1
|
Schroeter CA, Gorlova A, Sicker M, Umriukhin A, Burova A, Shulgin B, Morozov S, Costa-Nunes JP, Strekalova T. Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility. Biomolecules 2025; 15:67. [PMID: 39858460 PMCID: PMC11764023 DOI: 10.3390/biom15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.
Collapse
Affiliation(s)
- Careen A. Schroeter
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Anna Gorlova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Aleksei Umriukhin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
| | - Alisa Burova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Boris Shulgin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, Kyzylorda 120014, Kazakhstan
| | - Sergey Morozov
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Joao P. Costa-Nunes
- Faculdade de Medicina, Universidade de Lisboa, Campo Grande, 1649-028 Lisboa, Portugal;
| | - Tatyana Strekalova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
2
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Chalhoub G, McCormick PJ. Palmitoylation and G-protein coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:195-211. [PMID: 36357078 DOI: 10.1016/bs.pmbts.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
More and more it is being appreciated that not all GPCRs are the same, sub-populations of GPCRs exist within a cell and function differently than others. The question is, how does one regulate a given sub-population? One way is through the addition of post-translational modifications to G-protein coupled receptors (GPCR). This process has long been known to occur and play a role in trafficking, pharmacology and ultimately function. This chapter will focus on one particular modification, that of S-palmitoylation, and its impact on GPCR function. We will discuss the history of this modification on these receptors and the connection with disease. We will highlight several examples from the literature of where palmitoylation impacts GPCR function.
Collapse
Affiliation(s)
- Georges Chalhoub
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
5
|
Robertson MJ, Skiniotis G. Development of OPLS-AA/M Parameters for Simulations of G Protein-Coupled Receptors and Other Membrane Proteins. J Chem Theory Comput 2022; 18:4482-4489. [PMID: 35687850 DOI: 10.1021/acs.jctc.2c00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) and other membrane proteins are valuable drug targets, and their dynamic nature makes them attractive systems for study with molecular dynamics (MD) simulations and free energy approaches. Here, we report the development, implementation, and validation of OPLS-AA/M force field parameters to enable simulations of these systems. These efforts include the introduction of post-translational modifications including lipidations and phosphorylation. We also modify previously reported parameters for lipids to be more consistent with the OPLS-AA force field standard and extend their coverage. These new parameters are validated on a variety of test systems, with the results compared to high-level quantum mechanics calculations, experimental data, and simulations with other force fields. The results demonstrate that the new parameters reliably reproduce the behavior of membrane protein systems.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
6
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Thibeault PE, Ramachandran R. Role of the Helix-8 and C-Terminal Tail in Regulating Proteinase Activated Receptor 2 Signaling. ACS Pharmacol Transl Sci 2020; 3:868-882. [PMID: 33073187 DOI: 10.1021/acsptsci.0c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/11/2022]
Abstract
The C-terminal tail of G-protein-coupled receptors (GPCR) contain important regulatory sites that enable interaction with intracellular signaling effectors. Here we examine the relative contribution of the C-tail serine/threonine phosphorylation sites (Ser383-385, Ser387-Thr392) and the helix-8 palmitoylation site (Cys361) in signaling regulation downstream of the proteolytically activated GPCR, PAR2. We examined Gαq/11-coupled calcium signaling, β-arrestin-1/-2 recruitment, and MAPK activation (p44/42 phosphorylation) by wild-type and mutant receptors expressed in a CRISPR/Cas9 PAR2-knockout HEK-293 cell background with both peptide stimulation of the receptor (SLIGRL-NH2) as well as activation with its endogenous trypsin revealed a tethered ligand. We find that alanine substitution of the membrane proximal serine residues (Ser383-385Ala) had no effect on SLIGRL-NH2- or trypsin-stimulated β-arrestin recruitment. In contrast, alanine substitutions in the Ser387-Thr392 cluster resulted in a large (∼50%) decrease in β-arrestin-1/-2 recruitment triggered by the activating peptide, SLIGRL-NH2, but was without an effect on trypsin-activated β-arrestin-1/-2 recruitment. Additionally, we find that alanine substitution of the helix-8 cysteine residue (Cys361Ala) led to a large decrease in both Gαq/11 coupling and β-arrestin-1/-2 recruitment to PAR2. Furthermore, we show that Gαq/11 inhibition with YM254890, inhibited ERK phosphorylation by PAR2 agonists, while genetic deletion of β-arrestin-1/-2 by CRISPR/Cas9 enhanced MAPK activation. Knockout of β-arrestins also enhanced Gαq/11-mediated calcium signaling. In line with these findings, a C-tail serine/threonine mutant that has decreased β-arrestin recruitment also showed enhanced ERK activation. Thus, our studies point to multiple mechanisms that regulate β-arrestin interaction with PAR2 and highlight differences in regulation of tethered-ligand- and peptide-mediated activation of this receptor.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5C1, Canada
| |
Collapse
|
8
|
Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun 2019; 10:3924. [PMID: 31477731 PMCID: PMC6718429 DOI: 10.1038/s41467-019-11876-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD. Palmitoylation is a post translational modification that regulates GPCR activity. Here the authors show that palmitoylation of 5-HT1AR by the palmitoyltransferase enzyme ZDHHC21 contributes to depression-like behaviour in rodents and might be implicated in major depressive disorder.
