM, McDonnell EV, Amin A, Spade DJ, Huse SM, Kostadinov S, Hall SJ, Boekelheide K. Maturation of the developing human fetal prostate in a rodent xenograft model. Prostate 2013; 73:1761-75. [PMID: 24038131 PMCID: PMC4306740 DOI: 10.1002/pros.22713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed nonskin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. METHODS We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate-specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. RESULTS Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture microdissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30- and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. CONCLUSION This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease.
Collapse
Affiliation(s)
- Camelia M. Saffarini
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Elizabeth V. McDonnell
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, USA 02903
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Susan M. Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Stefan Kostadinov
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Providence, Rhode Island, USA 02903
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| |
Collapse
|
24
|
Li W, Wang L, Jiang C, Li H, Zhang K, Xu Y, Hao Q, Li M, Xue X, Qin X, Zhang C, Wang H, Zhang W, Zhang Y. UXT is a novel regulatory factor of regulatory T cells associated with Foxp3. Eur J Immunol 2013; 44:533-44. [PMID: 24136450 PMCID: PMC4165274 DOI: 10.1002/eji.201343394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/05/2013] [Accepted: 10/08/2013] [Indexed: 01/21/2023]
Abstract
Regulatory T (Treg) cells are a constitutively immunosuppressive subtype of T cells that contribute to the maintenance of immunological self-tolerance and immune homeostasis. However, the molecular mechanisms involved in the regulation of Treg cells remain unclear. In the present study, we identified ubiquitously expressed transcript (UXT) to be a novel regulator of human Treg-cell function. In cultured human Treg cells, UXT associates with Foxp3 in the nucleus by interacting with the proline-rich domain in the N-terminus of Foxp3. Knockdown of UXT expression in Treg cells results in a less-suppressive phenotype, demonstrating that UXT is an important regulator of the suppressive actions of Treg cells. Depletion of UXT affects the localization stability of Foxp3 protein in the nucleus and downregulates the expression of Foxp3-related genes. Overall, our results show that UXT is a cofactor of Foxp3 and an important player in Treg-cell function.
Collapse
Affiliation(s)
- Weina Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh PK, Doig CL, Dhiman VK, Turner BM, Smiraglia DJ, Campbell MJ. Epigenetic distortion to VDR transcriptional regulation in prostate cancer cells. J Steroid Biochem Mol Biol 2013; 136:258-63. [PMID: 23098689 PMCID: PMC4429754 DOI: 10.1016/j.jsbmb.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
The current study aimed to examine the gene specific mechanisms by which the actions of the vitamin D receptor (VDR) are distorted in prostate cancer. Transcriptional responses toward the VDR ligand, 1α,25(OH)2D3, were examined in non-malignant prostate epithelial cells (RWPE-1) and compared to the 1α,25(OH)2D3-recalcitrant prostate cancer cells (PC-3). Time resolved transcriptional studies for two VDR target genes revealed selective attenuation and repression of VDR transcriptional responses in PC-3 cells. For example, responses in PC-3 cells revealed suppressed responsiveness of IGFBP3 and G0S2. Furthermore, Chromatin Immunoprecipitation (ChIP) assays revealed that suppressed transcriptional responses in PC-3 cells of IGFBP3 and G0S2 were associated with selective VDR-induced NCOR1 enrichment at VDR-binding regions on target-gene promoter regions. We propose that VDR inappropriately recruits co-repressors in prostate cancer cells. Subsequent direct and indirect mechanisms may induce local DNA methylation and stable transcriptional silencing. Thus a transient epigenetic process mediated by co-repressor binding, namely, the control of H3K9 acetylation, is distorted to favor a more stable epigenetic event, namely DNA methylation. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Prashant K. Singh
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Craig L. Doig
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Vineet K. Dhiman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Bryan M. Turner
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Corresponding author. Tel.: +1 7168453037; fax: +1 7168458857. (M.J. Campbell)
| |
Collapse
|
26
|
Functional domains of androgen receptor coactivator p44/Mep50/WDR77and its interaction with Smad1. PLoS One 2013; 8:e64663. [PMID: 23734213 PMCID: PMC3667176 DOI: 10.1371/journal.pone.0064663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022] Open
Abstract
p44/MEP50/WDR77 has been identified as a coactivator of androgen receptor (AR), with distinct growth suppression and promotion function in gender specific endocrine organs and their malignancies. We dissected the functional domains of p44 for protein interaction with transcription factors, transcriptional activation, as well as the functional domains in p44 related to its growth inhibition in prostate cancer. Using a yeast two-hybrid screen, we identified a novel transcription complex AR-p44-Smad1, confirmed for physical interaction by co-immunoprecipitaion and functional interaction with luciferase assays in human prostate cancer cells. Yeast two-hybrid assay revealed that the N-terminal region of p44, instead of the traditional WD40 domain at the C-terminus, mediates the interaction among p44, N-terminus of AR and full length Smad1. Although both N and C terminal domains of p44 are necessary for maximum AR transcriptional activation, the N terminal fragment of p44 alone maintains the basic effect on AR transcriptional activation. Cell proliferation assays with N- and C- terminal deletion mutations indicated that the central portion of p44 is required for nuclear p44 mediated prostate cancer growth inhibition.
