1
|
dos Santos DM, Santiago LR, dos Santos NA, Romão W, Resende JM, de Lima ME, Borges MH, Ribeiro RIMDA. Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom. Toxins (Basel) 2025; 17:32. [PMID: 39852985 PMCID: PMC11768708 DOI: 10.3390/toxins17010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx III, a new peptide extracted from the venom of the Lycosa erythrognatha spider, stands out. The peptide exhibits typical antimicrobial traits: a positive net charge and amphipathic α -helix structure in lipid-like environments. Its unique sequence (GKAMKAIAKFLGR-NH2), identified via mass spectrometry and Edman degradation, shows limited similarity to existing peptides. Significantly, when liposome-encapsulated, LyeTx III demonstrates selective activity against tumor cells in culture. Our MTT results showed that the cytotoxicity of the peptide increased against HN13 cells when administered as liposomes, with their viability in HN13 cells alone being 98%, compared to 38% in liposome-encapsulated form. This finding underscores that the LyeTx III peptide may be a good candidate for the development of new drugs against cancer. Its activity when encapsulated is promising, as it can increase its half-life in the body and can also be targeted to specific tumors.
Collapse
Affiliation(s)
- Daniel Moreira dos Santos
- Department of Experimental Pathology, Federal University of São João del-Rei, Divinópolis 36301-158, Brazil; (D.M.d.S.); (L.R.S.)
| | - Livia Ramos Santiago
- Department of Experimental Pathology, Federal University of São João del-Rei, Divinópolis 36301-158, Brazil; (D.M.d.S.); (L.R.S.)
| | - Nayara Araújo dos Santos
- Petroleomics and Forensics Laboratory, Federal University of Espírito Santo, Vitória 29075-910, Brazil; (N.A.d.S.); (W.R.)
| | - Wanderson Romão
- Petroleomics and Forensics Laboratory, Federal University of Espírito Santo, Vitória 29075-910, Brazil; (N.A.d.S.); (W.R.)
| | - Jarbas Magalhães Resende
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 30110-005, Brazil;
| | - Maria Elena de Lima
- Programa de Pós-Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30110-005, Brazil
| | - Márcia Helena Borges
- Proteomics and Arachnid Laboratory, Ezequiel Dias Foundation, Belo Horizonte 30110-005, Brazil;
| | | |
Collapse
|
2
|
Rivas G, Minton AP. Surfaces as frameworks for intracellular organization. Trends Biochem Sci 2024; 49:942-954. [PMID: 39375067 DOI: 10.1016/j.tibs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024]
Abstract
A large fraction of soluble protein within the interior of living cells may reversibly associate with structural elements, including proteinaceous fibers and phospholipid membranes. In this opinion, we present theoretical and experimental evidence that many of these associations are due to nonspecific attraction between the protein and the surface of the fiber or membrane, and that such associations may lead to substantial changes in the association state of the adsorbed proteins, the biological function of the adsorbed proteins, and the distribution of these proteins between the many microenvironments existing within the cell.
Collapse
Affiliation(s)
- Germán Rivas
- CIB Margarita Salas - Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Gao B, Zhu S. The evolutionary novelty of insect defensins: from bacterial killing to toxin neutralization. Cell Mol Life Sci 2024; 81:230. [PMID: 38780625 PMCID: PMC11116330 DOI: 10.1007/s00018-024-05273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Gao B, Li P, Zhu S. Single Deletion Unmasks Hidden Anti-Gram-Negative Bacterial Activity of an Insect Defensin-Derived Peptide. J Med Chem 2024; 67:2512-2528. [PMID: 38335999 DOI: 10.1021/acs.jmedchem.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Insect defensins are a large family of antimicrobial peptides primarily active against Gram-positive bacteria. Here, we explore their hidden anti-Gram-negative bacterial potential via a nature-guided strategy inspired by natural deletion variants of Drosophila defensins. Referring to these variants, we deleted the equivalent region of an insect defensin with the first cysteine-containing N-terminus, and the last three cysteine-containing C-terminal regions remained. This 15-mer peptide exhibits low solubility and specifically targets Gram-positive bacteria. Further deletion of alanine-9 remarkably improves its solubility, unmasks its hidden anti-Gram-negative bacterial activity, and alters its states in different environments. Intriguingly, compared with the oxidized form, the 14-mer reduced peptide shows increased activity on Gram-positive and Gram-negative bacteria through a membrane-disruptive mechanism. The broad-spectrum activity and tolerance to high-salt environments and human serum, together with no toxicity to mammalian or human cells, make it a promising candidate for the design of new peptide antibiotics against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian District, Beijing 100190, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
5
|
Wu J, Zang M, Wang S, Qiao X, Zhao B, Bai J, Zhao Y, Shi Y. Lactoferricin, an antimicrobial motif derived from lactoferrin with food preservation potential. Crit Rev Food Sci Nutr 2023; 64:9032-9044. [PMID: 37158176 DOI: 10.1080/10408398.2023.2207650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The growth of bacteria and fungi may cause disease inf human or spoilage of food. New antimicrobial substances need to be discovered. Lactoferricin (LFcin) is a group of antimicrobial peptides derived from the N-terminal region of the milk protein lactoferrin (LF). LFcin has antimicrobial ability against a variety of microorganisms, which is significantly better than that of its parent version. Here, we review the sequences, structures, and antimicrobial activities of this family and elucidated the motifs of structural and functional significance, as well as its application in food. Using sequence and structural similarity searches, we identified 43 new LFcins from the mammalian LFs deposited in the protein databases, which are grouped into six families according to their origins (Primates, Rodentia, Artiodactyla, Perissodactyla, Pholidota, and Carnivora). This work expands the LFcin family and will facilitate further characterization of novel peptides with antimicrobial potential. Considering the antimicrobial effect of LFcin on foodborne pathogens, we describe the application of these peptides from the prospective of food preservation.
