1
|
Kaniewska MM, Chvalová D, Dolezel D. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:575-584. [PMID: 37302092 DOI: 10.1007/s00359-023-01647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Numerous insect species living in temperate regions survive adverse conditions, such as winter, in a state of developmental arrest. The most reliable cue for anticipating seasonal changes is the day-to-night ratio, the photoperiod. The molecular mechanism of the photoperiodic timer in insects is mostly unclear. Multiple pieces of evidence suggest the involvement of circadian clock genes, however, their role might be independent of their well-established role in the daily oscillation of the circadian clock. Furthermore, reproductive diapause is preferentially studied in females, whereas males are usually used for circadian clock research. Given the idiosyncrasies of male and female physiology, we decided to test male reproductive diapause in a strongly photoperiodic species, the linden bug Pyrrhocoris apterus. The data indicate that reproduction is not under circadian control, whereas the photoperiod strongly determines males' mating capacity. Clock mutants in pigment dispersing factor and cryptochrome-m genes are reproductive even in short photoperiod. Thus, we provide additional evidence of the participation of circadian clock genes in the photoperiodic time measurement in insects.
Collapse
Affiliation(s)
- Magdalena Maria Kaniewska
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Daniela Chvalová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Colizzi FS, Martínez-Torres D, Helfrich-Förster C. The circadian and photoperiodic clock of the pea aphid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:627-639. [PMID: 37482577 PMCID: PMC11226554 DOI: 10.1007/s00359-023-01660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species that exhibits a remarkable annual life cycle, which is tightly coupled to the seasonal changes in day length. During spring and summer, characterised by longer days, aphid populations consist exclusively of viviparous females that reproduce parthenogenetically. When autumn comes and the days shorten, aphids switch their reproductive mode and generate males and oviparous sexual females, which mate and produce cold-resistant eggs that overwinter and survive the unfavourable season. While the photoperiodic responses have been well described, the nature of the timing mechanisms which underlie day length discrimination are still not completely understood. Experiments from the 1960's suggested that aphids rely on an 'hourglass' clock measuring the elapsed time during the dark night by accumulating a biochemical factor, which reaches a critical threshold at a certain night length and triggers the switch in reproduction mode. However, the photoperiodic responses of aphids can also be attributed to a strongly dampened circadian clock. Recent studies have uncovered the molecular components and the location of the circadian clock in the brain of the pea aphid and revealed that it is well connected to the neurohormonal system controlling aphid reproduction. We provide an overview of the putative mechanisms of photoperiodic control in aphids, from the photoreceptors involved in this process to the circadian clock and the neuroendocrine system.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- University of Würzburg, Neurobiology and Genetics, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna,, València, Spain
| | | |
Collapse
|
3
|
Dhungana P, Wei X, Meuti M, Sim C. Identification of CYCLE targets that contribute diverse features of circadian rhythms in the mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101140. [PMID: 37690215 PMCID: PMC10841209 DOI: 10.1016/j.cbd.2023.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Culex pipiens demonstrates robust circadian rhythms in adult eclosion, flight activity, mating, and development. These rhythmic patterns are believed to be controlled by the endogenous light-entrainable circadian clock that consists of positive and negative regulators working in a transcription-translation feedback loop. Moreover, these mosquitoes undergo seasonal diapause in exposure to the short photoperiod of late summer or early fall. However, the exact genetic and cellular mechanism behind the clock gene-mediated activity pattern, seasonal time measurement, and subsequent diapause initiation still need to be unraveled. To determine the possible linkage between clock genes and downstream processes, here we employed ChIP-sequencing to identify the direct targets of one of the core clock proteins, Cycle (CYC). The nearest genes with peaks mapping to their 1Kb upstream region of the transcription start site were extracted and scanned for consensus E box sequences, resulting in a dataset comprising the target genes possibly regulated by CYC. Based on the highest fold enrichment and functional relevance, we identified genes relating to five gene categories of potential interest, including peptide/receptors, neurotransmission, olfaction, immunity, and reproductive growth. Of these, we validated fourteen genes with ChIP-qPCR and qRT-PCR. These genes showed a significantly high expression in dusk compared to dawn in concert with the activity level of the CYC transcription factor and are thus strong candidates for mediating circadian rhythmicity and possibly regulating seasonal shifts in mosquito reproductive activity.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA. https://twitter.com/@Prabin_988
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA. https://twitter.com/@MeganMeuti
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
4
|
Kwiatkowski ER, Schnytzer Y, Rosenthal JJC, Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr Biol 2023; 33:1867-1882.e5. [PMID: 36977416 PMCID: PMC10205697 DOI: 10.1016/j.cub.2023.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Organisms living in the intertidal zone are exposed to a particularly challenging environment. In addition to daily changes in light intensity and seasonal changes in photoperiod and weather patterns, they experience dramatic oscillations in environmental conditions due to the tides. To anticipate tides, and thus optimize their behavior and physiology, animals occupying intertidal ecological niches have acquired circatidal clocks. Although the existence of these clocks has long been known, their underlying molecular components have proven difficult to identify, in large part because of the lack of an intertidal model organism amenable to genetic manipulation. In particular, the relationship between the circatidal and circadian molecular clocks, and the possibility of shared genetic components, has been a long-standing question. Here, we introduce the genetically tractable crustacean Parhyale hawaiensis as a system for the study of circatidal rhythms. First, we show that P. hawaiensis exhibits robust 12.4-h rhythms of locomotion that can be entrained to an artificial tidal regimen and are temperature compensated. Using CRISPR-Cas9 genome editing, we then demonstrate that the core circadian clock gene Bmal1 is required for circatidal rhythms. Our results thus demonstrate that Bmal1 is a molecular link between circatidal and circadian clocks and establish P. hawaiensis as a powerful system to study the molecular mechanisms underlying circatidal rhythms and their entrainment.
Collapse
Affiliation(s)
- Erica R Kwiatkowski
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yisrael Schnytzer
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Teng Z, Huo M, Zhou Y, Zhou Y, Liu Y, Lin Y, Zhang Q, Zhang Z, Wan F, Zhou H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. INSECTS 2023; 14:insects14050486. [PMID: 37233114 DOI: 10.3390/insects14050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Despite the importance of circadian rhythms in insect behavior, our understanding of circadian activity and the molecular oscillatory mechanism in parasitoid wasp circadian clocks is limited. In this study, behavioral activities expected to be under the control of the endogenous circadian system were characterized in an ectoparasitoid wasp, Pachycrepoideus vindemmiae. Most adults exhibited emergence between late night and early morning, while mating only occurred during the daytime, with a peak at midday. Oviposition had three peaks in the early morning, late day, or early night and late night. Additionally, we identified eight putative clock genes from P. vindemmiae. The quantitative PCR (qPCR) results indicate that most clock genes showed significant rhythmic expressions. Our comparative analysis of clock genes in P. vindemmiae and 43 other parasitoid wasps revealed that none of the wasps possessed the timeless and cry1 genes commonly found in some other insect species, suggesting that the circadian clock system in parasitoid wasps is distinct from that in other non-Hymenoptera insects such as Drosophila. Thus, this study attempted to build the first hypothetical circadian clock model for a parasitoid wasp, thus generating hypotheses and providing a platform for the future functional characterization of P. vindemmiae clock genes as well as those of other parasitoid wasps. Finally, these findings on P. vindemmiae circadian activity will aid the development of effective field release programs for biological control, which can be tested under field conditions.