Collapse
|
27
|
Campbell MJ, Turner BM. Altered histone modifications in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:81-107. [PMID: 22956497 DOI: 10.1007/978-1-4419-9967-2_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human health and disease the choreographed actions of a wide armory of transcription factors govern the regulated expression of coding and nonprotein coding genes. These actions are central to human health and are evidently aberrant in cancer. Central components of regulated gene expression are a variety of epigenetic mechanisms that include histone modifications. The post-translational modifications of histones are widespread and diverse, and appear to be spatial--temporally regulated in a highly intricate manner. The true functional consequences of these patterns of regulation are still emerging. Correlative evidence supports the idea that these patterns are distorted in malignancy on both a genome-wide and a discrete gene loci level. These patterns of distortion also often reflect the altered expression of the enzymes that control these histone states. Similarly gene expression patterns also appear to reflect a correlation with altered histone modifications at both the candidate loci and genome-wide level. Clarity is emerging in resolving these relationships between histone modification status and gene expression -patterns. For example, altered transcription factor interactions with the key co-activator and co-repressors, which in turn marshal many of the histone-modifying enzymes, may distort regulation of histone modifications at specific gene loci. In turn these aberrant transcriptional processes can trigger other altered epigenetic events such as DNA methylation and underline the aberrant and specific gene expression patterns in cancer. Considered in this manner, altered expression and recruitment of histone-modifying enzymes may underline the distortion to transcriptional responsiveness observed in malignancy. Insight from understanding these processes addresses the challenge of targeted epigenetic therapies in cancer.
Collapse
Affiliation(s)
- Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
28
|
Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation through phosphorylation of coactivator UXT. J Virol 2012; 86:12176-86. [PMID: 22933289 DOI: 10.1128/jvi.01918-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle.
Collapse
|
29
|
Hay CW, McEwan IJ. The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. PLoS One 2012; 7:e32514. [PMID: 22403669 PMCID: PMC3293822 DOI: 10.1371/journal.pone.0032514] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 11/30/2022] Open
Abstract
Androgen receptor mediated signaling drives prostate cancer cell growth and survival. Mutations within the receptor occur infrequently in prostate cancer prior to hormonal therapy but become prevalent in incurable androgen independent and metastatic tumors. Despite the determining role played by the androgen receptor in all stages of prostate cancer progression, there is a conspicuous dearth of comparable data on the consequences of mutations. In order to remedy this omission, we have combined an expansive study of forty five mutations which are predominantly associated with high Gleason scores and metastatic tumors, and span the entire length of the receptor, with a literature review of the mutations under investigation. We report the discovery of a novel prevalent class of androgen receptor mutation that possesses loss of function at low levels of androgen yet transforms to a gain of function at physiological levels. Importantly, mutations introducing constitutive gain of function are uncommon, with the majority of mutations leading to either loss of function or no significant change from wild-type activity. Therefore, the widely accepted supposition that androgen receptor mutations in prostate cancer result in gain of function is appealing, but mistaken. In addition, the transcriptional outcome of some mutations is dependent upon the androgen receptor responsive element. We discuss the consequences of these findings and the role of androgen receptor mutations for prostate cancer progression and current treatment options.