Collapse
Affiliation(s)
- Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Yan Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| |
Collapse
|
6
|
A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10325-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Sunil SV, Kerima OZ, Kumar HSS, Prabhakar BT, Pramod SN, Niranjana P. In Silico Characterization of a Transcript Code Based Screening of Antimicrobial Peptide from Trichogramma chilonis. Int J Pept Res Ther 2021; 27:2861-2872. [DOI: 10.1007/s10989-021-10295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
|
8
|
Syam K, Joiya SA, Khan S, Unnikrishnan PN. Maggot Debridement Therapy for Chronic Leg and Foot Ulcers: A Review of Randomized Controlled Trials. Adv Skin Wound Care 2021; 34:603-607. [PMID: 34669663 DOI: 10.1097/01.asw.0000792928.08722.ae] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To critically analyze the existing randomized controlled trials (RCTs) on the clinical, economic, and psychological implications of maggot debridement therapy (MDT). DATA SOURCES An exhaustive literature search for English-language publications was conducted using MEDLINE, EMBASE, and PubMed. STUDY SELECTION Keywords used for the search were based on the PICO (Population, Intervention, Comparison, Outcome) framework. The titles, abstracts, and relevant full-text articles were screened. Seven RCTs were selected after applying the inclusion and exclusion criteria. DATA EXTRACTION Data pertaining to the primary and secondary outcomes of each study were extracted. DATA SYNTHESIS The data extracted were evaluated and categorized into clinical, economic, and psychological outcomes pertaining to MDT. A judicious evaluation of these outcomes was made, and the following conclusions were drawn. CONCLUSIONS There exists heterogeneity in the extant RCTs, but MDT appears to be effective for a quick early debridement. For diabetic foot ulcers, MDT improves debridement, controls infection, and enhances wound healing. In chronic peripheral vascular disease ulcers, it aids in early debridement, but the final outcome is equivocal. Further robust integrated health economic and parallel qualitative assessment studies are recommended to understand the cost-effectiveness and patient acceptability and experience.
Collapse
Affiliation(s)
- Kevin Syam
- Kevin Syam, MBBS, FRCS, is Hip and Knee Fellow, Robert Jones and Agnes Hunt Hospital, Gobowen, Oswestry, United Kingdom. Shaheer A. Joiya, MD, is Physician, SHO Orthopedics Department, Yeovil District Hospital, Somerset. Sumayyah Khan, BSc, is Medical Student, Grigore T. Popa University of Medicine and Pharmacy, Lasi, Romania. P. Nithin Unnikrishnan, MBBS, FRCS, is Consultant Adult Lower Limb Reconstruction Surgeon, Robert Jones and Agnes Hunt Hospital. The authors have disclosed no financial relationships related to this article. Submitted November 8, 2020; accepted in revised form January 8, 2021
| | | | | | | |
Collapse
|
9
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
10
|
Reis PVM, Lima VM, Souza KR, Cardoso GA, Melo-Braga MN, Santos DM, Verly RM, Pimenta AMC, Dos Santos VL, de Lima ME. Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Front Mol Biosci 2021; 8:680940. [PMID: 34169094 PMCID: PMC8217815 DOI: 10.3389/fmolb.2021.680940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius M Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kelton R Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Gabriele A Cardoso
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel M Santos
- Departamento de Bioquímica e Biologia Molecular, Campos Centro Oeste. Universidade Federal de São João Del-Rei, Diamantina, Brazil
| | - Rodrigo M Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Faculdade Santa Casa de Belo Horizonte, Programa de Pós-Graduação em Medicina - Biomedicina, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Li Z, Teng D, Mao R, Wang X, Hao Y, Wang X, Wang J. Improved Antibacterial Activity of the Marine Peptide N6 against Intracellular Salmonella Typhimurium by Conjugating with the Cell-Penetrating Peptide Tat 11 via a Cleavable Linker. J Med Chem 2018; 61:7991-8000. [PMID: 30095906 DOI: 10.1021/acs.jmedchem.8b01079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacteria. In this study, the conjugate CNC (6) was generated by connecting the cell-penetrating peptide Tat11 (1) and marine peptide N6 (2) via a cathepsin-cleavable linker, and the C-terminal aminated N6 (7) and CNC (8) were first designed and synthesized to eliminate intracellular Salmonellae Typhimurium. The cellular uptake of 6 and stability of 7 were higher than those of 2, and conjugates 6, 8, and 7 had almost no hemolysis and cytotoxicity. The antibacterial activities of 6, 8, and 7 against S. Typhimurium in RAW264.7 cells were increased by 67.2-76.2%, 98.6-98.9%, and 96.3-97.6%, respectively. After treatment with 1-2 μmol/kg of 6, 8, or 7, the survival of the S. Typhimurium-infected mice was 66.7-100%, higher than that of 2 (33.4-66.7%). This result suggested that 6, 8, and 7 may be excellent candidates for novel antimicrobial agents to treat intracellular pathogens.
Collapse
Affiliation(s)
- Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
12
|
Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci Rep 2017; 7:12124. [PMID: 28935900 PMCID: PMC5608901 DOI: 10.1038/s41598-017-10839-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), are the most frequent cause of sepsis, which urgently demanding new drugs for treating infection. Two homologous insect CSαβ peptides-DLP2 and DLP4 from Hermetia illucens were firstly expressed in Pichia pastoris, with the yields of 873.5 and 801.3 mg/l, respectively. DLP2 and DLP4 displayed potent antimicrobial activity against Gram-positive bacteria especially MRSA and had greater potency, faster killing, and a longer postantibiotic effect than vancomycin. A 30-d serial passage of MRSA in the presence of DLP2/DLP4 failed to produce resistant mutants. Macromolecular synthesis showed that DLP2/DLP4 inhibited multi-macromolecular synthesis especially for RNA. Flow cytometry and electron microscopy results showed that the cell cycle was arrested at R-phase; the cytoplasmic membrane and cell wall were broken by DLP2/DLP4; mesosome-like structures were observed in MRSA. At the doses of 3‒7.5 mg/kg DLP2 or DLP4, the survival of mice challenged with MRSA were 80‒100%. DLP2 and DLP4 reduced the bacterial translocation burden over 95% in spleen and kidneys; reduced serum pro-inflammatory cytokines levels; promoted anti-inflammatory cytokines levels; and ameliorated lung and spleen injury. These data suggest that DLP2 and DLP4 may be excellent candidates for novel antimicrobial peptides against staphylococcal infections.
