1
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
2
|
Cui K, Yang F, Tufan T, Raza MU, Zhan Y, Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Miller GW, Zhu MY. Restoration of Noradrenergic Function in Parkinson's Disease Model Mice. ASN Neuro 2021; 13:17590914211009730. [PMID: 33940943 PMCID: PMC8114769 DOI: 10.1177/17590914211009730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Fan Yang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Hong Kong Institute, Asia Metropolitan University, Hong Kong, China
| | - Turan Tufan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Yanqiang Zhan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Yan Fan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Fei Zeng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailmen School of Public Health, Columbia University, New York, New York, United States
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| |
Collapse
|
3
|
Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem 2016; 291:13375-93. [PMID: 27129232 PMCID: PMC4933246 DOI: 10.1074/jbc.m115.679027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.
Collapse
Affiliation(s)
- Simona Di Lascio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Debora Belperio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Roberta Benfante
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| | - Diego Fornasari
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| |
Collapse
|
4
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
6
|
Fukuda T, Shirane A, Wada-Hiraike O, Oda K, Tanikawa M, Sakuabashi A, Hirano M, Fu H, Morita Y, Miyamoto Y, Inaba K, Kawana K, Osuga Y, Fujii T. HAND2-mediated proteolysis negatively regulates the function of estrogen receptor α. Mol Med Rep 2015; 12:5538-44. [PMID: 26166202 DOI: 10.3892/mmr.2015.4070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/11/2015] [Indexed: 11/05/2022] Open
Abstract
A previous study demonstrated that the progesterone‑inducible HAND2 gene product is a basic helix‑loop‑helix transcription factor and prevents mitogenic effects of estrogen receptor α (ERα) by inhibiting fibroblast growth factor signalling in mouse uteri. However, whether HAND2 directly affects the transcriptional activation function of ERα remains to be elucidated. In the present study, the physical interaction between HAND2 and ERα was investigating by performing an immunoprecipitation assay and an in vitro pull‑down assay. The results demonstrated that HAND2 and ERα interacted in a ligand‑independent manner. The in vitro pull‑down assays revealed a direct interaction between HAND2 and the amino‑terminus of ERα, termed the activation function‑1 domain. To determine the physiological significance of this interaction, the role of HAND2 as a cofactor of ERα was investigated, which revealed that HAND2 inhibited the ligand‑dependent transcriptional activation function of ERα. This result was further confirmed and the mRNA expression of vascular endothelial growth factor, an ERα‑downstream factor, was decreased by the overexpression of HAND2. This inhibition of ligand‑dependent transcriptional activation function of ERα was possibly attributed to the proteasomic degradation of ERα by HAND2. These results indicate a novel anti‑tumorigenic function of HAND2 in regulating ERα‑dependent gene expression. Considering that HAND2 is commonly hypermethylated and silenced in endometrial cancer, it is hypothesized that HAND2 may serve as a possible tumor suppressor, particularly in uterine tissue.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Akira Shirane
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Ayako Sakuabashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Mana Hirano
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Houju Fu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Yoshihiro Morita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Kanako Inaba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113‑8655, Japan
| |
Collapse
|
7
|
Schindler YL, Garske KM, Wang J, Firulli BA, Firulli AB, Poss KD, Yelon D. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 2014; 141:3112-22. [PMID: 25038045 DOI: 10.1242/dev.106336] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.
Collapse
Affiliation(s)
- Yocheved L Schindler
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kristina M Garske
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinhu Wang
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Beth A Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth D Poss
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 2014; 388:149-58. [PMID: 24565998 DOI: 10.1016/j.ydbio.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 02/08/2014] [Indexed: 11/21/2022]
Abstract
The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.
Collapse
|
9
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
10
|
Vincentz JW, Rubart M, Firulli AB. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatr Cardiol 2012; 33:923-8. [PMID: 22395650 PMCID: PMC3391355 DOI: 10.1007/s00246-012-0248-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 12/16/2022]
Abstract
The vertebrate heart is innervated by the sympathetic and parasympathetic components of the peripheral autonomic nervous system, which regulates its contractile rate and force. Understanding the mechanisms that control sympathetic neuronal growth, differentiation, and innervation of the heart may provide insight into the etiology of cardiac arrhythmogenesis. This review provides an overview of the cell signaling pathways and transcriptional effectors that regulate both the noradrenergic gene program during sympathetic neurogenesis and regional nerve density during cardiac innervation. Recent studies exploring transcriptional regulation of the bHLH transcription factor Hand1 in developing sympathetic neurons are explored, and how the Hand1 sympathetic neuron-specific cis-regulatory element may be used further to assess the contribution of altered sympathetic innervation to human cardiac disease is discussed.
Collapse
|
11
|
A Phox2- and Hand2-dependent Hand1 cis-regulatory element reveals a unique gene dosage requirement for Hand2 during sympathetic neurogenesis. J Neurosci 2012; 32:2110-20. [PMID: 22323723 DOI: 10.1523/jneurosci.3584-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural crest cell specification and differentiation to a sympathetic neuronal fate serves as an important model for neurogenesis and depends upon the function of both bHLH transcription factors, notably Hand2, and homeodomain transcription factors, including Phox2b. Here, we define a 1007 bp cis-regulatory element 5' of the Hand1 gene sufficient to drive reporter expression within the sympathetic chain of transgenic mice. Comparative genomic analyses uncovered evolutionarily conserved consensus-binding sites within this element, which chromatin immunoprecipitation and electrophoretic mobility shift assays confirm are bound by Hand2 and Phox2b. Mutational analyses revealed that the conserved Phox2 and E-box binding sites are necessary for proper cis-regulatory element activity, and expression analyses on both Hand2 conditionally null and hypomorphic backgrounds demonstrate that Hand2 is required for reporter activation in a gene dosage-dependent manner. We demonstrate that Hand2 and Hand1 differentially bind the E-boxes in this cis-regulatory element, establishing molecular differences between these two factors. Finally, we demonstrate that Hand1 is dispensable for normal tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) expression in sympathetic neurons, even when Hand2 gene dosage is concurrently reduced by half. Together, these data define a tissue-specific Hand1 cis-regulatory element controlled by two factors essential for the development of the sympathetic nervous system and provide in vivo regulatory evidence to support previous findings that Hand2, rather than Hand1, is predominantly responsible for regulating TH, DBH, and Hand1 expression in developing sympathetic neurons.