Collapse
Affiliation(s)
- Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengran Huo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuqi Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunjie Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Lin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiqi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
7
|
Brady D, Saviane A, Cappellozza S, Sandrelli F. The Circadian Clock in Lepidoptera. Front Physiol 2021; 12:776826. [PMID: 34867483 PMCID: PMC8635995 DOI: 10.3389/fphys.2021.776826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
With approximately 160,000 identified species of butterflies and moths, Lepidoptera are among the most species-rich and diverse insect orders. Lepidopteran insects have fundamental ecosystem functions as pollinators and valuable food sources for countless animals. Furthermore, Lepidoptera have a significant impact on the economy and global food security because many species in their larval stage are harmful pests of staple food crops. Moreover, domesticated species such as the silkworm Bombyx mori produce silk and silk byproducts that are utilized by the luxury textile, biomedical, and cosmetics sectors. Several Lepidoptera have been fundamental as model organisms for basic biological research, from formal genetics to evolutionary studies. Regarding chronobiology, in the 1970s, Truman's seminal transplantation experiments on different lepidopteran species were the first to show that the circadian clock resides in the brain. With the implementation of molecular genetics, subsequent studies identified key differences in core components of the molecular circadian clock of Lepidoptera compared to the dipteran Drosophila melanogaster, the dominant insect species in chronobiological research. More recently, studies on the butterfly Danaus plexippus have been fundamental in characterizing the interplay between the circadian clock and navigation during the seasonal migration of this species. Moreover, the advent of Next Generation Omic technologies has resulted in the production of many publicly available datasets regarding circadian clocks in pest and beneficial Lepidoptera. This review presents an updated overview of the molecular and anatomical organization of the circadian clock in Lepidoptera. We report different behavioral circadian rhythms currently identified, focusing on the importance of the circadian clock in controlling developmental, mating and migration phenotypes. We then describe the ecological importance of circadian clocks detailing the complex interplay between the feeding behavior of these organisms and plants. Finally, we discuss how the characterization of these features could be useful in both pest control, and in optimizing rearing of beneficial Lepidoptera.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, Università di Padova, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | | |
Collapse
|
8
|
Zhang J, Li S, Li W, Chen Z, Guo H, Liu J, Xu Y, Xiao Y, Zhang L, Arunkumar KP, Smagghe G, Xia Q, Goldsmith MR, Takeda M, Mita K. Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura. Commun Biol 2021; 4:286. [PMID: 33674721 PMCID: PMC7935888 DOI: 10.1038/s42003-021-01816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness. Zhang et al. show that the circadian gene coupling between night feeding and day detoxification is regulated through the binding of circadian elements to E-boxes in Spodoptera litura, one of the most difficult Asian agricultural pests to control. Exposure of these larvae to a pesticide affects them more at night than during the day, suggesting the need for time-of-day considerations for pesticide application.
Collapse
Affiliation(s)
- Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yajing Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Liying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Lahdoigarh, Jorhat, India
| | - Guy Smagghe
- College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Department of Plants and Crops, Laboratory of Agrozoology and International Joint China-Belgium Laboratory on Sustainable Control of Crop Pests, Ghent University, Ghent, Belgium
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
10
|
Chang V, Meuti ME. Circadian transcription factors differentially regulate features of the adult overwintering diapause in the Northern house mosquito, Culex pipiens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103365. [PMID: 32247760 DOI: 10.1016/j.ibmb.2020.103365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The short days of late summer and early fall are the environmental cues that most temperate insects and other animals use to predict winter's arrival. Although it is still unclear precisely how insects measure daylength, there is mounting evidence that the circadian clock regulates seasonal responses including photoperiodic diapause. Females of the Northern house mosquito, Culex pipiens, enter an adult reproductive diapause in response to short daylengths. While in this state, females divert their resources from reproduction to survival, arresting egg follicle development and increasing fat content. Here, we characterized the expression profile of two circadian transcription factors, vrille (vri) and Par domain protein 1 (Pdp1), as well as genes downstream of the clock, takeout (to) and Nocturnin (Noc) and under different seasonal conditions. We saw that while vri mRNA oscillated under both long day and short day conditions, Pdp1 expression oscillated only under long day conditions and was constitutively upregulated in diapausing females. We saw similar expression profiles for to and Noc, suggesting that PDP1 might regulate their expression or that Pdp1, to and Noc might be regulated by the same transcription factor. We suppressed vri and Pdp1 using RNA interference. dsRNA against vri provided inconsistent results, sometimes stimulating autogenous egg follicle development in both long and short day-reared females, and other times had no effect. In contrast, knocking down Pdp1 prevented short day-reared females from accumulating fat reserves, but increased expression of to and Noc. Taken together, these data suggest that the circadian transcription factors Vri and Pdp1 may independently regulate signaling pathways underlying arrested egg follicle development and fat accumulation in diapausing females of Cx. pipiens.
Collapse
Affiliation(s)
- Vivian Chang
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Room 216 Kottman Hall, Columbus, OH, 43210, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Room 216 Kottman Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:259-272. [PMID: 31691095 PMCID: PMC7069913 DOI: 10.1007/s00359-019-01379-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.