Collapse
|
13
|
Gusmão KAG, Dos Santos DM, Santos VM, Cortés ME, Reis PVM, Santos VL, Piló-Veloso D, Verly RM, de Lima ME, Resende JM. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions. J Venom Anim Toxins Incl Trop Dis 2017; 23:4. [PMID: 28115922 PMCID: PMC5244724 DOI: 10.1186/s40409-017-0094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/06/2017] [Indexed: 12/04/2022] Open
Abstract
Background The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Methods Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. Results The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. Conclusions The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0094-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karla A G Gusmão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil.,Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Janaúba, MG Brazil
| | - Daniel M Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Virgílio M Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - María Esperanza Cortés
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Pablo V M Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Vera L Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| |
Collapse
|
14
|
Gan W, Schneidman D, Zhang N, Ma B, Nussinov R. Probing Oligomerized Conformations of Defensin in the Membrane. Methods Mol Biol 2017; 1529:353-362. [PMID: 27914061 PMCID: PMC6484831 DOI: 10.1007/978-1-4939-6637-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Computational prediction and design of membrane protein-protein interactions facilitate biomedical engineering and biotechnological applications. Due to their antimicrobial activity, human defensins play an important role in the innate immune system. Human defensins are attractive pharmaceutical targets due to their small size, broad activity spectrum, reduced immunogenicity, and resistance to proteolysis. Protein engineering based modification of defensins can improve their pharmaceutical properties. Here we present an approach to computationally probe defensins' oligomerization states in the membrane. First, we develop a novel docking and rescoring algorithm. Then, on the basis of the 3D structure of Sapecin, an insect defensin, and a model of its antimicrobial ion-channel, we optimize the parameters of our empirical scoring function. Finally, we apply our docking program and scoring function to the hBD-2 (human β-defensin-2) molecule and obtain structures of four possible oligomers. These results can be used in higher level simulations.
Collapse
Affiliation(s)
- Wenxun Gan
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, China
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Ning Zhang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, China
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
15
|
Gao B, Zhu S. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity. Sci Rep 2016; 6:32175. [PMID: 27562645 PMCID: PMC4999892 DOI: 10.1038/srep32175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
16
|
Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. PLoS One 2016; 11:e0161585. [PMID: 27556587 PMCID: PMC4996505 DOI: 10.1371/journal.pone.0161585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
Insect defensins are effector components of the innate defense system. During infection, these peptides may play a role in the control of pathogens by providing protective antimicrobial barriers between epithelial cells and the hemocoel. The cDNAs encoding four defensins of the migratory locust, Locusta migratoria, designated LmDEF 1, 3–5, were identified for the first time by transcriptome-targeted analysis. Three of the members of this CSαβ defensin family, LmDEF 1, 3, and 5, were detected in locust tissues. The pro regions of their sequences have little-shared identities with other insect defensins, though the predicted mature peptides align well with other insect defensins. Phylogenetic analysis indicates a completely novel position of both LmDEF 1 and 3, compared to defensins from hymenopterans. The expression patterns of the genes encoding LmDEFs in the fat body and salivary glands were studied in response to immune-challenge by the microsporidian pathogen Nosema locustae and the fungus Metarhizium anisopliae after feeding or topical application, respectively. Focusing on Nosema-induced immunity, qRT-PCR was employed to quantify the transcript levels of LmDEFs. A higher transcript abundance of LmDEF5 was distributed more or less uniformly throughout the fat body along time. A very low baseline transcription of both LmDEFs 1 and 3 in naïve insects was indicated, and that transcription increases with time or is latent in the fat body or salivary glands of infected nymphs. In the salivary glands, expression of LmDEF3 was 20-40-times higher than in the fat body post-microbial infection. A very low expression of LmDEF3 could be detected in the fat body, but eventually increased with time up to a maximum at day 15. Delayed induction of transcription of these peptides in the fat body and salivary glands 5–15 days post-activation and the differential expression patterns suggest that the fat body/salivary glands of this species are active in the immune response against pathogens. The ability of N. locustae to induce salivary glands as well as fat body expression of defensins raises the possibility that these AMPs might play a key role in the development and/or tolerance of parasitic infections.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Amr Ahmed Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Liwei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Pengfei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Long Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s106816201604004x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Gao N, Wadhwani P, Mühlhäuser P, Liu Q, Riemann M, Ulrich AS, Nick P. An antifungal protein from Ginkgo biloba binds actin and can trigger cell death. PROTOPLASMA 2016; 253:1159-74. [PMID: 26315821 DOI: 10.1007/s00709-015-0876-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Ginkbilobin is a short antifungal protein that had been purified and cloned from the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be detected in all seed plants and the heterosporic fern Selaginella and are conserved with respect to domain structures, peptide motifs, and specific cysteine signatures. To get insight into the cellular functions of these conserved motifs, we expressed green fluorescent protein fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We show that the signal peptide confers efficient secretion of ginkbilobin. When this signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the actin cytoskeleton. This actin-binding activity of ginkbilobin is mediated by a specific subdomain just downstream of the signal peptide, and this subdomain can also coassemble with actin in vitro. Upon stable overexpression of this domain, we observe a specific delay in premitotic nuclear positioning indicative of a reduced dynamicity of actin. To elucidate the cellular response to the binding of this subdomain to actin, we use chemical engineering based on synthetic peptides comprising different parts of the actin-binding subdomain conjugated with the cell-penetrating peptide BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic construct to actin efficiently induces programmed cell death. We discuss these findings in terms of a working model, where ginkbilobin can activate actin-dependent cell death.