Collapse
|
12
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
13
|
Vincentz JW, Barnes RM, Firulli AB. Hand factors as regulators of cardiac morphogenesis and implications for congenital heart defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:485-94. [PMID: 21462297 PMCID: PMC3119928 DOI: 10.1002/bdra.20796] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/06/2011] [Accepted: 02/02/2011] [Indexed: 11/08/2022]
Abstract
Almost 15 years of careful study have established the related basic Helix-Loop-Helix (bHLH) transcription factors Hand1 and Hand2 as critical for heart development across evolution. Hand factors make broad contributions, revealed through animal models, to the development of multiple cellular lineages that ultimately contribute to the heart. They perform critical roles in ventricular cardiomyocyte growth, differentiation, morphogenesis, and conduction. They are also important for the proper development of the cardiac outflow tract, epicardium, and endocardium. Molecularly, they function both through DNA binding and through protein-protein interactions, which are regulated transcriptionally, posttranscriptionally by microRNAs, and posttranslationally through phosphoregulation. Although direct Hand factor transcriptional targets are progressively being identified, confirmed direct targets of Hand factor transcriptional activity in the heart are limited. Identification of these targets will be critical to model the mechanisms by which Hand factor bHLH interactions affect developmental pathways. Improved understanding of Hand factor-mediated transcriptional cascades will be necessary to determine how Hand factor dysregulation translates to human disease phenotypes. This review summarizes the insight that animal models have provided into the regulation and function of these factors during heart development, in addition to the recent findings that suggest roles for HAND1 and HAND2 in human congenital heart disease.
Collapse
Affiliation(s)
- Joshua W. Vincentz
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy, Biochemistry and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Ralston M. Barnes
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy, Biochemistry and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B. Firulli
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy, Biochemistry and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
14
|
Hashimoto Y, Tsutsumi M, Myojin R, Maruta K, Onoda F, Tashiro F, Ohtsu M, Murakami Y. Interaction of Hand2 and E2a is important for transcription of Phox2b in sympathetic nervous system neuron differentiation. Biochem Biophys Res Commun 2011; 408:38-44. [PMID: 21453680 DOI: 10.1016/j.bbrc.2011.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/02/2023]
Abstract
Transcription factors play a crucial role in the development of various tissues. In particular, the transcription factors of the basic helix-loop-helix (bHLH) family are crucial regulators of neurodifferentiation. Previous studies suggested that the bHLH transcription factor Hand2 is essential for sympathetic nervous system neuron differentiation in vivo, but the molecular mechanisms involved have not been well elucidated. It is important for understanding their mode of action in cellular differentiation to clarify how these bHLH factors regulate distinct transcriptional targets in a temporally and spatially controlled manner. Recent reports on ES cell differentiation suggested that its molecular mechanism mimics that of in vivo neurogenesis. However, the diverse nature of ES cell populations has prevented efficient analysis. To address this issue, we previously established a cell line in P19 embryonal carcinoma (EC) cells. Efficient sympathetic nervous system (SNS) neuron differentiation is induced in the cell line. Using this cell line, we succeeded in showing that the interaction of bHLH transcription factor Hand2 with E2a is required for transcription of Phox2b, which is essential for autonomic nervous system neuron development, and this binding activates this expression in SNS differentiation. Moreover, we also demonstrated that Hes5 regulated the transcription of Phox2b as a negative regulator and it inhibited the SNS differentiation. These findings have enabled us to determine the novel regulatory mechanism of Phox2b in SNS differentiation.
Collapse
Affiliation(s)
- Yusuke Hashimoto
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pellegrino MJ, Parrish DC, Zigmond RE, Habecker BA. Cytokines inhibit norepinephrine transporter expression by decreasing Hand2. Mol Cell Neurosci 2011; 46:671-80. [PMID: 21241805 PMCID: PMC3046314 DOI: 10.1016/j.mcn.2011.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022] Open
Abstract
Functional noradrenergic transmission requires the coordinate expression of enzymes involved in norepinephrine (NE) synthesis, as well as the norepinephrine transporter (NET) which removes NE from the synapse. Inflammatory cytokines acting through gp130 can suppress the noradrenergic phenotype in sympathetic neurons. This occurs in a subset of sympathetic neurons during development and also occurs in adult neurons after injury. For example, cytokines suppress noradrenergic function in sympathetic neurons after axotomy and during heart failure. The molecular basis for suppression of noradrenergic genes is not well understood, but previous studies implicated a reduction of Phox2a in cytokine suppression of dopamine beta hydroxylase. We used sympathetic neurons and neuroblastoma cells to investigate the role of Phox2a in cytokine suppression of NET transcription. Chromatin immunoprecipitation experiments revealed that Phox2a did not bind the NET promoter, and overexpression of Phox2a did not prevent cytokine suppression of NET transcription. Hand2 and Gata3 are transcription factors that induce noradrenergic genes during development and are present in mature sympathetic neurons. Both Hand2 and Gata3 were decreased by cytokines in sympathetic neurons and neuroblastoma cells. Overexpression of either Hand2 or Gata3 was sufficient to rescue NET transcription following suppression by cytokines. We examined expression of these genes following axotomy to determine if their expression was altered following nerve injury. NET and Hand2 mRNAs decreased significantly in sympathetic neurons 48 h after axotomy, but Gata3 mRNA was unchanged. These data suggest that cytokines can inhibit NET expression through downregulation of Hand2 or Gata3 in cultured sympathetic neurons, but axotomy in adult animals selectively suppresses Hand2 expression.