Collapse
|
12
|
Yan S, Liu YJ, Zhu JL, Cui WN, Zhang XF, Yang YH, Liu XM, Zhang QW, Liu XX. Daily expression of two circadian clock genes in compound eyes of Helicoverpa armigera: evidence for peripheral tissue circadian timing. INSECT SCIENCE 2019; 26:217-228. [PMID: 28940754 DOI: 10.1111/1744-7917.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Circadian clock genes in peripheral tissues usually play an important role in regulating the circadian rhythms. Light is the most important environmental signal for synchronizing endogenous rhythms with the daily light-dark cycle, and compound eyes are known as the principal circadian photoreceptor for photic entrainment in most moths. However, there is little evidence for circadian timing in compound eyes. In the current study, we isolated the timeless gene, designated Ha-tim (GenBank accession number: KM233162), from the cotton bollworm Helicoverpa armigera. Ha-tim and period (Ha-per) showed low messenger RNA levels in the compound eyes compared to the other tested adult organs. Ha-tim and Ha-per transcript levels were dependent on an endogenous rhythm that fluctuated over a daily cycle in the compound eyes and heads. The cycles of Ha-tim and Ha-per transcript levels followed similar time courses, and identical expression patterns of the two genes were observed in the compound eyes and heads. Ha-tim and Ha-per were down-regulated in the compound eyes after light exposure, copulation and starvation. These results indicated that Ha-tim and Ha-per transcript levels were regulated by endogenous and exogenous factors. Our study helped to improve our understanding of the circadian clock machinery in compound eyes and other peripheral tissues.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, China
- National Agricultural Technology Extension and Service Center, Beijing, China
| | - Yan-Jun Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jia-Lin Zhu
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, China
| | - Wei-Na Cui
- Zoucheng Plant Protection Station, Zoucheng, Shandong Province, China
| | - Xin-Fang Zhang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli, Hebei Province, China
| | - Yu-Hui Yang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiao-Ming Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qing-Wen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiao-Xia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Rosensweig C, Green CB. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. Eur J Neurosci 2018; 51:139-165. [PMID: 30402960 DOI: 10.1111/ejn.14254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.
Collapse
Affiliation(s)
- Clark Rosensweig
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Bertolini E, Kistenpfennig C, Menegazzi P, Keller A, Koukidou M, Helfrich-Förster C. The characterization of the circadian clock in the olive fly Bactrocera oleae (Diptera: Tephritidae) reveals a Drosophila-like organization. Sci Rep 2018; 8:816. [PMID: 29339768 PMCID: PMC5770390 DOI: 10.1038/s41598-018-19255-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the single most important pest for the majority of olive plantations. Oxitec's self-limiting olive fly technology (OX3097D-Bol) offers an alternative management approach to this insect pest. Because of previously reported asynchrony in the mating time of wild and laboratory strains, we have characterized the olive fly circadian clock applying molecular, evolutionary, anatomical and behavioural approaches. Here we demonstrate that the olive fly clock relies on a Drosophila melanogaster-like organization and that OX3097D-Bol carries a functional clock similar to wild-type strains, confirming its suitability for operational use.
Collapse
Affiliation(s)
- Enrico Bertolini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Keller
- Center for Computation and Theoretical Biology and Department of Bioinformatics, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
15
|
The role of the circadian clock system in physiology. Pflugers Arch 2018; 470:227-239. [PMID: 29302752 DOI: 10.1007/s00424-017-2103-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022]
Abstract
Life on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional-translational feedback loops. A ubiquitous network of cellular central and peripheral tissue clocks coordinates physiological functions along the day through activation of tissue-specific transcriptional programs. Circadian rhythms impact on diverse physiological processes including the cardiovascular system, energy metabolism, immunity, hormone secretion, and reproduction. This review summarizes our current understanding of the mechanisms of circadian timekeeping in different species, its adaptation by external timing signals and the pathophysiological consequences of circadian disruption.
Collapse
|
16
|
Biscontin A, Wallach T, Sales G, Grudziecki A, Janke L, Sartori E, Bertolucci C, Mazzotta G, De Pittà C, Meyer B, Kramer A, Costa R. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci Rep 2017; 7:17742. [PMID: 29255161 PMCID: PMC5735174 DOI: 10.1038/s41598-017-18009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a key species in Southern Ocean ecosystem where it plays a central role in the Antarctic food web. Available information supports the existence of an endogenous timing system in krill enabling it to synchronize metabolism and behavior with an environment characterized by extreme seasonal changes in terms of day length, food availability, and surface ice extent. A screening of our transcriptome database “KrillDB” allowed us to identify the putative orthologues of 20 circadian clock components. Mapping of conserved domains and phylogenetic analyses strongly supported annotations of the identified sequences. Luciferase assays and co-immunoprecipitation experiments allowed us to define the role of the main clock components. Our findings provide an overall picture of the molecular mechanisms underlying the functioning of the endogenous circadian clock in the Antarctic krill and shed light on their evolution throughout crustaceans speciation. Interestingly, the core clock machinery shows both mammalian and insect features that presumably contribute to an evolutionary strategy to cope with polar environment’s challenges. Moreover, despite the extreme variability characterizing the Antarctic seasonal day length, the conserved light mediated degradation of the photoreceptor EsCRY1 suggests a persisting pivotal role of light as a Zeitgeber.
Collapse
Affiliation(s)
- Alberto Biscontin
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.,Department of Biology, University of Padova, 35121, Padova, Italy
| | - Thomas Wallach
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Astrid Grudziecki
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Leonard Janke
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Elena Sartori
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | | | | | - Bettina Meyer
- Alfred Wegener Polar Biological Oceanography, 27570, Bremerhaven, Germany.,Carl von Ossietzky University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.
| | - Rodolfo Costa
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
17
|
Abbas MN, Kausar S, Sun YX, Sun Y, Wang L, Qian C, Wei GQ, Zhu BJ, Liu CL. Molecular cloning, expression, and characterization of E2F transcription factor 4 from Antheraea pernyi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:839-846. [PMID: 28436337 DOI: 10.1017/s0007485317000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The E2F transcription factor family is distributed widely in eukaryotes and has been well studied among mammals. In the present study, the E2F transcription factor 4 (E2F4) gene was isolated from fat bodies of Antheraea pernyi and sequenced. E2F4 comprised a 795 bp open reading frame encoding a deduced amino acid sequence of 264 amino acid residues. The recombinant protein was expressed in Escherichia coli (Transetta DE3), and anti-E2F4 antibodies were prepared. The deduced amino acid sequence displayed significant homology to an E2F4-like protein from Bombyx mori L. Quantitative real-time polymerase chain reaction analysis revealed that E2F4 expression was highest in the integument, followed by the fat body, silk glands, and haemocytes. The expression of E2F4 was upregulated in larvae challenged by bacterial (Escherichia coli, Micrococcus luteus), viral (nuclear polyhedrosis virus), and fungal (Beauveria bassiana) pathogens. These observations indicated that E2F4 is an inducible protein in the immune response of A. pernyi and probably in other insects.
Collapse
Affiliation(s)
- M N Abbas
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - S Kausar
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Y-X Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Y Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - L Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - C Qian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - G-Q Wei
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - B-J Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - C-L Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
18
|
Kontogiannatos D, Gkouvitsas T, Kourti A. The expression of the clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:1-6. [PMID: 28363845 DOI: 10.1016/j.cbpb.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks.