Collapse
|
9
|
Growth-inhibition of cell lines derived from B cell lymphomas through antagonism of serotonin receptor signaling. Sci Rep 2019; 9:4276. [PMID: 30862884 PMCID: PMC6414675 DOI: 10.1038/s41598-019-40825-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
A majority of lymphomas are derived from B cells and novel treatments are required to treat refractory disease. Neurotransmitters such as serotonin and dopamine influence activation of B cells and the effects of a selective serotonin 1A receptor (5HT1A) antagonist on growth of a number of B cell-derived lymphoma cell lines were investigated. We confirmed the expression of 5HT1A in human lymphoma tissue and in several well-defined experimental cell lines. We discovered that the pharmacological inhibition of 5HT1A led to the reduced proliferation of B cell-derived lymphoma cell lines together with DNA damage, ROS-independent caspase activation and apoptosis in a large fraction of cells. Residual live cells were found ‘locked’ in a non-proliferative state in which a selective transcriptional and translational shutdown of genes important for cell proliferation and metabolism occurred (e.g., AKT, GSK-3β, cMYC and p53). Strikingly, inhibition of 5HT1A regulated mitochondrial activity through a rapid reduction of mitochondrial membrane potential and reducing dehydrogenase activity. Collectively, our data suggest 5HT1A antagonism as a novel adjuvant to established cancer treatment regimens to further inhibit lymphoma growth.
Collapse
|
10
|
Adachi N, Hess DT, Kaku M, Ueda C, Numa C, Saito N. Differential S-palmitoylation of the human and rodent β 3-adrenergic receptors. J Biol Chem 2018; 294:2569-2578. [PMID: 30541923 DOI: 10.1074/jbc.ra118.004978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
With few reported exceptions, G protein-coupled receptors (GPCRs) are modified by Cys palmitoylation (S-palmitoylation). In multiple GPCRs, S-palmitoylation targets a canonical site within the C-terminal cytoplasmic tail adjacent to the C terminus of the seventh transmembrane domain, but modification of additional sites is exemplified by the β-adrenergic receptors (βARs). The β1AR is S-palmitoylated at a second, more distal site within the C-terminal tail, and the β2AR is modified at a second site within the third intracellular loop, neither of which is conserved in other βAR isoforms. The functional roles of S-palmitoylation of disparate sites are incompletely characterized for any GPCR family. Here, we describe S-palmitoylation of the β3AR. We compared mouse and human β3ARs and found that both were S-palmitoylated at the canonical site within the C-terminal tail, Cys-358 and Cys-361/363 in mouse and human β3ARs, respectively. Surprisingly, the human β3AR was S-palmitoylated at two additional sites, Cys-153 and Cys-292 within the second and third intracellular loops, respectively. Cys-153 is apparently unique to the human β3AR, and Cys-292 is conserved primarily in primates. Mutational substitution of C-tail Cys in human but not mouse β3ARs resulted in diminished ligand-induced cAMP production. Substitution of Cys-153, Cys-292, or Cys-361/363 within the human β3AR diminished membrane-receptor abundance, but only Cys-361/363 substitution diminished membrane-receptor half-life. Thus, S-palmitoylation of different sites differentially regulates the human β3AR, and differential S-palmitoylation distinguishes human and rodent β3ARs, potentially contributing to species-specific differences in the clinical efficacy of β3AR-directed pharmacological approaches to disease.
Collapse
Affiliation(s)
- Naoko Adachi
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Mika Kaku
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Chie Ueda
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Chisato Numa
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Naoaki Saito
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| |
Collapse
|
11
|
Kondaurova EM, Ilchibaeva TV, Tsybko AS, Ponimaskin ЕG, Naumenko VS. Expression of palmitoyl transferases in brain structures of mice genetically predisposed to depressive-like behavior. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Salem TZ, Zhang F, Sahly N, Thiem S. Effect of Temporal Expression of Integral Membrane Proteins by Baculovirus Expression Vector System. Mol Biotechnol 2018; 60:576-584. [PMID: 29943147 DOI: 10.1007/s12033-018-0099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Integral membrane proteins (IMPs) are popular target for drugs, but their resolved structures have been overlooked when compared with cytosolic proteins. The main reason is that IMPs usually need intensive post-translational modifications and they are bound to membranes, which increase the complexity of purifying or crystalizing them. Although different expression systems are used to express IMPs, baculovirus is considered one of the most successful expression systems for those proteins. Despite that, there are always unknown discrepancies in the level of IMPs expression in the baculovirus expression system. Retrospective studies have shown that expression of an immunoglobulin (anti-Chymase mouse monoclonal IgG1) driven by vp39 promoter was more efficient compared to its expression under polyhedrin (polh) promoter; however, this conclusion was not tested on different IMPs to generalize such a conclusion. In this study, the expression of eight different IMPs has been compared under vp39 and polh promoters of Autographa californica nucleopolyhedrovirus. Although different IMPs have shown different patterns of expression, the expression driven by vp39 promoter was found to be generally more efficient than the polh promoter.