Collapse
Affiliation(s)
- Michael J. Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Diana C. Parrish
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
16
|
Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 2010; 30:905-15. [PMID: 20089899 DOI: 10.1523/jneurosci.5368-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a pediatric tumor that is thought to arise from autonomic precursors in the neural crest. Mutations in the PHOX2B gene have been observed in familial and sporadic forms of neuroblastoma and represent the first defined genetic predisposition for neuroblastoma. Here, we address the mechanisms that may underlie this predisposition, comparing the function of wild-type and mutant Phox2b proteins ectopically expressed in proliferating, embryonic sympathetic neurons. Phox2b displays a strong antiproliferative effect, which is lost in all Phox2b neuroblastoma variants analyzed. In contrast, an increase in sympathetic neuron proliferation is elicited by Phox2b variants with mutations in the homeodomain when endogenous Phox2b levels are lowered by siRNA-mediated knockdown to mimic the situation of heterozygous PHOX2B mutations in neuroblastoma. The increased proliferation is blocked by Hand2 knockdown and the antiproliferative Phox2b effects are rescued by Hand2 overexpression, implying Hand2 in Phox2b-mediated proliferation control. A Phox2b variant with a nonsense mutation in the homeodomain elicits, in addition, a decreased expression of characteristic marker genes. Together, these results suggest that PHOX2B mutations predispose to neuroblastoma by increasing proliferation and promoting dedifferentiation of cells in the sympathoadrenergic lineage.
Collapse
|
17
|
Card JP, Lois J, Sved AF. Distribution and phenotype of Phox2a-containing neurons in the adult sprague-dawley rat. J Comp Neurol 2010; 518:2202-20. [DOI: 10.1002/cne.22327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Stewart RA, Lee JS, Lachnit M, Look AT, Kanki JP, Henion PD. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 2010; 100:127-52. [PMID: 21111216 DOI: 10.1016/b978-0-12-384892-5.00005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combined experimental attributes of the zebrafish model system, which accommodates cellular, molecular, and genetic approaches, make it particularly well-suited for determining the mechanisms underlying normal vertebrate development as well as disease states, such as cancer. In this chapter, we describe the advantages of the zebrafish system for identifying genes and their functions that participate in the regulation of the development of the peripheral sympathetic nervous system (PSNS). The zebrafish model is a powerful system for identifying new genes and pathways that regulate PSNS development, which can then be used to genetically dissect PSNS developmental processes, such as tissue size and cell numbers, which in the past haves proved difficult to study by mutational analysis in vivo. We provide a brief review of our current understanding of genetic pathways important in PSNS development, the rationale for developing a zebrafish model, and the current knowledge of zebrafish PSNS development. Finally, we postulate that knowledge of the genes responsible for normal PSNS development in the zebrafish will help in the identification of molecular pathways that are dysfunctional in neuroblastoma, a highly malignant cancer of the PSNS.
Collapse
Affiliation(s)
- Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
19
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Schmidt M, Lin S, Pape M, Ernsberger U, Stanke M, Kobayashi K, Howard MJ, Rohrer H. The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev Biol 2009; 329:191-200. [PMID: 19254708 PMCID: PMC2746555 DOI: 10.1016/j.ydbio.2009.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
Abstract
The basic helix-loop-helix transcription factor Hand2 is essential for the proliferation and noradrenergic differentiation of sympathetic neuron precursors during development. Here we address the function of Hand2 in postmitotic, differentiated sympathetic neurons. Knockdown of endogenous Hand2 in cultured E12 chick sympathetic neurons by siRNA results in a significant (about 60%) decrease in the expression of the noradrenergic marker genes dopamine-beta-hydroxylase (DBH) and tyrosine hydroxylase (TH). In contrast, expression of the pan-neuronal genes TuJ1, HuC and SCG10 was not affected. To analyze the in vivo role of Hand2 in differentiated sympathetic neurons we used mice harboring a conditional Hand2-null allele and excised the gene by expression of Cre recombinase under control of the DBH promotor. Mouse embryos homozygous for Hand2 gene deletion showed decreased sympathetic neuron number and TH expression was strongly reduced in the residual neuron population. The in vitro Hand2 knockdown also enhances the CNTF-induced expression of the cholinergic marker genes vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT). Taken together, these findings demonstrate that the Hand2 transcription factor plays a key role in maintaining noradrenergic properties in differentiated neurons.