Collapse
Affiliation(s)
- Colin W. Hay
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Iain J. McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 2011; 31:3639-52. [PMID: 21730289 DOI: 10.1128/mcb.05429-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes.
Collapse
|
31
|
Huang Y, Chen L, Zhou Y, Liu H, Yang J, Liu Z, Wang C. UXT-V1 protects cells against TNF-induced apoptosis through modulating complex II formation. Mol Biol Cell 2011; 22:1389-97. [PMID: 21307340 PMCID: PMC3078067 DOI: 10.1091/mbc.e10-10-0827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study revealed that ubiquitously expressed transcript (UXT)-V1 is recruited to tumor necrosis factor (TNF) receptor complex I by interacting with TNF receptor-associated factor 2. UXT-V1 is a short-half-life protein, the degradation of which facilitates the formation of the apoptotic receptor complex II in response to TNF treatment. This study uncovers UXT-V1 as a novel regulator of TNF-induced apoptosis. Proteins that directly regulate tumor necrosis factor (TNF) signaling have critical roles in determining cell death and survival. Previously we characterized ubiquitously expressed transcript (UXT)-V2 as a novel transcriptional cofactor to regulate nuclear factor-κB in the nucleus. Here we report that another splicing isoform of UXT, UXT-V1, localizes in cytoplasm and regulates TNF-induced apoptosis. UXT-V1 knockdown cells are hypersensitive to TNF-induced apoptosis. We demonstrated that UXT-V1 is a new component of TNF receptor signaling complex. We found that UXT-V1 binds to TNF receptor-associated factor 2 and prevents TNF receptor–associated death domain protein from recruiting Fas-associated protein with death domain. More importantly, UXT-V1 is a short-half-life protein, the degradation of which facilitates the formation of the apoptotic receptor complex II in response to TNF treatment. This study demonstrates that UXT-V1 is a novel regulator of TNF-induced apoptosis and sheds new light on the underlying molecular mechanism of this process.
Collapse
Affiliation(s)
- Yuefeng Huang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Cloutier P, Coulombe B. New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 2010; 88:211-21. [PMID: 20453924 DOI: 10.1139/o09-173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than 30 years of research on nuclear RNA polymerases (RNAP I, II, and III) has uncovered numerous factors that regulate the activity of these enzymes during the transcription reaction. However, very little is known about the machinery that regulates the fate of RNAPs before or after transcription. In particular, the mechanisms of biogenesis of the 3 nuclear RNAPs, which comprise both common and specific subunits, remains mostly uncharacterized and the proteins involved are yet to be discovered. Using protein affinity purification coupled to mass spectrometry (AP-MS), we recently unraveled a high-density interaction network formed by nuclear RNAP subunits from the soluble fraction of human cell extracts. Validation of the dataset using a machine learning approach trained to minimize the rate of false positives and false negatives yielded a high-confidence dataset and uncovered novel interactors that regulate the RNAP II transcription machinery, including a set of proteins we named the RNAP II-associated proteins (RPAPs). One of the RPAPs, RPAP3, is part of an 11-subunit complex we termed the RPAP3/R2TP/prefoldin-like complex. Here, we review the literature on the subunits of this complex, which points to a role in nuclear RNAP biogenesis.