Collapse
Affiliation(s)
- T Z Salem
- Biomedical Sciences, University of Science and Technology at Zewail City, October Gardens, 6th of October City, Giza, 12578, Egypt. .,Department of Microbial Genetics, AGERI, Agricultural Research Center, Giza, 12619, Egypt.
| | - F Zhang
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - N Sahly
- Biomedical Sciences, University of Science and Technology at Zewail City, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - S Thiem
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Zaręba-Kozioł M, Figiel I, Bartkowiak-Kaczmarek A, Włodarczyk J. Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis. Front Mol Neurosci 2018; 11:175. [PMID: 29910712 PMCID: PMC5992399 DOI: 10.3389/fnmol.2018.00175] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
15
|
Kaizuka T, Hayashi T. Comparative analysis of palmitoylation sites of serotonin (5-HT) receptors in vertebrates. Neuropsychopharmacol Rep 2018; 38:75-85. [PMID: 30106257 PMCID: PMC7292288 DOI: 10.1002/npr2.12011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background In the vertebrate central nervous system as well as in the periphery, serotonin, also known as 5‐hydroxytriptamine (5‐HT), function as a neurotransmitter, a hormone or a mitogen. 5‐HT receptors are composed of 7 family 5‐HT1‐7 receptors, comprising of 14 structurally and pharmacologically distinct 5‐HT receptor subtypes. Previous experimental studies showed that mouse 5‐HT1A, 5‐HT4 and 5‐HT7 receptors are regulated by post‐translational protein palmitoylation, the reversible attachment of the lipid palmitate to intracellular cysteine residues. Here, we further focused on conservation of these putative palmitoylation sites found in vertebrate 5‐HT receptor orthologs. Methods and Results Analysis of sequence databases provides evidence to suggest that palmitoylation sites of these 5‐HT receptors have been extremely conserved in the vertebrate lineages from jawless fishes to human, in spite of the divergence of 5‐HT1A, 5‐HT4 or 5‐HT7 receptors full‐length amino acid sequences during molecular evolution. Conclusion Our findings mean that dynamic regulation of 5‐HT receptors made possible by reversible post‐translational protein palmitoylation may be critical for refined functions of the vertebrate serotonergic systems. Reversible post‐translational protein palmitoylation sites of 5‐HT1A, 5‐HT4, and 5‐HT7 receptors have been extremely conserved in the vertebrate lineages against mutation pressure.
![]()
Collapse
Affiliation(s)
- Toshie Kaizuka
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
16
|
Komorowski A, James GM, Philippe C, Gryglewski G, Bauer A, Hienert M, Spies M, Kautzky A, Vanicek T, Hahn A, Traub-Weidinger T, Winkler D, Wadsak W, Mitterhauser M, Hacker M, Kasper S, Lanzenberger R. Association of Protein Distribution and Gene Expression Revealed by PET and Post-Mortem Quantification in the Serotonergic System of the Human Brain. Cereb Cortex 2018; 27:117-130. [PMID: 27909009 PMCID: PMC5939202 DOI: 10.1093/cercor/bhw355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 12/12/2022] Open
Abstract
Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = -0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins.
Collapse
Affiliation(s)
- A Komorowski
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - G M James
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - C Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - A Bauer
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, 52425 Jülich, Germany
| | - M Hienert
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - M Spies
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - A Kautzky
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - T Traub-Weidinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - W Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - M Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - S Kasper
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Pychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
17
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Oddi S, Stepniewski TM, Totaro A, Selent J, Scipioni L, Dufrusine B, Fezza F, Dainese E, Maccarrone M. Palmitoylation of cysteine 415 of CB 1 receptor affects ligand-stimulated internalization and selective interaction with membrane cholesterol and caveolin 1. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:523-532. [PMID: 28215712 DOI: 10.1016/j.bbalip.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lucia Scipioni
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Beatrice Dufrusine
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Enrico Dainese
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Gobrogge K, Jia X, Liu Y, Wang Z. Neurochemical Mediation of Affiliation and Aggression Associated With Pair-Bonding. Biol Psychiatry 2017; 81:231-242. [PMID: 27129413 PMCID: PMC4992658 DOI: 10.1016/j.biopsych.2016.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND The neuropeptides vasopressin and corticotropin-releasing factor facilitate, while serotonin inhibits, aggression. How the brain is wired to coordinate interactions between these functionally opposed neurotransmitters to control behavioral states is poorly understood. METHODS Pair-bonded male prairie voles (Microtus ochrogaster) were infused with a retrograde tracer, Fluoro-Gold, and tested for affiliation and aggression toward a female partner or novel female subject. Subsequent immunocytochemical experiments examined neuronal activation using Fos and neurochemical/neuroreceptor profiles on brain areas involved in these social behaviors. Finally, a series of behavioral pharmacologic and real-time in vivo brain microdialysis experiments were performed on male prairie voles displaying affiliation or aggression. RESULTS We localized a subpopulation of excitatory vasopressin neurons in the anterior hypothalamus that may gate corticotropin-releasing factor output from the amygdala to the anterior hypothalamus and then the lateral septum to modulate aggression associated with mate guarding. Conversely, we identified a subset of inhibitory serotonergic projection neurons in the dorsal raphe that project to the anterior hypothalamus and may mediate the spatiotemporal release of neuropeptides and their interactions in modulating aggression and affiliation. CONCLUSIONS Together, this study establishes the medial extended amygdala as a major neural substrate regulating the switch between positive and negative affective states, wherein several neurochemicals converge and interact to coordinate divergent social behaviors.
