1
|
Cui QF, Liu C, Dong XM, Liu ZQ. Exploring the biological functions and disease implications of OSGINs: A journey from discovery to clinical relevance. Biochem Pharmacol 2025; 237:116921. [PMID: 40199404 DOI: 10.1016/j.bcp.2025.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Oxidative stress-induced growth inhibitors (OSGINs) represent a new category of proteins that respond to oxidative stress and modulate redox balance. Growing evidence indicates that OSGINs have extensive physiological and pathological functions by regulating essential cellular processes, including proliferation, autophagy, apoptosis, and ferroptosis, thus influencing the progression of various diseases such as cancer, atherosclerosis, and pulmonary fibrosis. Moreover, research indicates that some contaminants, biomaterials, active compounds, and drugs can induce the expression of OSGINs, thereby exerting toxicity or therapeutic effects on the organism. These many functions make OSGINs attractive targets. However, a thorough analysis of the topic is still lacking. This paper presents a systematic review of current OSGINs research, with an emphasis on their molecular functions, regulatory mechanisms, disease roles, and environmental stressors. Furthermore, using virtual screening tools, we identified a series of active molecules with potential inhibitory effects on OSGINs, providing valuable references for further drug development. Our review presents novel insights and guidance for the ongoing investigation of the biological significance and potential clinical applications of OSGINs.
Collapse
Affiliation(s)
- Qian-Fei Cui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Kim DJ, Yi YW, Dong Z, Seong YS. Therapeutic implication of oxidative stress-induced growth inhibitor 1 (OSGIN1) in cancer. Oncogene 2025; 44:997-1006. [PMID: 40097807 DOI: 10.1038/s41388-025-03349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Oxidative stress is an imbalance of free radicals and antioxidants in redox signaling that regulate various pathogenesis and cellular functions. Although advances in technology provide further knowledge for biomarkers and potential therapeutic targets of oxidative stress, it is still needed to validate them to apply in clinical relevance, diagnostics, and therapeutics. With these backgrounds, a clinical understanding of biomarkers and molecular mechanisms has been emphasized. In this review, we describe oxidative stress-induced growth inhibitor 1 (OSGIN1), an oxidative stress response protein. Previous findings have provided evidence implicating the function of oxidative stress-dependent and -independent response in numerous chronic diseases and cancers. However, the functions and roles of OSGIN1 in tumorigenesis have not been appreciated yet. We highlight the cellular processes and functions dependent on the expression of OSGIN1 isoforms as well as the regulation of its expression by various cellular signaling pathways, especially in cancer. This review will provide an overview of the clinical significance and molecular mechanisms of OSGIN1.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea.
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
3
|
Hussey G, Royster M, Vaidy N, Culkin M, Saha MS. The Osgin Gene Family: Underexplored Yet Essential Mediators of Oxidative Stress. Biomolecules 2025; 15:409. [PMID: 40149945 PMCID: PMC11940746 DOI: 10.3390/biom15030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
The Osgin gene family consists of two members, Osgin1 and Osgin2, involved in the cellular oxidative stress response. While many members of this essential cellular pathway have been extensively characterized, the Osgin gene family, despite its broad phylogenetic distribution, has received far less attention. Here, we review published articles and open-source databases to synthesize the current research on the evolutionary history, structure, biochemical and physiological functions, expression patterns, and role in disease of the Osgin gene family. Although Osgin displays broad spatiotemporal expression during development and adulthood, there is ambiguity regarding the cellular functions of the OSGIN proteins. A recent study identified OSGIN-1 as a flavin-dependent monooxygenase, but the biochemical role of OSGIN-2 has not yet been defined. Moreover, while the Osgin genes are implicated as mediators of cell proliferation, apoptosis, and autophagy, these functions have not been connected to the enzymatic classification of OSGIN. Misregulation of Osgin expression has long been associated with various disease states, yet recent analyses highlight the mechanistic role of OSGIN in pathogenesis and disease progression, underscoring the therapeutic potential of targeting OSGIN. In light of these findings, we suggest further avenues of research to advance our understanding of this essential, yet underexplored, gene family.