Collapse
Affiliation(s)
- Dimitrios Kontogiannatos
- Department of Biotechnology, School of Food, Biotechnology and Development Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Theodoros Gkouvitsas
- Department of Biotechnology, School of Food, Biotechnology and Development Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anna Kourti
- Department of Biotechnology, School of Food, Biotechnology and Development Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|
19
|
Chahad-Ehlers S, Arthur LP, Lima ALA, Gesto JSM, Torres FR, Peixoto AA, de Brito RA. Expanding the view of Clock and cycle gene evolution in Diptera. INSECT MOLECULAR BIOLOGY 2017; 26:317-331. [PMID: 28234413 DOI: 10.1111/imb.12296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We expanded the view of Clock (Clk) and cycle (cyc) gene evolution in Diptera by studying the fruit fly Anastrepha fraterculus (Afra), a Brachycera. Despite the high conservation of clock genes amongst insect groups, striking structural and functional differences of some clocks have appeared throughout evolution. Clk and cyc nucleotide sequences and corresponding proteins were characterized, along with their mRNA expression data, to provide an evolutionary overview in the two major groups of Diptera: Lower Diptera and Higher Brachycera. We found that AfraCYC lacks the BMAL (Brain and muscle ARNT-like) C-terminus region (BCTR) domain and is constitutively expressed, suggesting that AfraCLK has the main transactivation function, which is corroborated by the presence of poly-Q repeats and an oscillatory pattern. Our analysis suggests that the loss of BCTR in CYC is not exclusive of drosophilids, as it also occurs in other Acalyptratae flies such as tephritids and drosophilids, however, but it is also present in some Calyptratae, such as Muscidae, Calliphoridae and Sarcophagidae. This indicates that BCTR is missing from CYC of all higher-level Brachycera and that it was lost during the evolution of Lower Brachycera. Thus, we can infer that CLK protein may play the main role in the CLK\CYC transcription complex in these flies, like in its Drosophila orthologues.
Collapse
Affiliation(s)
- S Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - L P Arthur
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - A L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - J S M Gesto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - F R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - A A Peixoto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - R A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
20
|
Gustafson CL, Parsley NC, Asimgil H, Lee HW, Ahlbach C, Michael AK, Xu H, Williams OL, Davis TL, Liu AC, Partch CL. A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms. Mol Cell 2017; 66:447-457.e7. [PMID: 28506462 PMCID: PMC5484534 DOI: 10.1016/j.molcel.2017.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/18/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.
Collapse
Affiliation(s)
- Chelsea L Gustafson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicole C Parsley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hande Asimgil
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher Ahlbach
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Haiyan Xu
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Owen L Williams
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tara L Davis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Andrew C Liu
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; Feinstone Genome Research Center, University of Memphis, Memphis, TN 38152, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
21
|
Perrigault M, Tran D. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas. PLoS One 2017; 12:e0169790. [PMID: 28072861 PMCID: PMC5224872 DOI: 10.1371/journal.pone.0169790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6-4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters.
Collapse
Affiliation(s)
- Mickael Perrigault
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France
- CNRS, EPOC, UMR 5805, Arcachon, France
- * E-mail:
| | - Damien Tran
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France
- CNRS, EPOC, UMR 5805, Arcachon, France
| |
Collapse
|
22
|
Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation. Proc Natl Acad Sci U S A 2016; 113:E4904-13. [PMID: 27489346 DOI: 10.1073/pnas.1523494113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657-707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box-dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657-707 deletion in the Clock (Clk(out)) genetic background (p{dClk-Δ};Clk(out)), oscillation of core clock genes' mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657-707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clk(out) flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clk(out) flies showed pacemaker-neuron-dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clk(out) flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657-707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions.
Collapse
|
23
|
Sehadová H, Markova EP, Sehnal F, Takeda M. Distribution of Circadian Clock-Related Proteins in the Cephalic Nervous System of the Silkworm, Bombyx Mori. J Biol Rhythms 2016; 19:466-82. [PMID: 15523109 DOI: 10.1177/0748730404269153] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the circadian timing systems, input pathways transmit information on the diurnal environmental changes to a core oscillator that generates signals relayed to the body periphery by output pathways. Cryptochrome (CRY) protein participates in the light perception; period (PER), Cycle (CYC), and Doubletime (DBT) proteins drive the core oscillator; and arylalkylamines are crucial for the clock output in vertebrates. Using antibodies to CRY, PER, CYC, DBT, and arylalkylamine N-acetyltransferase (aaNAT), the authors examined neuronal architecture of the circadian system in the cephalic ganglia of adult silkworms. The antibodies reacted in the cytoplasm, never in the nuclei, of specific neurons. Acluster of 4 large Ia1 neurons in each dorsolateral protocerebrum, a pair of cells in the frontal ganglion, and nerve fibers in the corpora cardiaca and corpora allata were stained with all antibodies. The intensity of PER staining in the Ia1 cells and in 2 to 4 adjacent small cells oscillated, being maximal late in subjective day and minimal in early night. No other oscillations were detected in any cell and with any antibody. Six small cells in close vicinity to the Ia1 neurons coexpressed CYC-like and DBT-like, and 4 to 5 of them also coexpressed aaNATlike immunoreactivity; the PER- and CRY-like antigens were each present in separate groups of 4 cells. The CYC- and aaNAT-like antigens were further colocalized in small groups of neurons in the pars intercerebralis, at the venter of the optic tract, and in the subesophageal ganglion. Remaining antibodies reacted with similarly positioned cells in the pars intercerebralis, and the DBT antibody also reacted with the cells in the subesophageal ganglion, but antigen colocalizations were not proven. The results imply that key components of the silkworm circadian system reside in the Ia1 neurons and that additional, hierarchically arranged oscillators contribute to overt pacemaking. The retrocerebral neurohemal organs seem to serve as outlets transmitting central neural oscillations to the hemolymph. The frontal ganglion may play an autonomous function in circadian regulations. The colocalization of aaNAT- and CYC-like antigens suggests that the enzyme is functionally linked to CYC as in vertebrates and that arylalkylamines are involved in the insect output pathway.
Collapse
Affiliation(s)
- Hana Sehadová
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | |
Collapse
|
24
|
Tomioka K, Matsumoto A. Circadian molecular clockworks in non-model insects. CURRENT OPINION IN INSECT SCIENCE 2015; 7:58-64. [PMID: 32846680 DOI: 10.1016/j.cois.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/11/2023]
Abstract
The recent development of molecular genetic technology is promoting studies on the clock mechanism of various non-model insect species, revealing diversity and commonality of their molecular clock machinery. Like in Drosophila, their clocks generally consist of clock genes including period, timeless, Clock, and cycle, except for hymenopteran species which lack timeless in their genome. Unlike in Drosophila, however, some insects show vertebrate-like traits: The clock machinery involves mammalian type cryptochrome, cycle is rhythmically expressed, and Clock is constitutively expressed. Although the oscillatory mechanisms of the clock are still to be investigated in most insects, RNAi and genome editing technology should accelerate the study, leading toward understanding the origin of variable overt behavioral rhythms such as nocturnal, diurnal, and crepuscular activity rhythms.