Collapse
Affiliation(s)
- Mirko Schmidt
- RG Developmental Neurobiology, Dept. Neurochemistry, MPI for Brain Research, Deutschordenstr. 46 60528 Frankfurt/M, Germany
| | - Shengyin Lin
- Department of Neurosciences, Program in Neurosciences and Degenerative Disease, University of Toledo Health Sciences Center, Toledo, OH 43614, USA
| | - Manuela Pape
- RG Developmental Neurobiology, Dept. Neurochemistry, MPI for Brain Research, Deutschordenstr. 46 60528 Frankfurt/M, Germany
| | - Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Matthias Stanke
- RG Developmental Neurobiology, Dept. Neurochemistry, MPI for Brain Research, Deutschordenstr. 46 60528 Frankfurt/M, Germany
| | - Kazuto Kobayashi
- Dept of Molecular Genetics, Institute of Biomedical Sciences Fukishima, University School of Medicine. Fukushima, Japan
| | - Marthe J. Howard
- Department of Neurosciences, Program in Neurosciences and Degenerative Disease, University of Toledo Health Sciences Center, Toledo, OH 43614, USA
| | - Hermann Rohrer
- RG Developmental Neurobiology, Dept. Neurochemistry, MPI for Brain Research, Deutschordenstr. 46 60528 Frankfurt/M, Germany
| |
Collapse
|
21
|
Liu N, Barbosa AC, Chapman SL, Bezprozvannaya S, Qi X, Richardson JA, Yanagisawa H, Olson EN. DNA binding-dependent and -independent functions of the Hand2 transcription factor during mouse embryogenesis. Development 2009; 136:933-42. [PMID: 19211672 PMCID: PMC2727559 DOI: 10.1242/dev.034025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 01/11/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Hand2 is required for growth and development of the heart, branchial arches and limb buds. To determine whether DNA binding is required for Hand2 to regulate the growth and development of these different embryonic tissues, we generated mutant mice in which the Hand2 locus was modified by a mutation (referred to as Hand2(EDE)) that abolished the DNA-binding activity of Hand2, leaving the remainder of the protein intact. In contrast to Hand2 null embryos, which display right ventricular hypoplasia and vascular abnormalities, causing severe growth retardation by E9.5 and death by E10.5, early development of the heart appeared remarkably normal in homozygous Hand2(EDE) mutant embryos. These mutant embryos also lacked the early defects in growth of the branchial arches seen in Hand2 null embryos and survived up to 2 to 3 days longer than did Hand2 null embryos. However, Hand2(EDE) mutant embryos exhibited growth defects in the limb buds similar to those of Hand2 null embryos. These findings suggest that Hand2 regulates tissue growth and development in vivo through DNA binding-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
BARNES RALSTONM, FIRULLI ANTHONYB. A twist of insight - the role of Twist-family bHLH factors in development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:909-24. [PMID: 19378251 PMCID: PMC2737731 DOI: 10.1387/ijdb.082747rb] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Members of the Twist-family of bHLH proteins play a pivotal role in a number of essential developmental programs. Twist-family bHLH proteins function by dimerizing with other bHLH members and binding to cis- regulatory elements, called E-boxes. While Twist-family members may simply exhibit a preference in terms of high-affinity binding partners, a complex, multilevel cascade of regulation creates a dynamic role for these bHLH proteins. We summarize in this review information on each Twist-family member concerning expression pattern, function, regulation, downstream targets, and interactions with other bHLH proteins. Additionally, we focus on the phospho-regulatory mechanisms that tightly control posttranslational modification of Twist-family member bHLH proteins.
Collapse
Affiliation(s)
- RALSTON M. BARNES
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - ANTHONY B. FIRULLI
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| |
Collapse
|
23
|
Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 2008; 319:179-91. [PMID: 18501887 PMCID: PMC2517160 DOI: 10.1016/j.ydbio.2008.03.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/19/2008] [Accepted: 03/22/2008] [Indexed: 12/22/2022]
Abstract
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.
Collapse
Affiliation(s)
- Tyler J. Hendershot
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| | - Hongbin Liu
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| | - David E. Clouthier
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | | | - Eva Coppola
- Telethon Institute of Genetics and Medicine, TIGEM, Napoli, Italy
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine, TIGEM, Napoli, Italy
| | - Anthony B. Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indianapolis, IN 46202-5225
| | - Douglas L. Pittman
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Columbia SC 29208
| | - Marthe J. Howard
- University of Toledo Health Sciences Center, Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Toledo, OH 43614
| |
Collapse
|
24
|
Wen G, Wessel J, Zhou W, Ehret GB, Rao F, Stridsberg M, Mahata SK, Gent PM, Das M, Cooper RS, Chakravarti A, Zhou H, Schork NJ, O’Connor DT, Hamilton BA. An ancestral variant of Secretogranin II confers regulation by PHOX2 transcription factors and association with hypertension. Hum Mol Genet 2007; 16:1752-64. [PMID: 17584765 PMCID: PMC2695823 DOI: 10.1093/hmg/ddm123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Granins regulate secretory vesicle formation in neuroendocrine cells and granin-derived peptides are co-released with neurotransmitters as modulatory signals at sympathetic sites. We report evidence for association between a regulatory polymorphism in Secretogranin II (SCG2) and hypertension in African-American subjects. The minor allele is ancestral in the human lineage and is associated with disease risk in two case-control studies and with elevated blood pressure in a separate familial study. Mechanistically, the ancestral allele acts as a transcriptional enhancer in cells that express endogenous Scg2, whereas the derived allele does not. ARIX (PHOX2A) and PHOX2B are identified as potential transactivating factors by oligonucleotide affinity chromatography and mass spectrometry and confirmed by chromatin immunoprecipitation. Each of these transcription factors preferentially binds the risk allele, both in vitro and in vivo. Population genetic considerations suggest positive selection of the protective allele within the human lineage. These results identify a common regulatory variation in SCG2 and implicate granin gene expression in the control of human blood pressure and susceptibility to hypertension.