Collapse
Affiliation(s)
| | | | | | | | - Margaret S. Saha
- Biology Department, William & Mary, Williamsburg, VA 23185, USA; (G.H.); (M.R.); (N.V.); (M.C.)
| |
Collapse
|
4
|
Deng M, Tang F, Chang X, Zhang Y, Liu P, Ji X, Zhang Y, Yang R, Jiang J, He J, Miao J. A targetable OSGIN1 - AMPK - SLC2A3 axis controls the vulnerability of ovarian cancer to ferroptosis. NPJ Precis Oncol 2025; 9:15. [PMID: 39809873 PMCID: PMC11733211 DOI: 10.1038/s41698-024-00791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Despite advances in various chemotherapy regimens, current therapeutic options are limited for ovarian cancer patients. Oxidative stress-induced growth inhibitor 1 (OSGIN1), which is a tumor suppressor gene known to regulate the cellular stress response and apoptosis, is associated with ovarian cancer development. However, the underlying mechanisms involved in ferroptosis regulation have not been elucidated. Thus, this study aimed to investigate the effect and underlying regulatory mechanism of the OSGIN1 gene on ovarian cancer cells. Our results demonstrated that loss of the OSGIN1 gene promoted ovarian cancer growth and conferred resistance to drug-induced ferroptosis. Mechanistically, the loss of OSGIN1 activates AMPK signaling through ATM, leading to the upregulation of SLC2A3, which protects cells from ferroptosis and renders them insensitive to ferroptosis inducers. Notably, an SLC2A3-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on ovarian cancer patient-derived xenograft tumors. Overall, anti-SLC2A3 therapy is a promising method to improve ovarian cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yanqin Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, 266011, Shandong, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Junyi Jiang
- State Key Laboratry of Medical Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, 100006, Beijing, China
| | - Junqi He
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, 100006, Beijing, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China.
| |
Collapse
|
5
|
Jia Y, Zhang X, Cai Y, Yu H, Cao G, Dai E, Kang R, Tang D, Hu N, Han L. OSGIN1 promotes ferroptosis resistance by directly enhancing GCLM activity. Biochem Biophys Res Commun 2024; 740:151015. [PMID: 39571229 DOI: 10.1016/j.bbrc.2024.151015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Oxidative stress induced growth inhibitor 1 (OSGIN1) is a tumor protein p53 (TP53)-target gene involved in the oxidative stress response and promotes apoptosis. Here, we present the first evidence that OSGIN1 functions conversely by inhibiting ferroptosis, a distinct form of oxidative cell death driven by excessive lipid peroxidation. OSGIN1 expression is upregulated by pharmacological ferroptosis inducers in an NFE2 like BZIP transcription factor 2 (NFE2L2)-dependent manner, rather than through the TP53 pathway, in human pancreatic ductal adenocarcinoma (PDAC) cells. Genetic depletion of OSGIN1 or NFE2L2 similarly promotes ferroptosis, while re-expression of OSGIN1 rescues ferroptosis resistance in NFE2L2-knockout cells, both in vitro and in animal models. Mechanistically, immunoprecipitation combined with mass spectrometry revealed that OSGIN1 interacts with glutamate-cysteine ligase modifier subunit (GCLM), enhancing glutathione production and thereby mitigating oxidative stress. Additionally, OSGIN1 expression shows a positive correlation with NFE2L2 expression in pancreatic tumors, which is linked to poorer prognosis in PDAC patients. Collectively, these findings establish a novel defense mechanism that regulates ferroptosis and may influence tumor suppression in PDAC.