Collapse
Affiliation(s)
- Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Akira Matsumoto
- Department of Biology, Juntendo University School of Medicine, 1-1 Hiraga Gakuendai, Inzai, Chiba 270-1695, Japan
| |
Collapse
|
25
|
|
26
|
Karthi S, Shivakumar MS. Circadian clock gene is involved in the photoperiodic response of theSpodoptera lituraadults. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.905347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Mohamed AAM, Wang Q, Bembenek J, Ichihara N, Hiragaki S, Suzuki T, Takeda M. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. PLoS One 2014; 9:e92680. [PMID: 24667367 PMCID: PMC3965458 DOI: 10.1371/journal.pone.0092680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4 °C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNA(NAT) caused dysfunction of photoperiodism. dsRNA(PER) upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNA(NAT) decreased melatonin while dsRNA(PER) increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNA(NAT), to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.
Collapse
Affiliation(s)
| | - Qiushi Wang
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Jadwiga Bembenek
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| |
Collapse
|
28
|
Uryu O, Karpova SG, Tomioka K. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:697-704. [PMID: 23665334 DOI: 10.1016/j.jinsphys.2013.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed.
Collapse
Affiliation(s)
- Outa Uryu
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
29
|
Werckenthin A, Derst C, Stengl M. Sequence and expression of per, tim1, and cry2 genes in the Madeira cockroach Rhyparobia maderae. J Biol Rhythms 2013; 27:453-66. [PMID: 23223371 DOI: 10.1177/0748730412462109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most of what we know today about the molecular constituents of the insect circadian clock was discovered in the fruit fly Drosophila melanogaster. Various other holometabolous and some hemimetabolous insects have also been examined for the presence of circadian genes. In these insects, per, tim1, and cry2 are part of a core feedback loop system. The proteins inhibit their own expression, leading to circadian oscillations of mRNA and proteins. Although cockroaches are successfully employed circadian model organisms, their clock genes are mostly unknown. Thus, we cloned putative circadian genes in Rhyparobia maderae (synonym Leucophaea maderae), showing the presence of period (per), timeless 1 (tim1), and mammalian-type cryptochrome (cry2). The expression levels of per, tim1, and cry2 in R. maderae were examined in various tissues and photoperiods employing quantitative PCR. In brains and excised accessory medullae, expression levels of rmPer, rmTim1, and rmCry2 oscillated in a circadian manner with peaks in the first half of the night. Oscillations mostly continued in constant conditions. In Malpighian tubules, no significant oscillations were found. In animals raised in different photoperiods (LD 18:6, 12:12, 6:18), the peak levels of rmPer, rmTim1, and rmCry2 expression adjusted with respect to the beginning of the scotophase. The daily mean of expression levels was significantly lower in short-day versus long-day animals. We suggest that rmPer, rmTim1, and rmCry2 are part of the Madeira cockroach nuclear circadian clock, which can adjust to different photoperiods.
Collapse
Affiliation(s)
- Achim Werckenthin
- Animal Physiology, Department of Biology, Faculty of Mathematics and Natural Sciences (FB 10), University of Kassel, Kassel, Germany
| | | | | |
Collapse
|
30
|
Moriyama Y, Kamae Y, Uryu O, Tomioka K. gb'clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. J Biol Rhythms 2013; 27:467-77. [PMID: 23223372 DOI: 10.1177/0748730412462207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse genetic studies have revealed that common clock genes, such as period (per), timeless (tim), cycle (cyc), and Clock (Clk), are involved in the circadian clock mechanism among a wide variety of insects. However, to what degree the molecular oscillatory mechanism is conserved is still to be elucidated. In this study, cDNA of the clock gene Clk was cloned in the cricket Gryllus bimaculatus, and its function was analyzed using RNA interference (RNAi). In adult optic lobes, the Clk mRNA level showed no significant rhythmic changes both under light-dark cycle (LD) and constant darkness (DD). A single injection of Clk double-stranded RNA (dsRNA) resulted in a knockdown of the mRNA level to about 25% of the peak level of control animals. The injected crickets lost their locomotor rhythms in DD. The arrhythmicity in locomotor activity persisted for up to 50 days after the Clk dsRNA injection. Control animals injected with DsRed2 dsRNA showed a clear locomotor rhythm like intact animals. Injection of Clk dsRNA not only suppressed the mRNA levels of both per and tim but also abolished their rhythmic expression. per RNAi down-regulates the Clk mRNA levels, suggesting that per is required for sufficient expression of Clk. These results suggest that Clk is an essential component and plays an important role in the cricket's circadian clock machinery like in Drosophila, but regulation of its expression is probably different from regulation in Drosophila.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
31
|
Chahad-Ehlers S, Gentile C, Lima JBP, Peixoto AA, Bruno RV. Analysis of cycle gene expression in Aedes aegypti brains by in situ hybridization. PLoS One 2013; 8:e52559. [PMID: 23300979 PMCID: PMC3534671 DOI: 10.1371/journal.pone.0052559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/16/2012] [Indexed: 12/29/2022] Open
Abstract
Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc) gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR). Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on) compared to ZT11 (one before light-off), which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized.
Collapse
Affiliation(s)
- Samira Chahad-Ehlers
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carla Gentile
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, CNPq, Rio de Janeiro, Brazil
| | - Alexandre Afranio Peixoto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, CNPq, Rio de Janeiro, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, CNPq, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
32
|
Tsugehara T, Imai T, Takeda M. Characterization of arylalkylamine N-acetyltransferase from silkmoth (Antheraea pernyi) and pesticidal drug design based on the baculovirus-expressed enzyme. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:93-102. [PMID: 23064182 DOI: 10.1016/j.cbpc.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) catalyzes the N-acetylation of arylalkylamines. A cDNA encoding AANAT (ApAANAT) was cloned from Antheraea pernyi by PCR. The cDNA of 1966 bp encodes a 261 amino acid protein. The amino acid sequence was found to have a high homology with Bombyx mori AANAT (BmNAT) but had very low homology with vertebrate AANATs. Amino acid sequence analysis revealed that four insect AANATs cloned from three species including ApAANAT formed a distinct cluster from the vertebrate group. A recombinant ApAANAT protein was expressed in Sf9 cells using a baculovirus expression system, having AANAT activity. The transformed cell extract acetylated tryptamine, serotonin, dopamine, tyramine, octopamine and norepinephrine. The AANAT activity was inhibited at over 0.03 mM tryptamine. Although insect AANATs have been considered as a target of insecticide, this type of insecticide has never been developed. Screening a chemical library of Otsuka Chemical Co., Ltd., we found a novel compound and its derivatives that inhibited the AANAT activity of ApAANAT. This may facilitate investigation of the monoamine metabolic pathway in insects and the development of new types of insecticides and inhibitors of AANATs.