Collapse
Affiliation(s)
- Gen Wen
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Jennifer Wessel
- Department of Psychiatry, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Family and Preventive Medicine, UCSD and Graduate School of Public Health, San Diego State University Joint Doctoral Program in Public Health Epidemiology
- Scripps Genomic Medicine and The Scripps Research Institute, La Jolla, CA
| | - Weidong Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Georg B. Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Fangwen Rao
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Mats Stridsberg
- Department of Medical Sciences, University Hospital, Uppsala, Sweden
| | - Sushil K. Mahata
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- VA San Diego Healthcare System
| | - Peter M. Gent
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Madhusudan Das
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Richard S. Cooper
- Department of Preventive Medicine and Epidemiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Nicholas J. Schork
- Department of Psychiatry, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Center for Human Genetics and Genomics, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Scripps Genomic Medicine and The Scripps Research Institute, La Jolla, CA
| | - Daniel T. O’Connor
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Center for Human Genetics and Genomics, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Bruce A. Hamilton
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| |
Collapse
|
25
|
Morikawa Y, D’Autréaux F, Gershon MD, Cserjesi P. Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 2007; 307:114-26. [PMID: 17531968 PMCID: PMC1952239 DOI: 10.1016/j.ydbio.2007.04.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/11/2007] [Accepted: 04/23/2007] [Indexed: 12/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Hand2 has been shown to play a role in the development of the mammalian sympathetic nervous system (SNS); however, its precise role could not be uncovered because Hand2 is required for early embryonic survival. We therefore generated a conditional Hand2 knockout mouse line by excising Hand2 in Wnt1-Cre-expressing neural crest-derived cells. These mice die at 12.5 dpc with embryos showing severe cardiovascular and facial defects. Crest-derived cells, however, populate sites of SNS development and proliferate normally. Sympathetic precursors differentiate into neurons and express the pan-neuronal markers, beta3-tubulin (Tuj1) and Hu showing that Hand2 is not essential for SNS neuronal differentiation. To determine whether Hand2 regulates noradrenergic differentiation, the levels of the norepinephrine biosynthetic enzymes, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) was examined. Both enzymes were dramatically reduced in mutant embryos suggesting that the primary role of Hand2 in the SNS is determination of neuronal phenotype. Loss of Hand2 did not affect the expression of other members of the transcriptional circuit regulating SNS development, including Phox2a/b, Mash1 and Gata2/3; however, Hand2 was required for Hand1 expression. Our data suggest that the major role of Hand2 during SNS development is to permit sympathetic neurons to acquire a catecholaminergic phenotype.
Collapse
Affiliation(s)
- Yuka Morikawa
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Fabien D’Autréaux
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Peter Cserjesi
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| |
Collapse
|
26
|
Benfante R, Flora A, Di Lascio S, Cargnin F, Longhi R, Colombo S, Clementi F, Fornasari D. Transcription Factor PHOX2A Regulates the Human α3 Nicotinic Receptor Subunit Gene Promoter. J Biol Chem 2007; 282:13290-302. [PMID: 17344216 DOI: 10.1074/jbc.m608616200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PHOX2A is a paired-like homeodomain transcription factor that participates in specifying the autonomic nervous system. It is also involved in the transcriptional control of the noradrenergic neurotransmitter phenotype as it regulates the gene expression of tyrosine hydroxylase and dopamine-beta-hydroxylase. The results of this study show that the human orthologue of PHOX2A is also capable of regulating the transcription of the human alpha3 nicotinic acetylcholine receptor gene, which encodes the ligand-binding subunit of the ganglionic type nicotinic receptor. In particular, we demonstrated by chromatin immunoprecipitation and DNA pulldown assays that PHOX2A assembles on the SacI-NcoI region of alpha3 promoter and, by co-transfection experiments, that it exerts its transcriptional effects by acting through the 60-bp minimal promoter. PHOX2A does not seem to bind to DNA directly, and its DNA binding domain seems to be partially dispensable for the regulation of alpha3 gene transcription. However, as suggested by the findings of our co-immunoprecipitation assays, it may establish direct or indirect protein-protein interactions with Sp1, thus regulating the expression of alpha3 through a DNA-independent mechanism. As the alpha3 subunit is expressed in every terminally differentiated ganglionic cell, this is the first example of a "pan-autonomic" gene whose expression is regulated by PHOX2 proteins.
Collapse
Affiliation(s)
- Roberta Benfante
- Department of Pharmacology, School of Medicine, University of Milan, 20129 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gerbasi VR, Link AJ. The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation. Mol Cell Proteomics 2007; 6:1049-58. [PMID: 17327219 DOI: 10.1074/mcp.m600384-mcp200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 5'-untranslated region of the ornithine decarboxylase (ODC) mRNA contains an internal ribosomal entry site (IRES). Mutational analysis of the ODC IRES has led to the identification of sequences necessary for cap-independent translation of the ODC mRNA. To discover novel IRES trans-acting factors (ITAFs), we performed a proteomics screen for proteins that regulate ODC translation using the wild-type ODC mRNA and a mutant version with an inactive IRES. We identified two RNA-binding proteins that associate with the wild-type ODC IRES but not the mutant IRES. One of these RNA-binding proteins, PCBP2, is an established activator of viral and cellular IRESs. The second protein, ZNF9 (myotonic dystrophy type 2 protein), has not been shown previously to bind IRES-like elements. Using a series of biochemical assays, we validated the interaction of these proteins with ODC mRNA. Interestingly ZNF9 and PCBP2 biochemically associated with each other and appeared to function as part of a larger holo-ITAF ribonucleoprotein complex. Our functional studies showed that PCBP2 and ZNF9 stimulate translation of the ODC IRES. Importantly these results may provide insight into the normal role of ZNF9 and why ZNF9 mutations cause myotonic dystrophy.