Collapse
Affiliation(s)
- Philippe Cloutier
- Laboratory of Gene Transcription and Proteomics, Institut de recherches cliniques de Montreal, 110 avenue des Pins Ouest, Montreal, QC H2W 1R7, Canada
| | | |
Collapse
|
33
|
Ligr M, Li Y, Zou X, Daniels G, Melamed J, Peng Y, Wang W, Wang J, Ostrer H, Pagano M, Wang Z, Garabedian MJ, Lee P. Tumor suppressor function of androgen receptor coactivator ARA70alpha in prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1891-900. [PMID: 20167864 DOI: 10.2353/ajpath.2010.090293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Androgen receptor (AR), a member of the steroid receptor family, is a transcription factor that has an important role in the regulation of both prostate cell proliferation and growth suppression. AR coactivators may influence the transition between cell growth and growth suppression. We have shown previously that the internally spliced ARA70 isoform, ARA70beta, promotes prostate cancer cell growth and invasion. Here we report that the full length ARA70alpha, in contrast, represses prostate cancer cell proliferation and anchorage-independent growth in vitro and inhibits tumor growth in nude mice xenograft experiments in vivo. Further, the growth inhibition by ARA70alpha is AR-dependent and mediated through induction of apoptosis rather than cell cycle arrest. Interestingly, AR with T877A mutation in LNCaP cells decreased its physical and functional interaction with ARA70alpha, facilitating the growth of LNCaP cells. The tumor suppressor function of ARA70alpha is consistent with our previous findings that ARA70alpha expression is decreased in prostate cancer cells compared with benign prostate. ARA70alpha also reduced the invasion ability of LNCaP cells. Although growth inhibition by ARA70alpha is AR-dependent, the inhibition of cell invasion is an androgen-independent process. These results strongly suggest that ARA70alpha functions as a tumor suppressor gene.
Collapse
Affiliation(s)
- Martin Ligr
- Department of Pathology and Urology, New York University School of Medicine, New York Harbor Healthcare System, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nwachukwu JC, Mita P, Ruoff R, Ha S, Wang Q, Huang SJ, Taneja SS, Brown M, Gerald WL, Garabedian MJ, Logan SK. Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 2009; 69:3140-7. [PMID: 19318562 DOI: 10.1158/0008-5472.can-08-3738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) directs diverse biological processes through interaction with coregulators such as AR trapped clone-27 (ART-27). Our results show that ART-27 is recruited to AR-binding sites by chromatin immunoprecipitation analysis. In addition, the effect of ART-27 on genome-wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are up-regulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low. Consistent with this idea, stable reduction of ART-27 by short-hairpin RNA enhances LNCaP cell proliferation compared with control cells. The effect of ART-27 loss was also examined in response to the antiandrogen bicalutamide. Unexpectedly, cells treated with ART-27 siRNA no longer exhibited gene repression in response to bicalutamide. To examine ART-27 loss in prostate cancer progression, immunohistochemistry was conducted on a tissue array containing samples from primary tumors of individuals who were clinically followed and later shown to have either recurrent or nonrecurrent disease. Comparison of ART-27 and AR staining indicated that nuclear ART-27 expression was lost in the majority of AR-positive recurrent prostate cancers. Our studies show that reduction of ART-27 protein levels in prostate cancer may facilitate antiandrogen-resistant disease.
Collapse
Affiliation(s)
- Jerome C Nwachukwu
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Thorne JL, Campbell MJ, Turner BM. Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 2008; 41:164-75. [PMID: 18804550 DOI: 10.1016/j.biocel.2008.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 01/26/2023]
Abstract
Transcription factors, chromatin and chromatin-modifying enzymes are key components in a complex network through which the genome interacts with its environment. For many transcription factors, binding motifs are found adjacent to the promoter regions of a large proportion of genes, requiring mechanisms that confer binding specificity in any given cell type. These include association of the factor with other proteins and packaging of DNA, as chromatin, at the binding sequence so as to inhibit or facilitate binding. Recent evidence suggests that specific post-translational modifications of the histones packaging promoter DNA can help guide transcription factors to selected sites. The enzymes that put such modifications in place are dependent on metabolic components (e.g. acetyl CoA, S-adenosyl methionine) and susceptible to inhibition or activation by environmental factors. Local patterns of histone modification can be altered or maintained through direct interaction between the transcription factor and histone modifying enzymes. The functional consequences of transcription factor binding are also dependent on protein modifying enzymes, particularly those that alter lysine methylation at selected residues. Remarkably, the role of these enzymes is not limited to promoter-proximal events, but can be linked to changes in the intranuclear location of target genes. In this review we describe results that begin to define how transcription factors, chromatin and environmental variables interact and how these interactions are subverted in cancer. We focus on the nuclear receptor family of transcription factors, where binding of ligands such as steroid hormones and dietary derived factors provides an extra level of environmental input.