Collapse
Affiliation(s)
- Ningning Gao
- Molecular Cell Biology, Botanical Institute and DFG-Center of Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, 76128, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute for Biological Interfaces (IBG-2), KIT, P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Philipp Mühlhäuser
- Institute for Biological Interfaces (IBG-2), KIT, P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute and DFG-Center of Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, 76128, Karlsruhe, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute and DFG-Center of Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, 76128, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute for Biological Interfaces (IBG-2), KIT, P.O. Box 3640, 76021, Karlsruhe, Germany
- Institute of Organic Chemistry and CFN, KIT, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute and DFG-Center of Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, 76128, Karlsruhe, Germany.
| |
Collapse
|
19
|
Park SI, Kim JW, Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:98-106. [PMID: 25956195 DOI: 10.1016/j.dci.2015.04.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
In this study, we induced and purified a novel antimicrobial peptide exhibiting activity against Gram-positive bacteria from the immunized hemolymph of Hermetia illucens larvae. The immunized hemolymph was extracted, and the novel defensin-like peptide 4 (DLP4) was purified using solid-phase extraction and reverse-phase chromatography. The purified DLP4 demonstrated a molecular weight of 4267 Da, as determined using the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) method. From analysis of DLP4 by N-terminal amino acid sequencing using Edman degradation, combined with MALDI-TOF and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR), the amino acid sequence of the mature peptide was determined to be ATCDLLSPFKVGHAACAAHCIARGKRGGWCDKRAVCNCRK. In NCBI BLAST, the amino acid sequence of DPL4 was found to be 75% identical to the Phlebotomus duboscqi defensin. Analysis of the minimal inhibitory concentration (MIC) revealed that DLP4 have antibacterial effects against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The expression of DLP4 transcripts in several tissues after bacterial challenge was measured by quantitative real-time PCR. Expression of the DLP4 gene hardly occurred throughout the body before immunization, but was mostly evident in the fat body after immunization.
Collapse
Affiliation(s)
- Soon-Ik Park
- Department of Biological Sciences, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jong-Wan Kim
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Sung Moon Yoe
- Department of Biological Sciences, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
20
|
Lee J, Lee D, Choi H, Kim HH, Kim H, Hwang JS, Lee DG, Kim JI. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep 2015; 47:625-30. [PMID: 24393527 PMCID: PMC4281341 DOI: 10.5483/bmbrep.2014.47.11.262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Indexed: 01/02/2023] Open
Abstract
Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's α-helical region is highly homologous to those of other insect defensins.
Collapse
Affiliation(s)
- Jaeho Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Daeun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hyemin Choi
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Ha Hyung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ho Kim
- School of Life Sciences and Biotechnology, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, Natural Academy of Agricultural Science, RDA, Suwon 441-707, Korea
| | - Dong Gun Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
21
|
Abstract
Structural analyses of protein-protein interactions are required to reveal their functional mechanisms, and accurate protein-protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein-protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s(-1)). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein-protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.
Collapse
|
22
|
Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy. Pharmaceuticals (Basel) 2014; 7:251-64. [PMID: 24583934 PMCID: PMC3978492 DOI: 10.3390/ph7030251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022] Open
Abstract
Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4–6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT) which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed.
Collapse
|
23
|
Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol 2014; 31:546-59. [PMID: 24425781 DOI: 10.1093/molbev/msu038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scorpion K(+) channel toxins and insect defensins share a conserved three-dimensional structure and related biological activities (defense against competitors or invasive microbes by disrupting their membrane functions), which provides an ideal system to study how functional evolution occurs in a conserved structural scaffold. Using an experimental approach, we show that the deletion of a small loop of a parasitoid venom defensin possessing the "scorpion toxin signature" (STS) can remove steric hindrance of peptide-channel interactions and result in a neurotoxin selectively inhibiting K(+) channels with high affinities. This insect defensin-derived toxin adopts a hallmark scorpion toxin fold with a common cysteine-stabilized α-helical and β-sheet motif, as determined by nuclear magnetic resonance analysis. Mutations of two key residues located in STS completely diminish or significantly decrease the affinity of the toxin on the channels, demonstrating that this toxin binds to K(+) channels in the same manner as scorpion toxins. Taken together, these results provide new structural and functional evidence supporting the predictability of toxin evolution. The experimental strategy is the first employed to establish an evolutionary relationship of two distantly related protein families.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
El Shazely B, Veverka V, Fucík V, Voburka Z, Zdárek J, Cerovský V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:571-578. [PMID: 23802451 DOI: 10.1603/me12208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel homolog of insect defensin, designated lucifensin II (Lucilia cuprina Wiedemann [Diptera: Calliphoridae] defensin), was purified from hemolymph extract from larvae of the blowfly L. cuprina. The full-length primary sequence of this peptide of 40 amino acid residues and three intramolecular disulfide bridges was determined by electrospray ionization-orbitrap mass spectrometry and Edman degradation and is almost identical to the previously identified sequence of lucifensin (Lucilia sericata Meigen defensin). Lucifensin II sequence differs from that of lucifensin by only one amino acid residue, that is, by isoleucine instead of valine at position 11. The presence of lucifensin II also was detected in the extracts of other larval tissues, such as gut, salivary glands, fat body, and whole body extract.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