Collapse
Affiliation(s)
- Yuanyuan Jia
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Xinyue Zhang
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yiqing Cai
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Hanghui Yu
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Guohua Cao
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Nanjun Hu
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Leng Han
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
6
|
Tang X, Zhu H, Zhou M, Zhang H, Xiao Q, Yuan Q, Sun G, Zhang Z, Chu H. OSGIN1 regulates PM 2.5-induced fibrosis via mediating autophagy in an in vitro model of COPD. Toxicol Lett 2024; 401:35-43. [PMID: 39260748 DOI: 10.1016/j.toxlet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Fine particulate matter (PM2.5) has been identified as a significant contributing factor to the exacerbation of chronic obstructive pulmonary disease (COPD). It has been observed that PM2.5 may induce lung fibrosis in COPD, although the precise molecular mechanism behind this remains unclear. In a previous study, we demonstrated that PM2.5 upregulates oxidative stress induced growth inhibitor 1 (OSGIN1), which in turn leads to injury in airway epithelial cells, thereby, suggesting a potential link between PM2.5 exposure and COPD. Based on this, we hypothesized that OSGIN1 plays a role in PM2.5-induced fibrosis in COPD. Human bronchial epithelial cells (HBEs) were treated with cigarette smoke extract (CSE) to construct an in vitro model of COPD. Our findings revealed that PM2.5 increased fibrosis indicators and upregulated OSGIN1 in CSE-stimulated HBEs (CSE-HBEs), and knockdown of OSGIN1 reduced the expression of fibrosis indicators. Through the use of microRNA target prediction software and the Gene Expression Omnibus database, we predicted miRNAs that targeted OSGIN1 in COPD. Subsequently, real-time polymerase chain reaction and western blot analysis confirmed that PM2.5 modulated miR-654-5p to regulate OSGIN1 in CSE-HBEs. Western blot demonstrated that OSGIN1 induced autophagy, thereby exacerbating fibrosis in CSE-HBEs. In summary, our results suggest that PM2.5 upregulates OSGIN1 through inhibiting miR-654-5p, leading to increased autophagy and fibrosis in CSE-HBEs.
Collapse
Affiliation(s)
- Xiying Tang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huanhuan Zhu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meiyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huilin Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Xiao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Guanting Sun
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Xie X, Laster KV, Li J, Nie W, Yi YW, Liu K, Seong YS, Dong Z, Kim DJ. OSGIN1 is a novel TUBB3 regulator that promotes tumor progression and gefitinib resistance in non-small cell lung cancer. Cell Mol Life Sci 2023; 80:272. [PMID: 37646890 PMCID: PMC11071769 DOI: 10.1007/s00018-023-04931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Oxidative stress induced growth inhibitor 1 (OSGIN1) regulates cell death. The role and underlying molecular mechanism of OSGIN1 in non-small cell lung cancer (NSCLC) are uncharacterized. METHODS OSGIN1 expression in NSCLC samples was detected using immunohistochemistry and Western blotting. Growth of NSCLC cells and gefitinib-resistant cells expressing OSGIN1 or TUBB3 knockdown was determined by MTT, soft agar, and foci formation assays. The effect of OSGIN1 knockdown on in vivo tumor growth was assessed using NSCLC patient-derived xenograft models and gefitinib-resistant patient-derived xenograft models. Potentially interacting protein partners of OSGIN1 were identified using IP-MS/MS, immunoprecipitation, PLA, and Western blotting assays. Microtubule dynamics were explored by tubulin polymerization assay and immunofluorescence. Differential expression of signaling molecules in OSGIN1 knockdown cells was investigated using phospho-proteomics, KEGG analysis, and Western blotting. RESULTS We found that OSGIN1 is highly expressed in NSCLC tissues and is positively correlated with low survival rates and tumor size in lung cancer patients. OSGIN1 knockdown inhibited NSCLC cell growth and patient-derived NSCLC tumor growth in vivo. Knockdown of OSGIN1 strongly increased tubulin polymerization and re-established gefitinib sensitivity in vitro and in vivo. Additionally, knockdown of TUBB3 strongly inhibited NSCLC cell proliferation. Mechanistically, we found that OSGIN1 enhances DYRK1A-mediated TUBB3 phosphorylation, which is critical for inducing tubulin depolymerization. The results of phospho-proteomics and ontology analysis indicated that knockdown of OSGIN1 led to reduced propagation of the MKK3/6-p38 signaling axis. CONCLUSIONS We propose that OSGIN1 modulates microtubule dynamics by enhancing DYRK1A-mediated phosphorylation of TUBB3 at serine 172. Moreover, elevated OSGIN1 expression promotes NSCLC tumor growth and gefitinib resistance through the MKK3/6-p38 signaling pathway. Our findings unveil a new mechanism of OSGIN1 and provide a promising therapeutic target for NSCLC treatment in the clinic.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
- Graduate School of Convergence Medical Science, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China.