Collapse
Affiliation(s)
- James L Thorne
- University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
36
|
Distinct nuclear and cytoplasmic functions of androgen receptor cofactor p44 and association with androgen-independent prostate cancer. Proc Natl Acad Sci U S A 2008; 105:5236-41. [PMID: 18356297 DOI: 10.1073/pnas.0712262105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) mediates transcriptional activation of diverse target genes through interactions with various coactivators that may alter its function and help mediate the switch between prostate cell proliferation and differentiation. We recently identified p44/MEP50 as an AR coactivator and further showed that it is expressed primarily in the nucleus and cytoplasm of benign prostate epithelial and prostate cancer cells, respectively. We also showed that haploinsufficiency in p44(+/-) mice causes prostate epithelial cell proliferation. To establish direct cause-and-effect relationships, we have used p44 fusion proteins that are selectively expressed in the nucleus or cytoplasm of prostate cancer cells (LNCaP), along with RNAi analyses, to examine effects of p44 both in vitro and in vivo (in tumor xenografts). We show that preferential expression of p44 in the nucleus inhibits proliferation of LNCaP cells in an AR-dependent manner, whereas preferential expression of p44 in the cytoplasm enhances cell proliferation. These effects appear to be mediated, at least in part, through the regulation of distinct cell-cycle regulatory genes that include p21 (up-regulated by nuclear p44) and cyclin D2 and CDK6 (up-regulated by cytoplasmic p44). Importantly, we also demonstrate that altered p44 expression is associated with androgen-independent prostate cancer. Our results indicate that nuclear p44 and cytoplasmic p44 have distinct and opposing functions in the regulation of prostate cancer cell proliferation.
Collapse
|
37
|
Peng Y, Li CX, Chen F, Wang Z, Ligr M, Melamed J, Wei J, Gerald W, Pagano M, Garabedian MJ, Lee P. Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:225-35. [PMID: 18156210 DOI: 10.2353/ajpath.2008.070065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ARA70 was first identified as a gene fused to the ret oncogene in thyroid carcinoma and subsequently as a co-activator for androgen receptor (AR). Two isoforms of ARA70 have been identified: a 70-kDa version called ARA70 alpha and an internally spliced 35-kDa variant termed ARA70 beta. We have previously reported that ARA70 alpha expression is reduced in prostate cancer, and its overexpression inhibits proliferation of LNCaP prostate cancer cells. However, the function of the ARA70 beta isoform in prostate cancer is not understood. In this report we examined the effects of ARA70 beta on AR transcriptional regulation as well as prostate cancer cellular proliferation and invasion. Although both ARA70 alpha and ARA70 beta functioned as transcriptional co-activators of AR in cell-based reporter assays, ARA70 beta overexpression, in contrast to ARA70 alpha, promoted prostate cancer cellular proliferation and invasion through Matrigel. Interestingly, genome-wide expression profiling of cells expressing ARA70 beta revealed an increase in the expression of genes involved in the control of cell division and adhesion, compatible with a role for ARA70 beta in proliferation and invasion. Consistent with its function in promoting cell growth and invasion, ARA70 beta expression was increased in prostate cancer. Our findings implicate ARA70 beta as a regulator of tumor cell growth and metastasis by affecting gene expression.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pathology, New York University School of Medicine, New York Harbor Healthcare System, 423 E. 23rd St., Room 6140N, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McGilvray R, Walker M, Bartholomew C. UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation. FEBS J 2007; 274:3960-71. [PMID: 17635584 DOI: 10.1111/j.1742-4658.2007.05928.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The EVI1 transcriptional repressor is critical to the normal development of a variety of tissues and participates in the progression of acute myeloid leukaemias. The repressor domain (Rp) was used to screen an adult human kidney yeast two-hybrid library and a novel binding partner designated ubiquitously expressed transcript (UXT) was isolated. Enforced expression of UXT in Evi1-expressing Rat1 fibroblasts suppresses cell transformation and UXT may therefore be a negative regulator of Evi1 biological activity. The Rp-binding site for UXT was determined and non-UXT-binding Evi1 mutants (Evi1Delta706-707) were developed which retain the ability to bind the corepressor mCtBP2. Evi1Delta706-707 transforms Rat1 fibroblasts, showing that the interaction is not essential for Evi1-mediated cell transformation. However, Evi1Delta706-707 produces an increased proportion of large colonies relative to wild-type, showing that endogenous UXT has an inhibitory effect on Evi1 biological activity. Exogenous UXT still suppresses Evi1Delta706-707-mediated cell transformation, indicating that it inhibits cell proliferation and/or survival by both Evi1-dependent and Evi1-independent mechanisms. These observations are consistent with the growth-suppressive function attributed to UXT in human prostate cancer. Our results show that UXT suppresses cell transformation and might mediate this function by interaction and inhibition of the biological activity of cell proliferation and survival stimulatory factors like Evi1.