Collapse
Affiliation(s)
- Vincent R Gerbasi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
28
|
Lucas ME, Müller F, Rüdiger R, Henion PD, Rohrer H. The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 2007; 133:4015-24. [PMID: 17008447 DOI: 10.1242/dev.02574] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The basic helix-loop-helix transcription factor Hand2, together with Ascl1, Phox2a, Phox2b and Gata2/Gata3, is induced by bone morphogenetic proteins in neural crest-derived precursor cells during sympathetic neuron generation. Hand2 overexpression experiments and the analysis of its function at the Dbh promotor implicated Hand2 in the control of noradrenergic gene expression. Using the zebrafish hand2 deletion mutant hands off, we have now investigated the physiological role of hand2 in the development of sympathetic ganglia. In hands off mutant embryos, sympathetic precursor cells aggregate to form normal sympathetic ganglion primordia characterized by the expression of phox2b, phox2a and the achaete-scute family member zash1a/ascl1. The expression of the noradrenergic marker genes th and dbh is strongly reduced, as well as the transcription factors gata2 and tfap2a (Ap-2alpha). By contrast, generic neuronal differentiation seems to be unaffected, as the expression of elavl3 (HuC) is not reduced in hands off sympathetic ganglia. These results demonstrate in vivo an essential and selective function of hand2 for the noradrenergic differentiation of sympathetic neurons, and implicates tfap2a and gata2 as downstream effectors.
Collapse
Affiliation(s)
- Marsha E Lucas
- Center for Molecular Neurobiology, Molecular, Cellular and Developmental Biology Program, Department of Neuroscience, The Ohio State University, 105 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Sarkar AA, Howard MJ. Perspectives on integration of cell extrinsic and cell intrinsic pathways of signaling required for differentiation of noradrenergic sympathetic ganglion neurons. Auton Neurosci 2006; 126-127:225-31. [PMID: 16647305 DOI: 10.1016/j.autneu.2006.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/14/2022]
Abstract
This review presents an analysis of current research aimed at deciphering the interplay of cell extrinsic and intrinsic signals required for specification and differentiation of noradrenergic sympathetic ganglion neurons. The development of noradrenergic sympathetic ganglion neurons depends upon expression of a core set of DNA regulatory molecules, including the Phox2 homeodomain proteins and the basic helix-loop-helix proteins, HAND2 and MASH1 whose expression is dependent upon cell extrinsic cues. Both bone morphogenetic protein(s) and cAMP have an integral role in the specification/differentiation of noradrenergic sympathetic ganglion neurons but how signaling downstream of these molecules is integrated and identification of their particular functions is just beginning to be elucidated. Data currently available suggests a model with BMP providing both instructive and permissive cues in a pathway integrated by cAMP and MAPK by activation of both canonical and non-canonical intracellular signaling cascades.
Collapse
Affiliation(s)
- Anjali A Sarkar
- Department of Neurosciences, Program in Cellular and Molecular Neurobiology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | |
Collapse
|
30
|
Rychlik JL, Hsieh M, Eiden LE, Lewis EJ. Phox2 and dHAND transcription factors select shared and unique target genes in the noradrenergic cell type. J Mol Neurosci 2006; 27:281-92. [PMID: 16280598 DOI: 10.1385/jmn:27:3:281] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/01/2005] [Indexed: 11/11/2022]
Abstract
The noradrenergic cell type is characterized by the expression of proteins involved in the biosynthesis, transport, and secretion of noradrenaline and is dependent on the sequential and combinatorial expression of numerous transcription factors, including Phox2a, Phox2b, dHAND, GATA2, GATA3, and MASH1. Phox2a and Phox2b transactivate the promoter of the gene encoding the noradrenergic biosynthetic enzyme, dopamine beta-hydroxylase (DBH), and dHAND potentiates the activity of Phox2a. In this study, we use chromatin immunoprecipitation assays to identify target genes of the Phox2 proteins and dHAND. All three proteins are bound to the DBH and PHOX2B promoter regions in SH-SY5Y neuroblastoma cells. The interaction between Phox2a and dHAND is analyzed by fluorescent anisotropy, which demonstrates that dHAND causes an eightfold increase in the affinity of Phox2a for its recognition sites on the DBH promoter region. The Phox2 proteins are not found on the genes encoding other noradrenergic enzymatic or transport proteins but are reciprocally bound to each other's promoters in SH-SY5Y cells. Together with Phox2a and Phox2b, dHAND is bound to the PHOX2B promoter and is also associated with the GATA2 and eHAND genes in the absence of the Phox2 proteins. These results demonstrate the direct interactions of the Phox2 and dHAND transcription factors within a noradrenergic cell type. The Phox2 proteins were found to share all target genes, whereas dHAND binds to genes independently of Phox2a.