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- Department of Microbiology, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| |
Collapse
|
8
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
9
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
10
|
Oxidative Stress-Induced Growth Inhibitor (OSGIN1), a Target of X-Box-Binding Protein 1, Protects Palmitic Acid-Induced Vascular Lipotoxicity through Maintaining Autophagy. Biomedicines 2022; 10:biomedicines10050992. [PMID: 35625730 PMCID: PMC9138516 DOI: 10.3390/biomedicines10050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of spliced form of X-box-binding protein 1 (XBP1s) target gene oxidative stress-induced growth inhibitor 1 (OSGIN1) in PA-induced vascular dysfunction. PA inhibited the tube formation assay of primary human umbilical vein endothelial cells (HUVECs). Simultaneously, PA treatment induced the XBP1s expression in HUVECs. Attenuate the induction of XBP1s by silencing the XBP1s retarded cell migration and diminished endothelial nitric oxide synthase (eNOS) expression. OSGIN1 is a target gene of XBP1s under PA treatment. The silencing of OSGIN1 inhibits cell migration by decreasing phospho-eNOS expression. PA activated autophagy in endothelial cells, inhibiting autophagy by 3-methyladenine (3-MA) decreased endothelial cell migration. Silencing XBP1s and OSGIN1 would reduce the induction of LC3 II; therefore, OSGIN1 could maintain autophagy to preserve endothelial cell migration. In conclusion, PA treatment induced ER stress and activated the inositol-requiring enzyme 1 alpha–spliced XBP1 (IRE1α–XBP1s) pathway. OSGIN1, a target gene of XBP1s, could protect endothelial cells from vascular lipotoxicity by regulating autophagy.
Collapse
|
11
|
Tsai CH, Lii CK, Wang TS, Liu KL, Chen HW, Huang CS, Li CC. Docosahexaenoic acid promotes the formation of autophagosomes in MCF-7 breast cancer cells through oxidative stress-induced growth inhibitor 1 mediated activation of AMPK/mTOR pathway. Food Chem Toxicol 2021; 154:112318. [PMID: 34116103 DOI: 10.1016/j.fct.2021.112318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Docosahexaenoic acid (DHA) is known to regulate autophagy in cancer cells. We explored whether oxidative stress-induced growth inhibitor 1 (OSGIN1) is involved in the regulation of autophagy by DHA in breast cancer cells and the possible mechanisms involved. DHA upregulated the levels of OSGIN1, LC3-II and SQSTM1/p62. By contrast, DHA dose-dependently decreased the levels of mTOR and p-mTORS2448 expression. Using GFP/RFP-LC3 fluorescence staining, we showed that cells treated with DHA showed a dose-dependent response in autophagic signals. OSGIN1 Overexpression mimicked DHA treatment in that LC3-II and GFP/RFP-LC3 signals as well as the expression of p-AMPKαT172 and p-RaptorS792 were significantly increased, whereas mTOR, p-mTORS2448, and p-ULK1S757 expression were decreased. With knockdown of OSGIN1 expression, these outcomes were reversed. Moreover, OSGIN1 overexpression transiently elevated the accumulation of OSGIN1 and reactive oxygen species (ROS) in the mitochondrial fraction and subsequently increased p-AMPKαT172 and p-RaptorS792 expression. Upon pretreatment with Mito-TEMPO, a scavenger of mitochondrial ROS, these outcomes were reversed. Taken together, these results suggest that DHA can transiently elevate the generation of ROS in mitochondria and promote autophagosome formation through activation of the p-AMPKαT172/p-Raptor S792 and inactivation of the p-mTORS2448/p-ULK1Ser757 signaling pathways, and these effects depend on OSGIN1 protein in MCF-7 cells.
Collapse
Affiliation(s)
- Chia-Han Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Hojo H, Enya S, Arai M, Suzuki Y, Nojiri T, Kangawa K, Koyama S, Kawaoka S. Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget 2018; 8:34128-34140. [PMID: 28388556 PMCID: PMC5470956 DOI: 10.18632/oncotarget.16699] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.