Collapse
Affiliation(s)
- Roger McGilvray
- Department of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | | |
Collapse
|
39
|
Sun S, Tang Y, Lou X, Zhu L, Yang K, Zhang B, Shi H, Wang C. UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. ACTA ACUST UNITED AC 2007; 178:231-44. [PMID: 17620405 PMCID: PMC2064443 DOI: 10.1083/jcb.200611081] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a latent transcription factor, nuclear factor κB (NF-κB) translocates from the cytoplasm into the nucleus upon stimulation and mediates the expression of genes that are important in immunity, inflammation, and development. However, little is known about how it is regulated inside the nucleus. By a two-hybrid approach, we identify a prefoldin-like protein, ubiquitously expressed transcript (UXT), that is expressed predominantly and interacts specifically with NF-κB inside the nucleus. RNA interference knockdown of UXT leads to impaired NF-κB activity and dramatically attenuates the expression of NF-κB–dependent genes. This interference also sensitizes cells to apoptosis by tumor necrosis factor-α. Furthermore, UXT forms a dynamic complex with NF-κB and is recruited to the NF-κB enhanceosome upon stimulation. Interestingly, the UXT protein level correlates with constitutive NF-κB activity in human prostate cancer cell lines. The presence of NF-κB within the nucleus of stimulated or constitutively active cells is considerably diminished with decreased endogenous UXT levels. Our results reveal that UXT is an integral component of the NF-κB enhanceosome and is essential for its nuclear function, which uncovers a new mechanism of NF-κB regulation.
Collapse
Affiliation(s)
- Shaogang Sun
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120:719-33. [PMID: 17163421 DOI: 10.1002/ijc.22365] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The androgen receptor signaling axis plays an essential role in the development, function and homeostasis of male urogenital structures including the prostate gland although the mechanism by which the AR axis contributes to the initiation, progression and metastatic spread of prostate cancer remains somewhat enigmatic. A number of molecular events have been proposed to act at the level of the AR and associated coregulators to influence the natural history of prostate cancer including deregulated expression, somatic mutation, and post-translational modification. The purpose of this article is to review the evidence for deregulated expression and function of the AR and associated coactivators and corepressors and how such events might contribute to the progression of prostate cancer by controlling the selection and expression of AR targets.
Collapse
Affiliation(s)
- Renée Chmelar
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
41
|
Moss TN, Vo A, McKeehan WL, Liu L. UXT (Ubiquitously Expressed Transcript) causes mitochondrial aggregation. In Vitro Cell Dev Biol Anim 2007; 43:139-46. [PMID: 17554592 PMCID: PMC3229262 DOI: 10.1007/s11626-007-9016-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Mitochondria are the bioenergetic and metabolic centers in eukaryotic cells and play a central role in apoptosis. Mitochondrial distribution is controlled by the microtubular cytoskeleton. The perinuclear aggregation of mitochondria is one of the characteristics associated with some types of cell death. Control of mitochondrial aggregation particularly related to cell death events is poorly understood. Previously, we identified ubiquitously expressed transcript (UXT) as a potential component of mitochondrial associated LRPPRC, a multidomain organizer that potentially integrates mitochondria and the microtubular cytoskeleton with chromosome remodeling. Here we show that when overexpressed in mammalian cells, green fluorescent protein-tagged UXT (GFP-UXT) exhibits four types of distribution patterns that are proportional to the protein level, and increase with time. UXT initially was dispersed in the extranuclear cytosol, then appeared in punctate cytosolic dots, then an intense perinuclear aggregation that eventually invaded and disrupted the nucleus. The punctate cytosolic aggregates of GFP-UXT coincided with aggregates of mitochondria and LRPPRC. We conclude that increasing concentrations of UXT contributes to progressive aggregation of mitochondria and cell death potentially through association of UXT with LRPPRC.