Collapse
Affiliation(s)
- Jennifer L Rychlik
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | |
Collapse
|
31
|
Hendershot TJ, Liu H, Sarkar AA, Giovannucci DR, Clouthier DE, Abe M, Howard MJ. Expression of Hand2 is sufficient for neurogenesis and cell type–specific gene expression in the enteric nervous system. Dev Dyn 2006; 236:93-105. [PMID: 17075884 DOI: 10.1002/dvdy.20989] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The basic helix-loop-helix DNA binding protein Hand2 is expressed in neural crest-derived precursors of enteric neurons and has been shown to affect both neurogenesis and neurotransmitter specification of noradrenergic sympathetic ganglion neurons. In the current study, our goal was to determine whether Hand2 affects neurogenesis and/or expression of vasoactive intestinal polypeptide and choline acetyltransferase in developing enteric neurons. Gain-of-function of Hand2 in HNK-1(+) immmunoselected precursor cells resulted in increased neurogenesis. The number of neurons expressing vasoactive intestinal polypeptide increased in response to Hand2 overexpression although choline acetyltransferase was not affected. Targeted deletion of Hand2 in neural crest cells resulted in loss of all neurons expressing vasoactive intestinal polypeptide along the length of the gastrointestinal tract, patterning defects in the myenteric plexus of the stomach, and altered number and morphology of neurons expressing TH. Our data demonstrate that expression of Hand2 is sufficient and necessary for neurogenesis and expression of a subset of cell type-specific markers in the developing enteric nervous system.
Collapse
Affiliation(s)
- Tyler J Hendershot
- Department of Neurosciences and Program in Cellular and Molecular Neurobiology, Medical University of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Morikawa Y, Dai YS, Hao J, Bonin C, Hwang S, Cserjesi P. The basic helix-loop-helix factor Hand 2 regulates autonomic nervous system development. Dev Dyn 2005; 234:613-21. [PMID: 16145670 PMCID: PMC2653092 DOI: 10.1002/dvdy.20544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian autonomic nervous system (ANS) development requires the combinatorial action of a number of transcription factors, which include Mash 1, Phox 2b, and GATA 3. Here we show that the bHLH transcription factor, Hand 2 (dHAND), is expressed concurrently with Mash 1 during sympathetic nervous system (SNS) development and that the expression of Hand 2 is not dependent on Mash 1. This suggests that these two bHLH factors work in parallel during SNS development. We also show that ectopic expression of Hand 2 activates the neuronal program and promotes the acquisition of a phenotype corresponding to peripheral neurons including neurons of the SNS lineage in P19 embryonic carcinoma cells. We propose that Hand 2 works in parallel with other members of the transcriptional network to regulate ANS developmental but can ectopically activate the program by a cross-regulatory mechanism that includes the activation of Mash 1. We show that this function is dependent on its interaction with the histone acetyltransferase p300/CBP, indicating that Hand 2 functions to promote ANS development as part of a larger transcriptional complex.
Collapse
Affiliation(s)
- Yuka Morikawa
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118
| | - Yan-Shan Dai
- Department of Anatomy and Cell Biology, Columbia University, 604 West 168 Street, New York, NY, 10032
| | - Jianming Hao
- Department of Anatomy and Cell Biology, Columbia University, 604 West 168 Street, New York, NY, 10032
| | - Christopher Bonin
- Department of Anatomy and Cell Biology, Columbia University, 604 West 168 Street, New York, NY, 10032
| | - Sunny Hwang
- Department of Anatomy and Cell Biology, Columbia University, 604 West 168 Street, New York, NY, 10032
| | - Peter Cserjesi
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118
| |
Collapse
|
33
|
Hsieh MM, Lupas G, Rychlik J, Dziennis S, Habecker BA, Lewis EJ. ERK1/2 is a negative regulator of homeodomain protein Arix/Phox2a. J Neurochem 2005; 94:1719-27. [PMID: 16156742 DOI: 10.1111/j.1471-4159.2005.03333.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homeodomain protein Arix/Phox2a plays a role in the development and maintenance of the noradrenergic cell type by regulating the transcription of genes involved in the biosynthesis and metabolism of noradrenaline. Previous work has shown that Arix/Phox2a is a phosphoprotein, and the phosphorylated form of Arix/Phox2a exhibits poorer DNA-binding activity than does the dephosphorylated form. Here, we demonstrate that Arix/Phox2a is phosphorylated by extracellular signal-related kinase (ERK)1/2 at two sites within the N-terminal transactivation domain. The phosphorylation level of Arix in cultured SH-SY5Y neuroblastoma cells is reduced when cells are treated with the mitogen activated protein kinase kinase 1 (MEK1) inhibitor UO126. Treatment of sympathetic neurons with the MEK1 inhibitor, PD98059, results in an elevation of mRNAs encoding noradrenergic proteins, dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET), but not tyrosine hydroyxlase (TH). Treatment of neuroblastoma cultures with PD98059 increases the interaction of Arix with DBH and NET genes, but not the TH gene. Together, these results suggest that phosphorylation of Arix by ERK1/2 inhibits its ability to interact with target genes, and that both specificity of expression and modulation by external stimuli are monitored through the same transcription factor.