25
|
Lian LY. NMR studies of weak protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:59-72. [PMID: 23611315 DOI: 10.1016/j.pnmrs.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/22/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
26
|
Lee E, Kim JK, Shin S, Jeong KW, Shin A, Lee J, Lee DG, Hwang JS, Kim Y. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:271-83. [PMID: 23137439 DOI: 10.1016/j.bbamem.2012.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/11/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
The novel 43-residue, insect defensin-like peptide coprisin, isolated from the dung beetle, Copris tripartitus, is a potent antibiotic with bacterial cell selectivity, exhibiting antimicrobial activities against Gram-positive and Gram-negative bacteria without exerting hemolytic activity against human erythrocytes. Tests against Staphylococcus aureus using fluorescent dye leakage and depolarization measurements showed that coprisin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of coprisin in aqueous solution by nuclear magnetic resonance spectroscopy, which showed that coprisin has an amphipathic α-helical structure from Ala(19) to Arg(28), and β-sheets from Gly(31) to Gln(35) and Val(38) to Arg(42). Coprisin has electropositive regions formed by Arg(28), Lys(29), Lys(30), and Arg(42) and ITC results proved that coprisin and LPS have electrostatically driven interactions. Using measurements of nitric oxide release and inflammatory cytokine production, we provide the first verification of the anti-inflammatory activity and associated mechanism of an insect defensin, demonstrating that the anti-inflammatory actions of the defensin-like peptide, coprisin, are initiated by suppressing the binding of LPS to toll-like receptor 4, and subsequently inhibiting the phosphorylation of p38 mitogen-activated protein kinase and nuclear translocation of NF-kB. In conclusion, we have demonstrated that an amphipathic helix and an electropositive surface in coprisin may play important roles in its effective interaction with bacterial cell membranes and, ultimately, in its high antibacterial activity and potent anti-inflammatory activity. In addition to elucidating the antimicrobial action of coprisin, this work may provide insight into the mechanism of action of insect defense systems.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Zhu S. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:262-274. [PMID: 22617650 DOI: 10.1016/j.dci.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Ants, as eusocial insects, live in dense groups with high connectivity, increasing the risk of pathogen spread and possibly driving the evolution of their antimicrobial immune system. Draft genomes of seven ant species provide a new source to undertake comparative study of their antimicrobial peptides (AMPs), key components of insect innate immunity. By using computational approaches, we analyzed five AMP families that include abaecins, hymenoptaecins, insect defensins, tachystatins, and crustins in ants, which comprise 69 new members. Among them, a new type of proline-rich abaecins was recognized and they are exclusively present in ants. Hymenoptaecins, a family of glycine-rich AMPs from Hymenoptera and Diptera, exhibit variable numbers of intragenic tandem repeats in a lineage-specific manner and all hymenoptaecins in ants have evolved an acidic C-terminal propeptide. In some ant species, insect defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold and tachystatin-like AMPs with the inhibitor cysteine knot (ICK) fold have undergone gene expansion and differential gene loss. Moreover, extensive sequence diversity exists in the C-termini of the defensins and the ICK-type peptides and the n-loop of the defensins. Also, we identified for the first time a crustin-type AMP in ants, which are only known in crustaceans previously. These ant crustins evolutionarily gain an aromatic amino acid-rich insertion when compared with those of crustaceans. Our work not only enlarges the insect AMP resource, but also sheds light on the complexity and dynamic evolution of AMPs in ants.
Collapse
Affiliation(s)
- Zhenting Zhang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, PR China
| | | |
Collapse
|
28
|
Gao B, Zhu S. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution. Biochem Biophys Res Commun 2012; 426:630-5. [PMID: 22975352 DOI: 10.1016/j.bbrc.2012.08.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical and β-sheet (CSαβ) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76μM. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | | |
Collapse
|
29
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
30
|
Yokogawa M, Kobashigawa Y, Yoshida N, Ogura K, Harada K, Inagaki F. NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J Biol Chem 2012; 287:34936-34945. [PMID: 22915584 DOI: 10.1074/jbc.m112.398255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositides (PIs) are crucial lipid components of membranes and are involved in a number of cellular processes through interactions with their effector proteins. Recently, we have established a lipid-protein nanoscale bilayer (nanodisc) containing PIs, hereafter referred to as PI-nanodisc and demonstrated that it could be used for both qualitative and quantitative evaluations of protein-membrane interactions. Here, we report further NMR analyses for obtaining structural insights at the residue-specific level between PI-binding effector protein and PI-nanodisc, using the FYVE domain of early endosome antigen 1 (EEA1), denoted as EEA1 FYVE, and PI(3)P-nanodisc as a model system. We performed a combination of the NMR analyses including chemical shift perturbation, transferred cross-saturation, and paramagnetic relaxation enhancement experiments. These enabled an identification of the interaction surface, structural change, and relative orientation of EEA1 FYVE to the PI(3)P-incorporated lipid bilayer, substantiating that NMR analyses of protein-membrane interactions using nanodisc makes it possible to show the residue-specific interactions in the lipid bilayer environment.