Collapse
Affiliation(s)
- Tijuana N Moss
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas Medical Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Bapat SA. Evolution of cancer stem cells. Semin Cancer Biol 2006; 17:204-13. [PMID: 16787749 DOI: 10.1016/j.semcancer.2006.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 12/31/2022]
Abstract
Cancer as a disease driven by cancer stem cells is a concept that has emerged over the last few years. However, several issues relating to this phenomenon as yet remain unaddressed. A fundamental question is one relating to the identification of events leading to transformation of a normal tissue stem cell to a cancer stem cell. Complete knowledge of this evolutionary process may be crucial for the development of novel effective therapies that influence patient prognosis. The scope of this review is to discuss reports that have begun to elucidate stem cell transformation either as an isolated event or as a progression as an attempt towards understanding some of the critical events involved in the process.
Collapse
Affiliation(s)
- S A Bapat
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
43
|
Zhao H, Wang Q, Zhang H, Liu Q, Du X, Richter M, Greene MI. UXT is a novel centrosomal protein essential for cell viability. Mol Biol Cell 2005; 16:5857-65. [PMID: 16221885 PMCID: PMC1289427 DOI: 10.1091/mbc.e05-08-0705] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ubiquitously expressed transcript (UXT) is a prefoldinlike protein that has been suggested to be involved in human tumorigenesis. Here, we have found that UXT is overexpressed in a number of human tumor tissues but not in the matching normal tissues. We demonstrate that UXT is located in human centrosomes and is associated with gamma-tubulin. In addition, overexpression of UXT disrupts centrosome structure. Furthermore, abrogation of UXT protein expression by small interfering RNA knockdown leads to cell death. Together, our findings suggest that UXT is a component of centrosome and is essential for cell viability. We propose that UXT may facilitate transformation by corrupting regulated centrosome functions.
Collapse
Affiliation(s)
- Huiwu Zhao
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Li W, Cavasotto CN, Cardozo T, Ha S, Dang T, Taneja SS, Logan SK, Garabedian MJ. Androgen Receptor Mutations Identified in Prostate Cancer and Androgen Insensitivity Syndrome Display Aberrant ART-27 Coactivator Function. Mol Endocrinol 2005; 19:2273-82. [PMID: 15919721 DOI: 10.1210/me.2005-0134] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The transcriptional activity of the androgen receptor (AR) is modulated by interactions with coregulatory molecules. It has been proposed that aberrant interactions between AR and its coregulators may contribute to diseases related to AR activity, such as prostate cancer and androgen insensitivity syndrome (AIS); however, evidence linking abnormal receptor-cofactor interactions to disease is scant. ART-27 is a recently identified AR N-terminal coactivator that is associated with AR-mediated growth inhibition. Here we analyze a number of naturally occurring AR mutations identified in prostate cancer and AIS for their ability to affect AR response to ART-27. Although the vast majority of AR mutations appeared capable of increased activation in response to ART-27, an AR mutation identified in prostate cancer (AR P340L) and AIS (AR E2K) show reduced transcriptional responses to ART-27, whereas their response to the p160 class of coactivators was not diminished. Relative to the wild-type receptor, less ART-27 protein associated with the AR E2K substitution, consistent with reduced transcriptional response. Surprisingly, more ART-27 associated with AR P340L, despite the fact that the mutation decreased transcriptional activation in response to ART-27. Our findings suggest that aberrant AR-coactivator association interferes with normal ART-27 coactivator function, resulting in suppression of AR activity, and may contribute to the pathogenesis of diseases related to alterations in AR activity, such as prostate cancer and AIS.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|