Collapse
Affiliation(s)
- Kyle Gobrogge
- Corresponding Author: Kyle Gobrogge, Ph.D. Department of Psychology Tufts University Medford, MA 02155 Phone: 617-780-1571
| | | | | | | |
Collapse
|
20
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
21
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
22
|
A GIPC1-Palmitate Switch Modulates Dopamine Drd3 Receptor Trafficking and Signaling. Mol Cell Biol 2016; 36:1019-31. [PMID: 26787837 DOI: 10.1128/mcb.00916-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/27/2022] Open
Abstract
Palmitoylation is involved in several neuropsychiatric and movement disorders for which a dysfunctional signaling of the dopamine D3 receptor (Drd3) is hypothesized. Computational modeling of Drd3's homologue, Drd2, has shed some light on the putative role of palmitoylation as a reversible switch for dopaminergic receptor signaling. Drd3 is presumed to be palmitoylated, based on sequence homology with Drd2, but the functional attributes afforded by Drd3 palmitoylation have not been studied. Since these receptors are major targets of antipsychotic and anti-Parkinsonian drugs, a better characterization of Drd3 signaling and posttranslational modifications, like palmitoylation, may improve the prospects for drug development. Using molecular dynamics simulations, we evaluated in silico how Drd3 palmitoylation could elicit significant remodeling of the C-terminal cytoplasmic domain to expose docking sites for signaling proteins. We tested this model in cellulo by using the interaction of Drd3 with the G-alpha interacting protein (GAIP) C terminus 1 (GIPC1) as a template. From a series of biochemical studies, live imaging, and analyses of mutant proteins, we propose that Drd3 palmitoylation acts as a molecular switch for Drd3-biased signaling via a GIPC1-dependent route, which is likely to affect the mode of action of antipsychotic drugs.
Collapse
|
23
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
24
|
Connors KA, Valenti TW, Lawless K, Sackerman J, Onaivi ES, Brooks BW, Gould GG. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:105-13. [PMID: 24411165 PMCID: PMC3989442 DOI: 10.1016/j.aquatox.2013.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/30/2013] [Accepted: 12/05/2013] [Indexed: 05/15/2023]
Abstract
The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitalizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [(3)H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of similarly Gαi/o-coupled cannabinoid receptors. [(3)H] 8-OH-DPAT specific binding was 176±8, 275±32, and 230±36fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [(3)H] WIN55,212-2 binding density was higher in those same brain regions at 6±0.3, 5.5±0.4 and 7.3±0.3pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50mg/L), or dietary exposure to WIN55,212-2 (7μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p<0.05). Acute exposure to WIN55,212-2 at 0.5-50mg/L reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future.
Collapse
Affiliation(s)
- Kristin A Connors
- Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, TX 76798-7266, USA
| | - Theodore W Valenti
- Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX 76798-7266, USA(1); Syngenta Crop Protection LLC, Greensboro, NC 27419, USA(2)
| | - Kelly Lawless
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James Sackerman
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, TX 76798-7266, USA; Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX 76798-7266, USA(1)
| | - Georgianna G Gould
- Department of Physiology and Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
25
|
Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Int J Mol Sci 2014; 15:629-53. [PMID: 24398985 PMCID: PMC3907829 DOI: 10.3390/ijms15010629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.
Collapse
|
26
|
Li Q, Muma NA. Estradiol potentiates 8-OH-DPAT-induced sumoylation of 5-HT₁A receptor: characterization and subcellular distribution of sumoylated 5-HT₁A receptors. Psychoneuroendocrinology 2013; 38:2542-53. [PMID: 23786880 PMCID: PMC3797200 DOI: 10.1016/j.psyneuen.2013.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Sumoylation is a recently described post-translational modification and only a few sumoylated neurotransmitter receptors are known. Through the present studies, we discovered that serotonin1A receptors (5-HT1A-Rs) can be sumoylated by SUMO1 (small-ubiquitin-related modifier 1) protein. The SUMO1-5-HT1A-R is ∼55kDa, is located in the membrane fraction, but not the cytosol, and is distributed in all of the brain regions expressing 5-HT1A-Rs examined. Acute stimulation of 5-HT1A-Rs significantly increased SUMO1-5-HT1A-R in rat hypothalamus. Pre-treatment with estradiol for 2 days, which causes a partial desensitization of 5-HT1A-R signaling, potentiated agonist-induced increases in SUMO1-5-HT1A-Rs in the hypothalamus of ovariectomized rats. Using discontinuous gradient centrifugation followed by digitonin treatment, we found that the majority of SUMO1-5-HT1A-Rs is co-localized with endoplasmic-reticulum and trans-Golgi-network markers. Although a small proportion of SUMO1-5-HT1A-Rs are located in the detergent resistant microdomain (DRM) that contain active G-protein coupled receptors, their distribution was different from that of the Gαz protein that couples to the receptors. These data suggest that the SUMO1-5-HT1A-Rs are an inactive form of 5-HT1A-Rs, a finding further supported by results showing minimal 5-HT1A-R agonist binding to SUMO1-5-HT1A-Rs. Furthermore, SUMO1-5-HT1A-Rs in the DRM were increased by treatment with a 5-HT1A-R agonist, 8-OH-DPAT ((+)8-hydroxy-2-dipropylaminotetralin). Together, these data suggest that sumoylation of 5-HT1A-Rs may be related to 5-HT1A-R trafficking and internalization, which may contribute to 5-HT1A-R desensitization. Since 5-HT1A-Rs play an important role in mood regulation, the present results significantly impact on the understanding of the pathogenesis of affective disorders and development of better therapeutic approaches for these diseases.