Collapse
Affiliation(s)
- Mariko Yokogawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | - Naoki Yoshida
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Ogura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kohsuke Harada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
31
|
Stampoulis P, Ueda T, Matsumoto M, Terasawa H, Miyano K, Sumimoto H, Shimada I. Atypical membrane-embedded phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2)-binding site on p47(phox) Phox homology (PX) domain revealed by NMR. J Biol Chem 2012; 287:17848-17859. [PMID: 22493288 DOI: 10.1074/jbc.m111.332874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phox homology (PX) domain is a functional module that targets membranes through specific interactions with phosphoinositides. The p47(phox) PX domain preferably binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) and plays a pivotal role in the assembly of phagocyte NADPH oxidase. We describe the PI(3,4)P(2) binding mode of the p47(phox) PX domain as identified by a transferred cross-saturation experiment. The identified PI(3,4)P(2)-binding site, which includes the residues of helices α1 and α1' and the following loop up to the distorted left-handed PP(II) helix, is located at a unique position, as compared with the phosphoinositide-binding sites of all other PX domains characterized thus far. Mutational analyses corroborated the results of the transferred cross-saturation experiments. Moreover, experiments with intact cells demonstrated the importance of this unique binding site for the function of the NADPH oxidase. The low affinity and selectivity of the atypical phosphoinositide-binding site on the p47(phox) PX domain suggest that different types of phosphoinositides sequentially bind to the p47(phox) PX domain, allowing the regulation of the multiple events that characterize the assembly and activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Pavlos Stampoulis
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033; Japan Biological Informatics Consortium, Tokyo 104-0032
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Hiroaki Terasawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Kei Miyano
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Hideki Sumimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| |
Collapse
|
32
|
Nygaard MKE, Andersen AS, Kristensen HH, Krogfelt KA, Fojan P, Wimmer R. The insect defensin lucifensin from Lucilia sericata. JOURNAL OF BIOMOLECULAR NMR 2012; 52:277-282. [PMID: 22322867 DOI: 10.1007/s10858-012-9608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
33
|
Ntwasa M, Goto A, Kurata S. Coleopteran antimicrobial peptides: prospects for clinical applications. Int J Microbiol 2012; 2012:101989. [PMID: 22500175 PMCID: PMC3303552 DOI: 10.1155/2012/101989] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/02/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are activated in response to septic injury and have important roles in vertebrate and invertebrate immune systems. AMPs act directly against pathogens and have both wound healing and antitumor activities. Although coleopterans comprise the largest and most diverse order of eukaryotes and occupy an earlier branch than Drosophila in the holometabolous lineage of insects, their immune system has not been studied extensively. Initial research reports, however, indicate that coleopterans possess unique immune response mechanisms, and studies of these novel mechanisms may help to further elucidate innate immunity. Recently, the complete genome sequence of Tribolium was published, boosting research on coleopteran immunity and leading to the identification of Tribolium AMPs that are shared by Drosophila and mammals, as well as other AMPs that are unique. AMPs have potential applicability in the development of vaccines. Here, we review coleopteran AMPs, their potential impact on clinical medicine, and the molecular basis of immune defense.
Collapse
Affiliation(s)
- Monde Ntwasa
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits 2050, South Africa
| | - Akira Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 2011; 278:3381-94. [PMID: 21781279 DOI: 10.1111/j.1742-4658.2011.08262.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although L-amino oxidase (LAAO; EC 1.4.3.2) has been reported to be a potent antibacterial agent, the mechanism responsible for its antibacterial activity has not been identified. The present study aimed to identify the mechanism responsible for the antibacterial activity of Th-LAAO, an LAAO recently isolated from the extracellular proteins of Trichoderma harzianum ETS 323, at the same time as elucidating the nature of this enzyme. The results obtained indicate that the enzyme activity and structure of Th-LAAO are stable at pH 6-8 and less stable at both pH 4-5.5 and pH 9. At pH 7.0, the optimum temperature for Th-LAAO was found to be 40 °C, comprising the temperature at which enzymatic activity is greatest, with enzymatic activity deceasing with further increases in temperature as a result of thermal denaturation of the enzyme, leading to partial denaturation at 50 °C. The results obtained by confocal microscopy and flow cytometry indicate that Th-LAAO interacts with bacteria to cause membrane permeabilization, and this interaction may be promoted by the amphipathic sequence in Th-LAAO and other cytotoxic LAAOs located at the N-terminus. The findings of increased exogenous H(2) O(2) production and reactive oxidative species accumulation in Th-LAAO-treated bacteria indicate that reactive oxidative species accumulation may trigger forms of cell damage, including lipid peroxidation and DNA strand breakage that results in bacterial growth inhibition. Taken together, the results indicate that the processes of bacterial interaction, membrane permeabilization and H(2)O(2) production are involved in the mechanism responsible for the antibacterial activity of Th-LAAO.
Collapse
Affiliation(s)
- Chia-Ann Yang
- Institute of Medical Science, Tzu Chi University, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Ceřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Stokrová J. Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem 2011; 12:1352-61. [PMID: 21560219 DOI: 10.1002/cbic.201100066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Indexed: 12/13/2022]
Abstract
Recently, we identified a new insect defensin, named lucifensin that is secreted/excreted by the blowfly Lucilia sericata larvae into a wound as a disinfectant during the medicinal process known as maggot therapy. Here, we report the total chemical synthesis of this peptide of 40 amino acid residues and three intramolecular disulfide bridges by using three different protocols. Oxidative folding of linear peptide yielded a peptide with a pattern of disulfide bridges identical to that of native lucifensin. The synthetic lucifensin was active against Gram-positive bacteria and was not hemolytic. We synthesized three lucifensin analogues that are cyclized through one native disulfide bridge in different positions and having the remaining four cysteines substituted by alanine. Only the analogue cyclized through a Cys16-Cys36 disulfide bridge showed weak antimicrobial activity. Truncating lucifensin at the N-terminal by ten amino acid residues resulted in a drop in antimicrobial activity. Linear lucifensin having all six cysteine residues alkylated was inactive. Circular dichroism spectra measured in the presence of α-helix-promoting compounds showed different patterns for lucifensin and its analogues. Transmission electron microscopy revealed that Bacillus subtilis treatment with lucifensin induced significant changes in its envelope.
Collapse
Affiliation(s)
- Václav Ceřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
37
|
de Paula VS, Razzera G, Barreto-Bergter E, Almeida FCL, Valente AP. Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 2011; 19:26-36. [PMID: 21220113 DOI: 10.1016/j.str.2010.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Defensins are essentially ancient natural antibiotics with potent activity extending from lower organisms to humans. Sd5 is a recently described antifungal defensin that appears to be the result of a recent gain of function. We reported here the solution NMR structure of Sd5 and characterized the backbone dynamics in the free state and in the presence of membrane models. (15)N relaxation dispersion measurements indicate intrinsic conformational exchange processes, showing two clear distinct k(ex), 490 and 1800 s(-1). These multiple motions may be related to transient twisting or breathing of the α helix and β sheet. The stages of membrane recognition and disruption by Sd5 over a large timescale range were mapped and demonstrated that Sd5 in solution sampled an ensemble of different conformations, of which a subset is selected upon membrane binding. Defensins share similar structures, but we demonstrated here that their dynamics can be extremely diverse.