Collapse
Affiliation(s)
- Marlene M Hsieh
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
34
|
van Limpt V, Chan A, Schramm A, Eggert A, Versteeg R. Phox2B mutations and the Delta–Notch pathway in neuroblastoma. Cancer Lett 2005; 228:59-63. [PMID: 16084642 DOI: 10.1016/j.canlet.2005.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/05/2005] [Indexed: 01/24/2023]
Abstract
We recently identified six neuroblastoma patients with constitutional or tumor-specific mutations in the homeobox gene Phox2B. Phox2B controls part of the differentiation program of the sympathetic nervous system (SNS). Mice with a homozygous inactivation of Phox2B fail in the proper differentiation of the chromaffin lineage of the SNS. Phox2B regulates HASH1 which can control expression of genes of the Delta-Notch pathway. We previously showed that a subset of neuroblastoma cell lines highly expresses Delta-like 1 (Dlk1), which is a marker for the chromaffin lineage of the SNS. Notch3 is expressed in another subset of neuroblastoma cell lines and marks tumors from an alternative differentiation lineage. Phox2B is also related to the TrkA differentiation pathway in neuroblastoma. Here we will review the role of Phox2B in differentiation programs of the SNS and in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Vera van Limpt
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Liu H, Margiotta JF, Howard MJ. BMP4 supports noradrenergic differentiation by a PKA-dependent mechanism. Dev Biol 2005; 286:521-36. [PMID: 16165122 DOI: 10.1016/j.ydbio.2005.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 01/13/2023]
Abstract
Differentiation of neural crest-derived noradrenergic neurons depends upon signaling mediated downstream of BMP binding to cognate receptors and involving cAMP. Compiled data from many groups suggest that neurogenesis and cell type-specific noradrenergic marker gene regulation is coordinated through the expression and function of the basic helix-loop-helix DNA binding protein HAND2 and the homeodomain DNA binding protein Phox2a. However, information detailing how BMP-mediated signaling and signaling through cAMP are coordinated has been lacking. We now provide compelling data suggesting that differentiation of noradrenergic sympathetic ganglion neurons depends upon both canonical and non-canonical pathways of BMP-mediated signaling. The non-canonical pathway involves the activation of protein kinase A (PKA) independent of cAMP. This is a novel mechanism in neural crest-derived cells and is necessary to support neurogenesis as well as aspects of DBH promoter regulation involving HAND2 phosphorylation and dimerization. The expression of transcripts encoding HAND2 and Phox2a is regulated via canonical BMP signaling and thus affects both neurogenesis and cell type-specific gene expression. Interestingly, cAMP- and MapK-mediated signaling modulate specific target sites in both the canonical and non-canonical BMP pathways. Activity of MapK is required for HAND2 transcription and thus affects neurogenesis. Signaling affected by cAMP is necessary for the transcription of Phox2a as well as regulation of DBH promoter transactivation by Phox2a and HAND2. We suggest a comprehensive model that shows how BMP- and cAMP-mediated intracellular signaling integrate neurogenesis and cell type-specific noradrenergic marker gene expression and function.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Neurosciences, Program in Molecular and Cellular Neuroscience, Medical University of Ohio, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | | | |
Collapse
|
36
|
Howard MJ. Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005; 277:271-86. [PMID: 15617674 DOI: 10.1016/j.ydbio.2004.09.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 01/17/2023]
Abstract
Neurons share many features in common but are distinguished by expression of phenotypic characteristics that define their specific function, location, or connectivity. One aspect of neuronal fate determination that has been extensively studied is that of neurotransmitter choice. The generation of diversity of neuronal subtypes within the developing nervous system involves integration of extrinsic and intrinsic instructive cues resulting in the expression of a core set of regulatory molecules. This review focuses on mechanisms of growth and transcription factor regulation in the generation of peripheral neural crest-derived neurons. Although the specification and differentiation of noradrenergic neurons are the focus, I have tried to integrate these into a larger picture providing a general roadmap for development of autonomic neurons. There is a core of DNA binding proteins required for the development of sympathetic, parasympathetic, and enteric neurons, including Phox2 and MASH1, whose specificity is regulated by the recruitment of additional transcriptional regulators in a subtype-specific manner. For noradrenergic neurons, the basic helix-loop-helix DNA binding protein HAND2 (dHAND) appears to serve this function. The studies reviewed here support the notion that neurotransmitter identity is closely linked to other aspects of neurogenesis and reveal a molecular mechanism to coordinate expression of pan-neuronal genes with cell type-specific genes.
Collapse
Affiliation(s)
- Marthe J Howard
- Department of Neurosciences, Medical College of Ohio, Toledo, OH 43614, USA.
| |
Collapse
|
37
|
Tsarovina K, Pattyn A, Stubbusch J, Müller F, van der Wees J, Schneider C, Brunet JF, Rohrer H. Essential role of Gata transcription factors in sympathetic neuron development. Development 2004; 131:4775-86. [PMID: 15329349 DOI: 10.1242/dev.01370] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sympathetic neurons are specified during their development from neural crest precursors by a network of crossregulatory transcription factors, which includes Mash1, Phox2b, Hand2 and Phox2a. Here, we have studied the function of Gata2 and Gata3 zinc-finger transcription factors in autonomic neuron development. In the chick, Gata2 but not Gata3 is expressed in developing sympathetic precursor cells. Gata2 expression starts after Mash1, Phox2b, Hand2 and Phox2a expression, but before the onset of the noradrenergic marker genes Th and Dbh, and is maintained throughout development. Gata2 expression is affected in the chick embryo by Bmp gain- and loss-of-function experiments, and by overexpression of Phox2b, Phox2a, Hand2 and Mash1. Together with the lack of Gata2/3 expression in Phox2b knockout mice, these results characterize Gata2 as member of the Bmp-induced cluster of transcription factors. Loss-of-function experiments resulted in a strong reduction in the size of the sympathetic chain and in decreased Th expression. Ectopic expression of Gata2 in chick neural crest precursors elicited the generation of neurons with a non-autonomic, Th-negative phenotype. This implies a function for Gata factors in autonomic neuron differentiation, which, however, depends on co-regulators present in the sympathetic lineage. The present data establish Gata2 and Gata3 in the chick and mouse, respectively, as essential members of the transcription factor network controlling sympathetic neuron development.
Collapse
Affiliation(s)
- Konstantina Tsarovina
- Max-Planck-Institut für Hirnforschung, Abteilung Neurochemie, Deutschordenstr. 46, 60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|