Collapse
Affiliation(s)
| | - Nancy A. Muma
- Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
27
|
Sikarwar AS, Hinton M, Santhosh KT, Chelikani P, Dakshinamurti S. Palmitoylation of Gαq Determines its Association with the Thromboxane Receptor in Hypoxic Pulmonary Hypertension. Am J Respir Cell Mol Biol 2013; 50:135-43. [DOI: 10.1165/rcmb.2013-0085oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Abstract
The covalent attachment of palmitic acid to one or more cysteine residues (S-palmitoylation) is a widespread modification of signalling proteins. With the finding that palmitoylation is a dynamic process, it is now widely accepted that repeated cycles of palmitoylation/depalmitoylation could be involved in the regulation of multiple signalling processes. Palmitoylation also represents a common post-translational modification of the GPCRs (G-protein-coupled receptors). Functionally, palmitoylation of GPCRs has been shown to play a central role in the regulation of multiple receptor functions, including determining the efficiency and selectivity of G-protein coupling, receptor phosphorylation and desensitization, endocytosis and transport to the plasma membrane. The present review summarizes our current knowledge of the palmitoylation of serotonin (5-hydroxytryptamine) receptors and its role in the regulation of receptor functions.
Collapse
|
29
|
Canto I, Trejo J. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting. J Biol Chem 2013; 288:15900-12. [PMID: 23580642 DOI: 10.1074/jbc.m113.469866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.
Collapse
Affiliation(s)
- Isabel Canto
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
30
|
Röser C, Jordan N, Balfanz S, Baumann A, Walz B, Baumann O, Blenau W. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina. PLoS One 2012; 7:e49459. [PMID: 23145175 PMCID: PMC3493529 DOI: 10.1371/journal.pone.0049459] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.
Collapse
Affiliation(s)
- Claudia Röser
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nadine Jordan
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Sabine Balfanz
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Bernd Walz
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| |
Collapse
|
31
|
Canto I, Soh UJK, Trejo J. Allosteric modulation of protease-activated receptor signaling. Mini Rev Med Chem 2012; 12:804-11. [PMID: 22681248 DOI: 10.2174/138955712800959116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/17/2011] [Accepted: 09/02/2011] [Indexed: 12/23/2022]
Abstract
The protease-activated receptors (PARs) are G protein-coupled receptors (GPCRs) that are uniquely activated by proteolysis. PARs mediate hemostasis, thrombosis, inflammation, embryonic development and progression of certain malignant cancers. The family of PARs include four members: PAR1, PAR2, PAR3 and PAR4. PARs harbor a cryptic ligand sequence within their N-terminus that is exposed following proteolytic cleavage. The newly formed PAR Nterminus functions as a tethered ligand that binds intramolecularly to the receptor to trigger transmembrane signaling. This unique mechanism of activation would indicate that regardless of the activating protease, cleavage of PARs would unmask a tethered ligand sequence that would induce a similar active receptor conformation and signaling response. However, this is not the case. Recent studies demonstrate that PARs can be differentially activated by synthetic peptide agonists, proteases or through dimerization, that ultimately result in distinct cellular responses. In some cases, allosteric modulation of PARs involves compartmentalization in caveolae, plasma membrane microdomains enriched in cholesterol. Here, we discuss some mechanisms that lead to allosteric modulation of PAR signaling.
Collapse
Affiliation(s)
- I Canto
- Department of Pharmacology, School of Medicine, University of California, San Diego, Biomedical Sciences Building, Room 3044A, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | | | | |
Collapse
|
32
|
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther 2012; 26:121-31. [PMID: 22750270 DOI: 10.1016/j.pupt.2012.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discussed at the 7th International Young Investigators' Symposium on Smooth Muscle (2011, Winnipeg, Manitoba, Canada) and will in particular focus on processes driving Ca(2+)-mobilization and -sensitization.
Collapse
Affiliation(s)
- D B Wright
- Department of Asthma, Allergy, and Lung Biology, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Membrane proteins (MPs) mediate important physiological processes for the cell via extracellular and intracellular interactions. To better understand the biochemical and structural bases of these interactions, well-characterized preparations of purified MPs are required. This introduction reviews common problems encountered in MP preparation.
Collapse
Affiliation(s)
- Mark L Chiu
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, Radnor, Pennsylvania, USA
| |
Collapse
|
34
|
Renner U, Zeug A, Woehler A, Niebert M, Dityatev A, Dityateva G, Gorinski N, Guseva D, Abdel-Galil D, Fröhlich M, Döring F, Wischmeyer E, Richter DW, Neher E, Ponimaskin EG. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J Cell Sci 2012; 125:2486-99. [DOI: 10.1242/jcs.101337] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Serotonin receptors 5-HT1A and 5-HT7 are highly co-expressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT1A and 5-HT7 receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either by 5-HT1A or 5-HT7 receptors together with monomers co-exist in cells. The highest affinity to form the complex was obtained for the 5-HT7-5-HT7 homodimers, followed by the 5-HT7-5-HT1A heterodimers and 5-HT1A-5-HT1A homodimers. Functionally, heterodimerization decreases 5-HT1A receptor-mediated activation of Gi-protein without affecting 5-HT7 receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT1A receptor to activate G-protein gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is critically involved in initiation of the serotonin-mediated 5-HT1A receptor internalization and also enhances the ability of the 5-HT1A receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT7 receptors in hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT1A-5-HT7 heterodimers and, consequently, their functional importance undergoes pronounced developmental changes.