Collapse
Affiliation(s)
- Viviane Silva de Paula
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | |
Collapse
|
38
|
Jung HH, Jung HJ, Milescu M, Lee CW, Lee S, Lee JY, Eu YJ, Kim HH, Swartz KJ, Kim JI. Structure and orientation of a voltage-sensor toxin in lipid membranes. Biophys J 2010; 99:638-46. [PMID: 20643084 DOI: 10.1016/j.bpj.2010.04.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022] Open
Abstract
Amphipathic protein toxins from tarantula venom inhibit voltage-activated potassium (Kv) channels by binding to a critical helix-turn-helix motif termed the voltage sensor paddle. Although these toxins partition into membranes to bind the paddle motif, their structure and orientation within the membrane are unknown. We investigated the interaction of a tarantula toxin named SGTx with membranes using both fluorescence and NMR spectroscopy. Depth-dependent fluorescence-quenching experiments with brominated lipids suggest that Trp30 in SGTx is positioned approximately 9 A from the center of the bilayer. NMR spectra reveal that the inhibitor cystine knot structure of the toxin does not radically change upon membrane partitioning. Transferred cross-saturation NMR experiments indicate that the toxin's hydrophobic protrusion contacts the hydrophobic core of the membrane, whereas most surrounding polar residues remain at interfacial regions of the bilayer. The inferred orientation of the toxin reveals a twofold symmetry in the arrangement of basic and hydrophobic residues, a feature that is conserved among tarantula toxins. These results have important implications for regions of the toxin involved in recognizing membranes and voltage-sensor paddles, and for the mechanisms by which tarantula toxins alter the activity of different types of ion channels.
Collapse
Affiliation(s)
- Hyun Ho Jung
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsumoto M, Ueda T, Shimada I. Theoretical analyses of the transferred cross-saturation method. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:114-124. [PMID: 20457533 DOI: 10.1016/j.jmr.2010.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
Large molecules, such as membrane proteins, play crucial roles in various biologically important events. We have developed the transferred cross-saturation (TCS) method, which enables the identification of the contact residues of protein ligands in large complexes. However, rational optimization of the experimental conditions for the TCS method has been hampered by the lack of information about the influence of each experimental parameter on the observed TCS effects. Here, we established the theoretical description of the TCS method, which explicitly incorporated the isotopomers in the sample solution, and developed the computer software to perform numerical simulations. Using them, we analyzed the effects of each experimental parameter on the observed TCS effects by the simulations. The simulation studies indicated that: (i) the proton concentration in the solvent should be 10-30%, (ii) a larger pb, which is the bound fraction of the ligand, is preferred for higher saturation efficiency, (iii) the TCS method is applicable to systems where koff>0.1 s(-1), (iv) for koff>or=10 s(-1), pb>or=0.1 is preferred, (v) for koff approximately 1s(-1), pb>or=0.5 is preferred, and (vi) the TCS method is applicable to systems with large tauc (approximately 1 micros), where pb is approximately 0.01. The assumptions in the model spin simulation were experimentally verified, using the ubiquitin-YUH1 interaction. The established method will be useful for estimating and optimizing the TCS experimental conditions.
Collapse
Affiliation(s)
- Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
40
|
Tian C, Gao B, Fang Q, Ye G, Zhu S. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010; 11:187. [PMID: 20302637 PMCID: PMC2853521 DOI: 10.1186/1471-2164-11-187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. RESULTS By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear alpha-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. CONCLUSION The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
41
|
Identification of genes regulated by ammonium availability in the roots of maritime pine trees. Amino Acids 2010; 39:991-1001. [DOI: 10.1007/s00726-010-0483-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
42
|
Natori S. Molecules participating in insect immunity of Sarcophaga peregrina. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:927-38. [PMID: 21157125 PMCID: PMC3035055 DOI: 10.2183/pjab.86.927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/25/2010] [Indexed: 05/24/2023]
Abstract
Pricking the body wall of Sarcophaga peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development.
Collapse
Affiliation(s)
- Shunji Natori
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
43
|
LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids 2009; 39:135-44. [DOI: 10.1007/s00726-009-0385-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
44
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
45
|
Miyakawa T, Miyazono KI, Sawano Y, Hatano KI, Tanokura M. Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Proteins 2009; 77:247-51. [PMID: 19603485 DOI: 10.1002/prot.22494] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
46
|
Comin MJ, Czifra G, Kedei N, Telek A, Lewin NE, Kolusheva S, Velasquez JF, Kobylarz R, Jelinek R, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol (DAG). 31. Modulation of the biological properties of diacylgycerol lactones (DAG-lactones) containing rigid-rod acyl groups separated from the core lactone by spacer units of different lengths. J Med Chem 2009; 52:3274-83. [PMID: 19379015 PMCID: PMC2708097 DOI: 10.1021/jm900186m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Diacylglycerol lactones built with a rigid 4-[(methylphenyl)ethynyl]phenyl rod that is separated from the exocyclic acylcarbonyl of the DAG-lactone core by a spacer unit of variable length were synthesized and studied. Binding affinities for a panel of classical and novel PKC isozymes in two different phospholipid environments, one corresponding to the plasma membrane of cells, were determined. The kinetics and site of translocation for the PKC isozymes α and δ upon treatment with the compounds were also studied as well as the early response of ERK phosphorylation and the late response of induction of apoptosis in the human prostatic carcinoma cell line LNCaP. Finally, the compounds were evaluated in terms of their interaction with biomimetic lipid/polydiacetylene membranes by the associated chromatic response. The different spatial disposition of the rigid structural motif on the DAG-lactones contributes to differential activity.