Collapse
Affiliation(s)
- Taketo Tsugehara
- Graduate School of Natural Science and Technology, Kobe University, Rokkodai-cho, Nadaku, Japan
| | | | | |
Collapse
|
33
|
Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J Comp Physiol B 2012; 182:729-40. [PMID: 22327195 DOI: 10.1007/s00360-012-0651-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/15/2023]
Abstract
Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.
Collapse
|
34
|
Kobelková A, Bajgar A, Dolezel D. Functional molecular analysis of a circadian clock gene timeless promoter from the Drosophilid fly Chymomyza costata. J Biol Rhythms 2011; 25:399-409. [PMID: 21135156 DOI: 10.1177/0748730410385283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian transcription of the tim gene is tightly regulated by the protein complex dCLK/CYC, which directly interacts with a series of closely spaced E-box and E-box-like elements in the Drosophila timeless promoter. The tim promoter from D. melanogaster has been studied in detail both in tissue cultures and in living flies yet has never been investigated in other species. This article presents a detailed functional analysis of the tim promoter from the drosophilid fly, Chymomyza costata, in Drosophila tissue cultures. A comparison of tim promoters from wt and npd-mutants confirmed that the 1855 bp deletion in the latter removes crucial regulatory cis-elements as well as the minimal promoter, being subsequently responsible for the lack of tim mRNA expression. Deletion and substitution mutations of the wt tim promoter showed that the region containing the canonical E-box, TER-box, and 2 incomplete E-box sequences is essential for CLK/CYC-mediated expression, while the PERR element appears to be a repressor in S2 cells. Furthermore, the expression of the circadian genes timeless, period , vrille, and doubletime was quantified in C. costata adults. Striking differences were found in expression profiles for tim, per, and vri between wild-type and npd-mutant individuals.
Collapse
Affiliation(s)
- Alena Kobelková
- Institute of Entomology, Biology Centre AS CR, Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
35
|
Tomioka K, Matsumoto A. A comparative view of insect circadian clock systems. Cell Mol Life Sci 2010; 67:1397-406. [PMID: 20035363 PMCID: PMC11115600 DOI: 10.1007/s00018-009-0232-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
Abstract
Recent studies revealed that the neuronal network controlling overt rhythms shows striking similarity in various insect orders. The pigment-dispersing factor seems commonly involved in regulating locomotor activity. However, there are considerable variations in the molecular oscillatory mechanism, and input and output pathways among insects. In Drosophila, autoregulatory negative feedback loops that consist of clock genes, such as period and timeless are believed to create 24-h rhythmicity. Although similar clock genes have been found in some insects, the behavior of their product proteins shows considerable differences from that of Drosophila. In other insects, mammalian-type cryptochrome (cry2) seems to work as a transcriptional repressor in the feedback loop. For photic entrainment, Drosophila type cryptochrome (cry1) plays the major role in Drosophila while the compound eyes are the major photoreceptor in others. Further comparative study will be necessary to understand how this variety of clock mechanisms derived from an ancestral one.
Collapse
Affiliation(s)
- Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|
36
|
Cortés T, Ortiz-Rivas B, Martínez-Torres D. Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:123-39. [PMID: 20482645 DOI: 10.1111/j.1365-2583.2009.00931.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of orthologs of a mammal-type in addition to a Drosophila-type cryptochrome places the putative aphid clockwork closer to the ancestral insect system than to the Drosophila one. Most notably, five of these putative aphid core clock genes are highly divergent and exhibit accelerated rates of change (especially per and tim orthologs) suggesting that the aphid circadian clock has evolved to adapt to (unknown) aphid-specific needs. Additionally, with the exception of jetlag (absent in the aphid) other genes included in the Drosophila circadian clock repertoire were found to be conserved in A. pisum. Expression analysis revealed circadian rhythmicity for some core genes as well as a significant effect of photoperiod in the amplitude of oscillations.
Collapse
Affiliation(s)
- T Cortés
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | |
Collapse
|
37
|
Gentile C, Rivas GBS, Meireles-Filho ACA, Lima JBP, Peixoto AA. Circadian expression of clock genes in two mosquito disease vectors: cry2 is different. J Biol Rhythms 2010; 24:444-51. [PMID: 19926804 DOI: 10.1177/0748730409349169] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different mosquito species show a full range of activity patterns, including diurnal, crepuscular, and nocturnal behaviors. Although activity and blood-feeding rhythms are controlled by the circadian clock, it is not yet known whether such species-specific differences in behavior are controlled directly by core clock genes or instead reflect differences in how the information of the central clock is translated into output signals. The authors have analyzed the circadian expression of clock genes in two important mosquito vectors of tropical diseases, Aedes aegypti and Culex quinquefasciatus . Although these two species show very different locomotor activity patterns and are estimated to have diverged more than 22 million years ago, they show conserved circadian expression patterns for all major cycling clock genes except mammalian-like cryptochrome2 (cry2). The results indicate that different mechanisms for cry2 regulation may exist for the two species. The authors speculate that the correlation between the differences in behavior between Ae. aegypti and Cx. quinquefasciatus and their corresponding cry2 mRNA profiles suggests a potential role for this clock gene in controlling species-specific rhythmic behavior. However, further work is needed to establish that this is the case as the different cry2 expression patterns might reflect differences between the Aedes and Culex lineages that are not directly related to changes in behavior.
Collapse
Affiliation(s)
- Carla Gentile
- Instituto Oswaldo Cruz -FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
38
|
Liu Y, Li Y, Li X, Qin L. The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: a reconstruction based on ancient texts. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:180. [PMID: 21062145 PMCID: PMC3016963 DOI: 10.1673/031.010.14140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 08/27/2009] [Indexed: 05/22/2023]
Abstract
Sericulture is one of the great inventions of the ancient Chinese. Besides the mulberry silkworm (Bombyx mori), Chinese farmers developed rearing of the Chinese oak silkworm (Antheraea pernyi) about 400 years ago. In this paper, the historic records of the origins and dispersal of the domesticated Chinese oak silkworm in China are summarized. The first document with clearly recorded oak silkworm artificial rearing appeared in 1651, although Chinese oak silkworm was documented in about 270 AD. All of the evidence in the available historic records suggests that the domesticated Chinese oak silkworm originated in central and southern areas of Shandong Province in China around the 16th century, and then was introduced directly and indirectly by human commerce into the present habitations in China after the late 17th century. The results strongly support the hypothesis that only one geographically distinct event occurred in domestication of the modern Chinese oak silkworm.