Collapse
|
35
|
Salonikidis PS, Niebert M, Ullrich T, Bao G, Zeug A, Richter DW. An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions. J Biol Chem 2011; 286:23419-31. [PMID: 21454618 DOI: 10.1074/jbc.m111.236869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ratiometric measurements with FRET-based biosensors in living cells using a single fluorescence excitation wavelength are often affected by a significant ion sensitivity and the aggregation behavior of the FRET pair. This is an important problem for quantitative approaches. Here we report on the influence of physiological ion concentration changes on quantitative ratiometric measurements by comparing different FRET pairs for a cAMP-detecting biosensor. We exchanged the enhanced CFP/enhanced YFP FRET pair of an established Epac1-based biosensor by the fluorophores mCerulean/mCitrine. In the case of enhanced CFP/enhanced YFP, we showed that changes in proton, and (to a lesser extent) chloride ion concentrations result in incorrect ratiometric FRET signals, which may exceed the dynamic range of the biosensor. Calcium ions have no direct, but an indirect pH-driven effect by mobilizing protons. These ion dependences were greatly eliminated when mCerulean/mCitrine fluorophores were used. For such advanced FRET pairs the biosensor is less sensitive to changes in ion concentration and allows consistent cAMP concentration measurements under different physiological conditions, as occur in metabolically active cells. In addition, we verified that the described FRET pair exchange increased the dynamic range of the FRET efficiency response. The time window for stable experimental conditions was also prolonged by a faster biosensor expression rate in transfected cells and a greatly reduced tendency to aggregate, which reduces cytotoxicity. These properties were verified in functional tests in single cells co-expressing the biosensor and the 5-HT(1A) receptor.
Collapse
Affiliation(s)
- Petrus S Salonikidis
- Department of Neuro- and Sensory Physiology, University of Göttingen, 37073 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 2010; 11:161-75. [PMID: 20168314 DOI: 10.1038/nrn2788] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
37
|
Troppmann B, Balfanz S, Baumann A, Blenau W. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor. Br J Pharmacol 2010; 159:1450-62. [PMID: 20233210 DOI: 10.1111/j.1476-5381.2010.00638.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. EXPERIMENTAL APPROACH A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. KEY RESULTS The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. CONCLUSIONS AND IMPLICATIONS This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.
Collapse
Affiliation(s)
- B Troppmann
- Institute of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | | | | | | |
Collapse
|
38
|
Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 2010; 51:439-66. [PMID: 20213554 DOI: 10.1007/978-90-481-8622-8_16] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent 'nonannular' binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin(1A) receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin(1A) receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin(1A) receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin(1A) receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500 007, India
| | | |
Collapse
|
39
|
Fantini J, Barrantes FJ. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2345-61. [PMID: 19733149 DOI: 10.1016/j.bbamem.2009.08.016] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/17/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Like all other monomeric or multimeric transmembrane proteins, receptors for neurotransmitters are surrounded by a shell of lipids which form an interfacial boundary between the protein and the bulk membrane. Among these lipids, cholesterol and sphingolipids have attracted much attention because of their well-known propensity to segregate into ordered platform domains commonly referred to as lipid rafts. In this review we present a critical analysis of the molecular mechanisms involved in the interaction of cholesterol/sphingolipids with neurotransmitter receptors, in particular acetylcholine and serotonin receptors, chosen as representative members of ligand-gated ion channels and G protein-coupled receptors. Cholesterol and sphingolipids interact with these receptors through typical binding sites located in both the transmembrane helices and the extracellular loops. By altering the conformation of the receptors ("chaperone-like" effect), these lipids can regulate neurotransmitter binding, signal transducing functions, and, in the case of multimeric receptors, subunit assembly and subsequent receptor trafficking to the cell surface. Several sphingolipids (especially gangliosides) also exhibit low/moderate affinity for neurotransmitters. We suggest that such lipids could facilitate (i) the attachment of neurotransmitters to the post-synaptic membrane and in some cases (ii) their subsequent delivery to specific protein receptors. Overall, various experimental approaches provide converging evidence that the biological functions of neurotransmitters and their receptors are highly dependent upon sphingolipids and cholesterol, which are active partners of synaptic transmission. Several decades of research have been necessary to untangle the skein of a complex network of molecular interactions between neurotransmitters, their receptors, cholesterol and sphingolipids. This sophisticated crosstalk between all four distinctive partners may allow a fine biochemical tuning of synaptic transmission.
Collapse
Affiliation(s)
- Jacques Fantini
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), University of Aix-Marseille 2 and Aix-Marseille 3, CNRS UMR 6231, INRA USC 2027, Faculté des Sciences de St. Jérôme, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
40
|
Kvachnina E, Dumuis A, Wlodarczyk J, Renner U, Cochet M, Richter DW, Ponimaskin E. Constitutive Gs-mediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1646-55. [PMID: 19715731 DOI: 10.1016/j.bbamcr.2009.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 08/06/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
The 5-HT(7) receptor is the most recently described member of the serotonin receptor family. This receptor is mainly expressed in the thalamus, hypothalamus as well as in the hippocampus and cortex. In the present study, we demonstrate that the mouse 5-hydroxytryptamine 5-HT(7(a)) receptor undergoes post-translational modification by the palmitate, which is covalently attached to the protein through a thioester-type bond. Analysis of protein-bound fatty acids revealed that the 5-HT(7(a)) receptor predominantly contains palmitic acid. Labelling experiments performed in the presence of agonists show that the 5-HT(7(a)) receptor is dynamically palmitoylated in an agonist-dependent manner and that previously synthesized receptors may be subjected to repeated cycles of palmitoylation/depalmitoylation. Mutation analysis revealed that cysteine residues 404 and 438/441 located in the C-terminal receptor domain are the main palmitoylation sites responsible for the attachment of 90% of the receptor-bound palmitate. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(7(a)) receptors were indistinguishable from the wild-type for their ability to interact with G(s)- and G(12)-proteins after agonist stimulation. However, mutation of the proximal palmitoylation site Cys404-Ser (either alone or in combination with Cys438/441-Ser) significantly increased the agonist-independent, G(s)-mediated constitutive 5-HT(7(a)) receptor activity, while the activation of Galpha(12)-protein was not affected. This demonstrates a functional importance of 5-HT(7(a)) dynamic palmitoylation for the fine tuning of receptor-mediated signaling.