Collapse
Affiliation(s)
- Maria J Comin
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, 376 Boyles Street, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aichinger MC, Ortbauer M, Reipert S, Zauner W, Bogner P, Froschauer E, Nowikovsky K, Lingnau K, von Gabain A, Schweyen R, Henics T. Unique membrane-interacting properties of the immunostimulatory cationic peptide KLKL(5)KLK (KLK). Cell Biol Int 2008; 32:1449-58. [PMID: 18771740 DOI: 10.1016/j.cellbi.2008.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/24/2008] [Accepted: 08/22/2008] [Indexed: 11/30/2022]
Abstract
We have monitored the effects of KLKL(5)KLK (KLK), a derivative of a natural cationic antimicrobial peptide (CAP) on isolated membrane vesicles, and investigated the partition of the peptide within these structures. KLK readily interacted with fluorescent dyes entrapped in the vesicles without apparent pore formation. Fractionation of vesicles revealed KLK predominantly in the membrane. Peptide-treated vesicles appeared with generally disorganized bilayers. While KLK showed no effect on osmotic resistance of human erythrocytes, dramatic decrease in core and surface membrane fluidity was observed in peptide-treated erythrocyte ghosts as measured by fluorescence anisotropy. Finally, CD spectroscopy revealed lipid-induced random coil to beta-sheet and beta-sheet to alpha-helix conformational transitions of KLK. Together with the oligonucleotide oligo-d(IC)(13) [ODN1a], KLK functions as a novel adjuvant, termed IC31. Among other immunological effects, KLK appears to facilitate the uptake and delivery of ODN1a into cellular compartments, but the nature of KLK's interaction with the cell surface and other membrane-bordered compartments remains unknown. Our results suggest a profound membrane interacting property of KLK that might contribute to the immunostimulatory activities of IC31.
Collapse
|
48
|
Igarashi S, Osawa M, Takeuchi K, Ozawa SI, Shimada I. Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein-protein complex. J Am Chem Soc 2008; 130:12168-76. [PMID: 18707104 DOI: 10.1021/ja804062t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an NMR-based approach, the amino acid selective cross-saturation (ASCS) method, to identify the pairs of the interface residues of protein-protein complexes. ASCS uses a "cross-saturation (CS)-donor" protein, in which only one amino acid is selectively (1)H-labeled in a (2)H-background, and a "CS-acceptor" protein with uniform (2)H, (15)N labeling. Irradiation of the (1)H-labeled amino acid, which exists only in the donor, decreases the intensity of the (1)H- (15)N HSQC signals of the acceptor residues proximal to the (1)H-labeled CS-source residue(s) through the CS phenomenon. Given the three-dimensional structure of each protein in the complex, but not the complex structure, the combinatorial analysis of multiple ASCS results specify the CS-source residue(s), based on the spatial complementarity between the CS-source residues on the CS donor and the cross-saturated amide protons on the acceptor. NMR investigations of the labeling selectivity and efficiency in an E. coli host, which are critical for ASCS, revealed that Ala, Arg, His, Ile, Leu, Lys, Met, Phe, Pro, Trp, and Tyr are selectively labeled with a high (1)H/(2)H ratio. The observation of the ASCS was then confirmed using the known structure of the yeast ubiquitin (Ub) and yeast ubiquitin hydrolase 1 (YUH1). Conversely, reasonable candidates for the CS-source residues were suggested by the analysis of the ASCS results, with reference to the individual structures of YUH1 and Ub. The pairwise distance information between the CS-source residues and the cross-saturated amide groups obtained by ASCS will be useful for modeling protein-protein complexes.
Collapse
Affiliation(s)
- Shunsuke Igarashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
49
|
Hao G, Shi YH, Han JH, Li QH, Tang YL, Le GW. Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. J Pept Sci 2008; 14:290-8. [PMID: 17929330 DOI: 10.1002/psc.926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have de novo designed four antimicrobial peptides AMP-A/B/C/D, the 51-residues peptides, which are based on the conserved sequence of cecropin. In the present study, the four peptides were chemically synthesized and their activities assayed. Their secondary structure, amphipathic property, electric field distribution and transmembrane domain were subsequently predicted by bioinformatics tools. Finally, the structure-activity relationship was analyzed from the results of activity experiments and prediction. The results of activity experiments indicated that AMP-B/C/D clearly possessed excellent broad-spectrum activity against bacteria, whereas AMP-A was almost inactive against most of the bacterial strains tested. AMP-B/C/D showed more potent activity against Gram-positive bacteria than against Gram-negative bacteria. By utilizing bioinformatics analysis tools, we found that the secondary structure of the four cation peptides was mainly alpha-helix, and the result of CD spectrum also displayed that all the peptides had considerable alpha-helix in the presence of either 50% TFE or SDS micelles. AMP-C showed much better activity than other peptides against most of the bacteria tested, owing to its remarkable cation property and the amphipathic character of its N-terminal. The study of structure-activity relationship of the designed peptides confirmed that amphipathic structure and high net positive charge were prerequisites for maintaining their activities.
Collapse
Affiliation(s)
- Gang Hao
- The State Key Laboratory of Food Science and Technology, JiangNan University, Wuxi, 214122, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
50
|
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC STRUCTURAL BIOLOGY 2007; 7:44. [PMID: 17603894 PMCID: PMC1934363 DOI: 10.1186/1472-6807-7-44] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/29/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. RESULTS We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. CONCLUSION Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that most peripheral proteins not only interact with the membrane surface, but penetrate through the interfacial region and reach the hydrocarbon interior, which is consistent with published experimental studies.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Mikhail A Lomize
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|