Collapse
Affiliation(s)
- Hiroaki Hojo
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto, Japan
| | - Sora Enya
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto, Japan
| | - Miki Arai
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto, Japan.,The University of Tokyo, Graduate School of Frontier Science, Kashiwa, Japan
| | - Yutaka Suzuki
- The University of Tokyo, Graduate School of Frontier Science, Kashiwa, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan.,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Shinsuke Koyama
- Department of Statistical Modeling, Institute of Statistical Mathematics, Tokyo, Japan
| | - Shinpei Kawaoka
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto, Japan
| |
Collapse
|
13
|
Tsai CH, Shen YC, Chen HW, Liu KL, Chang JW, Chen PY, Lin CY, Yao HT, Li CC. Docosahexaenoic acid increases the expression of oxidative stress-induced growth inhibitor 1 through the PI3K/Akt/Nrf2 signaling pathway in breast cancer cells. Food Chem Toxicol 2017; 108:276-288. [DOI: 10.1016/j.fct.2017.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
14
|
Schmidt A, Bekeschus S, Jablonowski H, Barton A, Weltmann KD, Wende K. Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes. Biophys J 2017; 112:2397-2407. [PMID: 28591612 DOI: 10.1016/j.bpj.2017.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
A particularly promising medical application of cold physical plasma is the support of wound healing. This is presumably achieved by modulating inflammation as well as skin cell signaling and migration. Plasma-derived reactive oxygen and nitrogen species (ROS/RNS) are assumed the central biologically active plasma components. We hypothesized that modulating the environmental plasma conditions from pure nitrogen (N2) to pure oxygen (O2) in an atmospheric pressure argon plasma jet (kINPen) will change type and concentration of ROS/RNS and effectively tune the behavior of human skin cells. To investigate this, HaCaT keratinocytes were studied in vitro with regard to cell metabolism, viability, growth, gene expression signature, and cytokine secretion. Flow cytometry demonstrated only slight effects on cytotoxicity. O2 shielding provided stronger apoptotic effects trough caspase-3 activation compared to N2 shielding. Gene array technology revealed induction of signaling and communication proteins such as immunomodulatory interleukin 6 as well as antioxidative and proproliferative molecules (HMOX1, VEGFA, HBEGF, CSF2, and MAPK) in response to different plasma shielding gas compositions. Cell response was correlated to reactive species: oxygen-shielding plasma induces a cell response more efficiently despite an apparent decrease of hydrogen peroxide (H2O2), which was previously shown to be a major player in plasma-cell regulation, emphasizing the role of non-H2O2 ROS like singlet oxygen. Our results suggest differential effects of ROS- and RNS-rich plasma, and may have a role in optimizing clinical plasma applications in chronic wounds.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | | | - Annemarie Barton
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany; Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany
| |
Collapse
|
15
|
Hossy BH, da Costa Leitão AA, dos Santos EP, Matsuda M, Rezende LB, Rurr JSC, Pinto AV, Ramos-e-Silva M, de Pádula M, de Oliveira Miguel NC. Phototoxic assessment of a sunscreen formulation and its excipients: An in vivo and in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:545-550. [DOI: 10.1016/j.jphotobiol.2017.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022]
|
16
|
Wang G, Zhou H, Strulovici-Barel Y, Al-Hijji M, Ou X, Salit J, Walters MS, Staudt MR, Kaner RJ, Crystal RG. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy 2017; 13:1205-1220. [PMID: 28548877 DOI: 10.1080/15548627.2017.1301327] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enhanced macroautophagy/autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the airway epithelium to identify smoking upregulated genes known to respond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airway epithelium, an observation confirmed by an independent small airway microarray cohort, TaqMan PCR of large and small airway samples and RNA-Seq of small airway samples. High and low OSGIN1 expressors have different autophagy gene expression patterns in vivo. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes. In vitro cigarette smoke extract exposure of primary airway basal/progenitor cells was accompanied by a dose-dependent upregulation of OSGIN1 and autophagy induction. Lentivirus-mediated expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of MAP1LC3B and upregulation of MAP1LC3B mRNA and protein and SQSTM1 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome, amphisome and autolysosome formation was confirmed by colocalization of MAP1LC3B with SQSTM1 or CD63 (endosome marker) and LAMP1 (lysosome marker). Both OSGIN1 overexpression and knockdown enhanced the smoking-evoked autophagic response. Together, these observations support the concept that smoking-induced upregulation of OSGIN1 is one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.