Collapse
Affiliation(s)
- Elena Kvachnina
- Department Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Park PSH, Sapra KT, Jastrzebska B, Maeda T, Maeda A, Pulawski W, Kono M, Lem J, Crouch RK, Filipek S, Müller DJ, Palczewski K. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 2009; 48:4294-304. [PMID: 19348429 PMCID: PMC2710298 DOI: 10.1021/bi900417b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects of palmitylation on the chromophore-binding pocket, interactions of rhodopsin with transducin, and molecular interactions stabilizing the receptor structure. The structure of rhodopsin is largely unperturbed by the absence of palmitate linkage. The binding pocket for the chromophore 11-cis-retinal is minimally altered as palmitate-deficient rhodopsin exhibited the same absorbance spectrum as wild-type rhodopsin. Similarly, the rate of release of all-trans-retinal after light activation was the same both in the presence and absence of palmitylation. Significant differences were observed in the rate of transducin activation by rhodopsin and in the force required to unfold the last stable structural segment in rhodopsin at its carboxyl terminal end. A 1.3-fold reduction in the rate of transducin activation by rhodopsin was observed in the absence of palmitylation. Single-molecule force spectroscopy revealed a 2.1-fold reduction in the normalized force required to unfold the carboxyl terminal end of rhodopsin. The absence of palmitylation in rhodopsin therefore destabilizes the molecular interactions formed in the carboxyl terminal end of the receptor, which appears to hinder the activation of transducin by light-activated rhodopsin.
Collapse
Affiliation(s)
- Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - K. Tanuj Sapra
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Beata Jastrzebska
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Tadao Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Akiko Maeda
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Wojciech Pulawski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Masahiro Kono
- Department Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Janis Lem
- Department of Ophthalmology, Program in Genetics, Program in Neuroscience, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Rosalie K. Crouch
- Department Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | - Daniel J. Müller
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
42
|
Shpakov AO. Structural functional characteristic of neuronal serotonin receptors and molecular mechanisms of their coupling with G-proteins. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Woehler A, Wlodarczyk J, Ponimaskin EG. Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J 2008; 26:749-56. [PMID: 18853255 PMCID: PMC2714455 DOI: 10.1007/s10719-008-9187-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 12/31/2022]
Abstract
In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT(1A) receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction.
Collapse
Affiliation(s)
- Andrew Woehler
- Department of Neuro and Sensory Physiology, University of Göttingen, Gottingen, Germany
| | - Jakub Wlodarczyk
- Max-Planck Institute for Biophysical Chemistry, Gottingen, Germany
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | - Evgeni G. Ponimaskin
- Department of Neuro and Sensory Physiology, University of Göttingen, Gottingen, Germany
- DFG-Research Center for the Molecular Physiology of the Brain (CMPB), Gottingen, Germany
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Kobe F, Renner U, Woehler A, Wlodarczyk J, Papusheva E, Bao G, Zeug A, Richter DW, Neher E, Ponimaskin E. Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptorsi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1503-16. [DOI: 10.1016/j.bbamcr.2008.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 12/01/2022]
|
45
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 PMCID: PMC11517231 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007 India
- Present Address: Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377 USA
| | | |
Collapse
|
46
|
Renner U, Glebov K, Lang T, Papusheva E, Balakrishnan S, Keller B, Richter DW, Jahn R, Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 2007; 72:502-13. [PMID: 17540717 DOI: 10.1124/mol.107.037085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we have used wild-type and palmitoylation-deficient mouse 5-hydroxytryptamine(1A) receptor (5-HT1A) receptors fused to the yellow fluorescent protein- and the cyan fluorescent protein (CFP)-tagged alpha(i3) subunit of heterotrimeric G-protein to study spatiotemporal distribution of the 5-HT1A-mediated signaling in living cells. We also addressed the question on the molecular mechanisms by which receptor palmitoylation may regulate communication between receptors and G(i)-proteins. Our data demonstrate that activation of the 5-HT1A receptor caused a partial release of Galpha(i) protein into the cytoplasm and that this translocation is accompanied by a significant increase of the intracellular Ca(2+) concentration. In contrast, acylation-deficient 5-HT1A mutants failed to reproduce both Galpha(i3)-CFP relocation and changes in [Ca(2+)](i) upon agonist stimulation. By using gradient centrifugation and copatching assays, we also demonstrate that a significant fraction of the 5-HT1A receptor resides in membrane rafts, whereas the yield of the palmitoylation-deficient receptor in these membrane microdomains is reduced considerably. Our results suggest that receptor palmitoylation serves as a targeting signal responsible for the retention of the 5-HT1A receptor in membrane rafts. More importantly, the raft localization of the 5-HT1A receptor seems to be involved in receptor-mediated signaling.