Collapse
Affiliation(s)
- Yanqun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang
110161, China
- , Corresponding author
| | - Yuping Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang
110161, China
| | - Xisheng Li
- Sericultural Institute of Liaoning Province, Fengcheng 118100, China
| | - Li Qin
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang
110161, China
| |
Collapse
|
39
|
Bradley TJ, Briscoe AD, Brady SG, Contreras HL, Danforth BN, Dudley R, Grimaldi D, Harrison JF, Kaiser JA, Merlin C, Reppert SM, Vandenbrooks JM, Yanoviak SP. Episodes in insect evolution. Integr Comp Biol 2009; 49:590-606. [PMID: 21665843 DOI: 10.1093/icb/icp043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This article derives from a society-wide symposium organized by Timothy Bradley and Adriana Briscoe and presented at the 2009 annual meeting of the Society for Integrative and Comparative Biology in Boston, Massachusetts. David Grimaldi provided the opening presentation in which he outlined the major evolutionary events in the formation and subsequent diversification of the insect clade. This presentation was followed by speakers who detailed the evolutionary history of specific physiological and/or behavioral traits that have caused insects to be both ecologically successful and fascinating as subjects for biological study. These include a review of the evolutionary history of the insects, the origins of flight, osmoregulation, the evolution of tracheal systems, the evolution of color vision, circadian clocks, and the evolution of eusociality. These topics, as covered by the speakers, provide an overview of the pattern and timing of evolutionary diversification and specialization in the group of animals we know as insects.
Collapse
Affiliation(s)
- Timothy J Bradley
- *Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697-2525, USA;Department of Entomology and Laboratories of Analytical Biology, National Museum of the Smithsonian Institution, Washington, D.C. 20013-7012, USA;Department of Entomology, Cornell University, Ithaca, NY 14853, USA;Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA;Division of Invertebrate Zoology, Museum of Natural History, New York, NY 10024, USA;Section of Organismal, Integrative and Systems Biology, School of Life Sciences, Arizona State University, Tempe AZ 85287-4501, USA;Department of Basic Sciences, Midwestern University, Glendale, AZ 85308, USA;Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA;Department of Biology, University of Arkansas Little Rock, Little Rock, AR 72204, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kotwica J, Bebas P, Gvakharia BO, Giebultowicz JM. RNA interference of the period gene affects the rhythm of sperm release in moths. J Biol Rhythms 2009; 24:25-34. [PMID: 19150927 DOI: 10.1177/0748730408329109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The period (per) gene is 1 of the core elements of the circadian clock mechanism in animals from insects to mammals. In clock cells of Drosophila melanogaster, per mRNA and PER protein oscillate in daily cycles. Consistent with the molecular clock model, PER moves to cell nuclei and acts as a repressor of positive clock elements. Homologs of per are known in many insects; however, specific roles of per in generating output rhythms are not known for most species. The aim of this article was to determine whether per is functionally involved in the circadian rhythm of sperm release in the moth, Spodoptera littoralis. In this species, as in other moths, rhythmic release of sperm bundles from the testis into the upper vas deferens occurs only in the evening, and this rhythm continues in the isolated reproductive system. S. littoralis was used to investigate the expression of per mRNA and protein in the 2 types of cells involved in sperm release: the cyst cells surrounding sperm bundles in the testes, and the barrier cells separating testicular follicles from the vas deferens. In cyst cells, PER showed a nuclear rhythm in light/dark (LD) cycles but was constitutively cytoplasmic in constant darkness (DD). In barrier cells, nuclear cycling of PER was observed in both LD and DD. To determine the role of PER in rhythmic sperm release in moths, testes-sperm duct complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment significantly lowered per mRNA and protein in cyst cells and barrier cells and caused a delay of sperm release. These data demonstrate that a molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic sperm release in this species.
Collapse
Affiliation(s)
- Joanna Kotwica
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
41
|
Sandrelli F, Costa R, Kyriacou CP, Rosato E. Comparative analysis of circadian clock genes in insects. INSECT MOLECULAR BIOLOGY 2008; 17:447-463. [PMID: 18828836 DOI: 10.1111/j.1365-2583.2008.00832.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
After a slow start, the comparative analysis of clock genes in insects has developed into a mature area of study in recent years. Brain transplant or surgical interventions in larger insects defined much of the early work in this area, before the cloning of clock genes became possible. We discuss the evolution of clock genes, their key sequence differences, and their likely modes of regulation in several different insect orders. We also present their expression patterns in the brain, focusing particularly on Diptera, Lepidoptera, and Orthoptera, the most common non-genetic model insects studied. We also highlight the adaptive involvement of clock molecules in other complex phenotypes which require biological timing, such as social behaviour, diapause and migration.
Collapse
Affiliation(s)
- F Sandrelli
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | | | |
Collapse
|
42
|
Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 2008; 6:e4. [PMID: 18184036 PMCID: PMC2174970 DOI: 10.1371/journal.pbio.0060004] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022] Open
Abstract
The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.
Collapse
Affiliation(s)
- Haisun Zhu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ivo Sauman
- Biology Center, Institute of Entomology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Quan Yuan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amy Casselman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Myai Emery-Le
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Merlin C, Lucas P, Rochat D, François MC, Maïbèche-Coisne M, Jacquin-Joly E. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J Biol Rhythms 2008; 22:502-14. [PMID: 18057325 DOI: 10.1177/0748730407307737] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms are observed in mating behaviors in moths: females emit sex pheromones and males are attracted by these pheromones in rhythmic fashions. In the moth Spodoptera littoralis, we demonstrated the occurrence of a circadian oscillator in the antenna, the peripheral olfactory organ. We identified different clock genes, period (per), cryptochrome1 (cry1) and cryptochrome2 (cry2), in this organ. Using quantitative real-time PCR (qPCR), we found that their corresponding transcripts cycled circadianly in the antenna as well as in the brain. Electroantennogram (EAG) recordings over 24 h demonstrated for the first time a circadian rhythm in antennal responses of a moth to sex pheromone. qPCR showed that out of one pheromone-binding protein (PBP), one olfactory receptor (OR), and one odorant-degrading enzyme (ODE), all putatively involved in the pheromone reception, only the ODE transcript presented a circadian rhythm that may be related to rhythms in olfactory signal resolution. Peripheral or central circadian clock control of olfaction is then discussed in light of recent data.