Collapse
Affiliation(s)
- Ute Renner
- Abteilung Neuro- und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yuyama K, Sekino-Suzuki N, Kasahara K. Signal Transduction of Heterotrimeric G Proteins in Lipid Rafts. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Jaén C, Doupnik CA. RGS3 and RGS4 Differentially Associate with G Protein-coupled Receptor-Kir3 Channel Signaling Complexes Revealing Two Modes of RGS Modulation. J Biol Chem 2006; 281:34549-60. [PMID: 16973624 DOI: 10.1074/jbc.m603177200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS3 and RGS4 are GTPase-activating proteins expressed in the brain and heart that accelerate the termination of G(i/o)- and G(q)-mediated signaling. We report here the determinants mediating selective association of RGS4 with several G protein-coupled receptors (GPCRs) that form macromolecular complexes with neuronal G protein-gated inwardly rectifying potassium (Kir3 or GIRK) channels. Kir3 channels are instrumental in regulating neuronal firing in the central and peripheral nervous system and pacemaker activity in the heart. By using an epitope-tagged degradation-resistant RGS4 mutant, RGS4(C2V), immunoprecipitation of several hemagglutinin-tagged G(i/o)-coupled and G(q)-coupled receptors expressed in Chinese hamster ovary (CHO-K1) cells readily co-precipitated both Kir3.1/Kir3.2a channels and RGS4(C2V). In contrast to RGS4(C2V), the closely related and functionally active RGS3 "short" isoform (RGS3s) did not interact with any of the GPCR-Kir3 channel complexes examined. Deletion and chimeric RGS constructs indicate both the N-terminal domain and the RGS domain of RGS4(C2V) are necessary for association with m2 receptor-Kir3.1/Kir3.2a channel complexes, where the GPCR was found to be the major target for RGS4(C2V) interaction. The functional impact of RGS4(C2V) "precoupling" to the GPCR-Kir3 channel complex versus RGS3s "collision coupling" was a 100-fold greater potency in the acceleration of G protein-dependent Kir3 channel-gating kinetics with no attenuation in current amplitude. These findings demonstrate that RGS4, a highly regulated modulator and susceptibility gene for schizophrenia, can directly associate with multiple GPCR-Kir3 channel complexes and may affect a wide range of neurotransmitter-mediated inhibitory and excitatory events in the nervous and cardiovascular systems.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- Cells, Cultured
- Cricetinae
- Electrophoretic Mobility Shift Assay
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- GTP-Binding Protein alpha Subunit, Gi2/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation
- Hemagglutinins/genetics
- Hemagglutinins/metabolism
- Humans
- Immunoblotting
- Immunoprecipitation
- Ion Channel Gating
- Kinetics
- Mice
- Molecular Sequence Data
- Oocytes/metabolism
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
- Serotonin/pharmacology
- Signal Transduction
- Transfection
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Cristina Jaén
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | |
Collapse
|
49
|
Abstract
G protein-coupled receptors (GPCRs) play an integral role in the signal transduction of an enormous array of biological phenomena, thereby serving to modulate at a molecular level almost all components of human biology. This role is nowhere more evident than in cardiovascular biology, where GPCRs regulate such core measures of cardiovascular function as heart rate, contractility, and vascular tone. GPCR/ligand interaction initiates signal transduction cascades, and requires the presence of the receptor at the plasma membrane. Plasma membrane localization is in turn a function of the delivery of a receptor to and removal from the cell surface, a concept defined most broadly as receptor trafficking. This review illuminates our current view of GPCR trafficking, particularly within the cardiovascular system, as well as highlights the recent and provocative finding that components of the GPCR trafficking machinery can facilitate GPCR signaling independent of G protein activation.
Collapse
Affiliation(s)
- Matthew T Drake
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
50
|
Carrel D, Hamon M, Darmon M. Role of the C-terminal di-leucine motif of 5-HT1A and 5-HT1B serotonin receptors in plasma membrane targeting. J Cell Sci 2006; 119:4276-84. [PMID: 17003106 DOI: 10.1242/jcs.03189] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5-HT1A and 5-HT1B serotonin receptors exhibit different subcellular localizations in neurons. Evidence has been reported that the C-terminal domain is involved in the somato-dendritic and axonal targeting of 5-HT1AR and 5-HT1BR, respectively. Here we analyzed the consequences of the mutation of a di-leucine motif and palmitoylated cysteines within this domain. Replacement of I414-I415 by a di-alanine in 5-HT1AR led to endoplasmic reticulum (ER) sequestration of the corresponding mutant expressed in cell lines as well as in hippocampal neurons in culture. Furthermore, di-leucine-mutated receptors were unable to bind 5-HT1A agonists and presented a major deficit in their glycosylation state, suggesting that they are misfolded. By contrast, mutation of the di-leucine motif in the C-terminal domain of 5-HT1BR had no major consequence on its subcellular targeting. However, in the case of the 1ActB chimera (substitution of the C-terminal domain of the 5-HT1BR into 5-HT1AR), this mutation was also found to cause sequestration within the ER. Replacement of palmitoylated cysteines by serines had no consequence on either receptor type. These data indicate that the di-leucine motif of the 5-HT1AR and 5-HT1BR tails is implicated in proper folding of these receptors, which is necessary for their ER export.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- COS Cells
- Cell Membrane/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Cysteine/genetics
- Cysteine/metabolism
- Endoplasmic Reticulum/metabolism
- Fluorescent Antibody Technique, Indirect/methods
- Leucine/genetics
- Leucine/metabolism
- Leucine/physiology
- Molecular Sequence Data
- Mutation/genetics
- Protein Binding
- Protein Transport/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Swine
Collapse
Affiliation(s)
- Damien Carrel
- INSERM, U677, University Pierre et Marie Curie, Paris 75013, France
| | | | | |
Collapse
|