Collapse
Affiliation(s)
- Christine Merlin
- UMR 1272 INRA-UPMC-AgroParisTech "Physiologie de l'Insecte: Signalisation et Communication," INRA Centre de Versailles, Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The circadian mechanism appears remarkably conserved between Drosophila and mammals, with basic underlying negative and positive feedback loops, cycling gene products, and temporally regulated nuclear transport involving a few key proteins. One of these negative regulators is PERIOD, which in Drosophila shows very similar temporal and spatial regulation to TIMELESS. Surprisingly, we observe that in the housefly, Musca domestica, PER does not cycle in Western blots of head extracts, in contrast to the TIM protein. Furthermore, immunocytochemical (ICC) localization using enzymatic staining procedures reveals that PER is not localized to the nucleus of any neurons within the brain at any circadian time, as recently observed for several nondipteran insects. However, with confocal analysis, immunofluorescence reveals a very different picture and provides an initial comparison of PER/TIM-containing cells in Musca and Drosophila, which shows some significant differences, but many similarities. Thus, even in closely related Diptera, there is considerable evolutionary flexibility in the number and spatial organization of clock cells and, indeed, in the expression patterns of clock products in these cells, although the underlying framework is similar.
Collapse
|
45
|
|
46
|
O'Malley KG, Banks MA. Duplicated Clock genes with unique polyglutamine domains provide evidence for nonhomologous recombination in Chinook salmon (Oncorhynchus tshawytscha). Genetica 2007; 132:87-94. [PMID: 17503191 DOI: 10.1007/s10709-007-9151-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 04/09/2007] [Indexed: 12/01/2022]
Abstract
Circadian rhythms underlie diverse life functions ranging from cellular activities to behavior. Multiple clock genes play a central role in the generation of these rhythms. We partially characterized two copies of the Clock gene from Chinook salmon (Oncorhynchus tshawytscha), OtsClock1a and OtsClock1b. The 6,460 bp OtsClock1a sequence contains 16 exons, 15 introns and encompasses three highly conserved domains indicating it is a novel member of the bHLH-PAS superfamily of transcription factors. The second copy, OtsClock1b, consists of five exons and five introns spanning 1,945 bp. A polyglutamine repeat motif (PolyQ), characteristic of a majority of CLOCK proteins, is present in both OTSCLOCK1a and OTSCLOCK1b. However, the Chinook PolyQ domains are uniquely positioned inside the gene. Interestingly, a 1,200 bp non-coding segment located downstream of the OtsClock1a PolyQ domain is absent from OtsClock1b. This insertion/deletion is 91% similar to the Salmo salar Transferrin gene. A phylogenetic analysis of 11 CLOCK proteins shows that OtsClock1a and OtsClock1b are paralogs which likely arose subsequent to the salmonid genome-wide duplication event. Ultimately, the Chinook salmon Clock genes are key components to our understanding the genetic mechanisms underlying temporally regulated life history traits in Pacific salmonids.
Collapse
Affiliation(s)
- K G O'Malley
- Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA.
| | | |
Collapse
|
47
|
Bembenek J, Itokawa K, Hiragaki S, Tufail M, Takeda M. Molecular characterization and distribution of CYCLE protein from Athalia rosae. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:418-27. [PMID: 17368476 DOI: 10.1016/j.jinsphys.2006.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/27/2006] [Accepted: 12/27/2006] [Indexed: 05/14/2023]
Abstract
cDNA encoding CYCLE (CYC) from the coleseed sawfly, Athalia rosae (Hymenoptera, Symphyta), was amplified by PCR. This is a first determination of hymenopteran CYC structure. ArCYC had an overall identity of 66% with CYC of Anopheles gambiae and ca. 60% of Drosophila melanogaster. Structural investigation revealed that ArCYC contained characteristic motifs of: bHLH, PAS A, PAS B, PAC and BCTR. Detailed analysis indicated high conservation of these regions among insects. Northern blot analysis showed that the mRNA of ca. 3 kb was transcribed both in the head and in the rest of the body. Southern blot analysis suggested the presence of a single copy of the gene in the genome. Western blot indicates that the quantity of CYC protein does not fluctuate under LD 12:12 in either the head or the rest of the body. Immunocytochemical examination revealed CYC-like antigen in the pars intercerebralis, dorsolateral protocerebrum, dorsal optic tract, tritocerebrum of the brain and the subesophageal ganglion.
Collapse
Affiliation(s)
- Jadwiga Bembenek
- Graduate School of Science and Technology, Kobe University, Kobe 657 8501, Japan.
| | | | | | | | | |
Collapse
|
48
|
Ceriani MF. Reporter assays. Methods Mol Biol 2007; 362:455-63. [PMID: 17417034 DOI: 10.1007/978-1-59745-257-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Transcriptional feedback loops are at the core of the molecular clockworks. As single clock genes were cloned it was compelling to develop an assay that allowed simple and direct functional testing of putative activators or repressors of transcription. This chapter includes a general description and guidelines to carry out transcriptional assays in transiently transfected Schneider's cells.
Collapse
Affiliation(s)
- M Fernanda Ceriani
- Department Behavioral Genetics, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
49
|
Gentile C, Meireles-Filho ACA, Britto C, Lima JBP, Valle D, Peixoto AA. Cloning and daily expression of the timeless gene in Aedes aegypti (Diptera:Culicidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:878-84. [PMID: 17046601 DOI: 10.1016/j.ibmb.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/15/2006] [Accepted: 08/23/2006] [Indexed: 05/12/2023]
Abstract
Molecular approaches for studying biological rhythms in insects have been well investigated in the model Drosophila melanogaster, in which a number of genes have been characterized in terms of sequence, expression, protein interactions and involvement in the control of locomotor activity and eclosion rhythms. However, only scattered information is available for insect vectors of diseases. In this paper, we report the cloning and expression analysis of the clock gene timeless in the mosquito Aedes aegypti, vector of Dengue and Yellow Fever viruses. In Drosophila, timeless has a crucial role in the control of the central pacemaker and the resetting mechanism that allows the clock to synchronize with the environment light-dark cycles. Comparison of the predicted protein sequence encoded by timeless in Ae. aegypti and D. melanogaster demonstrated high similarity in some important domains, suggesting functional conservation. Analysis of the daily expression of timeless in Ae. aegypti shows a peak in mRNA abundance around the light-dark transition.
Collapse
Affiliation(s)
- Carla Gentile
- Departamento de Bioquímica e Biologia Molecular, IOC, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos CEP 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genes Dev 2006; 16:1352-65. [PMID: 17065608 PMCID: PMC1626637 DOI: 10.1101/gr.5094806] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/18/2006] [Indexed: 12/30/2022]
Abstract
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Collapse
Affiliation(s)
- Elad B. Rubin
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Shemesh
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mira Cohen
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sharona Elgavish
- The Bioinformatics Unit, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guy Bloch
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|