Collapse
Affiliation(s)
- Guoqing Wang
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Haixia Zhou
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA.,b Department of Respiratory Medicine , West China Hospital Sichuan University , Sichuan , China
| | - Yael Strulovici-Barel
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Mohammed Al-Hijji
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA.,c Weill Cornell Medical College-Qatar , Doha , Qatar
| | - Xuemei Ou
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA.,b Department of Respiratory Medicine , West China Hospital Sichuan University , Sichuan , China
| | - Jacqueline Salit
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Matthew S Walters
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Michelle R Staudt
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Robert J Kaner
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA.,d Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Ronald G Crystal
- a Department of Genetic Medicine , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
17
|
Brennan MS, Matos MF, Richter KE, Li B, Scannevin RH. The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes. Sci Rep 2017; 7:42054. [PMID: 28181536 PMCID: PMC5299414 DOI: 10.1038/srep42054] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/04/2017] [Indexed: 01/10/2023] Open
Abstract
Dimethyl fumarate (DMF) is indicated for the treatment of relapsing multiple sclerosis and may exert therapeutic effects via activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway. Following oral DMF administration, central nervous system (CNS) tissue is predominantly exposed to monomethyl fumarate (MMF), the bioactive metabolite of DMF, which can stabilize NRF2 and induce antioxidant gene expression; however, the detailed NRF2-dependent mechanisms modulated by MMF that lead to cytoprotection are unknown. Our data identify a mechanism for MMF-mediated cytoprotection in human astrocytes that functions in an OSGIN1-dependent manner, specifically via upregulation of the OSGIN1-61 kDa isoform. NRF2-dependent OSGIN1 expression induced P53 nuclear translocation following MMF administration, leading to cell-cycle inhibition and cell protection against oxidative challenge. This study provides mechanistic insight into MMF-mediated cytoprotection via NRF2, OSGIN1, and P53 in human CNS-derived cells and contributes to our understanding of how DMF may act clinically to ameliorate pathological processes in neurodegenerative disease.
Collapse
Affiliation(s)
- Melanie S Brennan
- Neurology Research, Biogen Inc., Cambridge, MA, 02142, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria F Matos
- Neurology Research, Biogen Inc., Cambridge, MA, 02142, USA
| | - Karl E Richter
- Neurology Research, Biogen Inc., Cambridge, MA, 02142, USA
| | - Bing Li
- Neurology Research, Biogen Inc., Cambridge, MA, 02142, USA
| | | |
Collapse
|
18
|
Keßler J, Rot S, Bache M, Kappler M, Würl P, Vordermark D, Taubert H, Greither T. miR-199a-5p regulates HIF-1α and OSGIN2 and its expression is correlated to soft-tissue sarcoma patients' outcome. Oncol Lett 2016; 12:5281-5288. [PMID: 28101243 DOI: 10.3892/ol.2016.5320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. Partly due to hypoxia, an aggressive and radioresistant phenotype frequently develops, resulting in poorer patient outcome. microRNAs (miRNAs) are tiny, non-coding regulators of gene expression and in situations of cellular stress situations may predict clinical progression and patient outcome. In the present study, hypoxia-associated miR-199a-5p expression in 96 soft tissue sarcoma samples was analysed by reverse transcription-quantitative polymerase chain reaction and associations between miR-199a-5p expression and patient clinicopathological characteristics and survival were measured. Additionally, luciferase reporter assays analyzed the post-transcriptional regulation of hypoxia-associated genes hypoxia-inducible factor 1α (HIF-1α), oxidative stress induced growth inhibitor 2 (OSGIN2) and vascular endothelial growth factor (VEGF) by miR-199a-5p. Survival analyses indicated that low expression of miR-199a-5p was significantly correlated with poorer tumor-specific survival (univariate Cox's-Regression analyses; relative risk=1.92, P=0.029). Furthermore, it was demonstrated that the 3'UTR of HIF-1α and OSGIN2 genes were regulated by miR-199a-5p in-vitro, although the 3'UTR of VEGF was not. To the best of our knowledge, this is the first report demonstrating the regulation of the 3'untranslated region of the OSGIN2 gene by miR-199a-5p and a significant correlation between low miR-199a-5p expression and a poor outcome of patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Peter Würl
- Department of General and Visceral Surgery, Diakonie Hospital, D-06114 Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Helge Taubert
- Clinic of Urology, FA University Hospital Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Brennan MS, Patel H, Allaire N, Thai A, Cullen P, Ryan S, Lukashev M, Bista P, Huang R, Rhodes KJ, Scannevin RH. Pharmacodynamics of Dimethyl Fumarate Are Tissue Specific and Involve NRF2-Dependent and -Independent Mechanisms. Antioxid Redox Signal 2016; 24:1058-71. [PMID: 26980071 DOI: 10.1089/ars.2015.6622] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Gastro-resistant dimethyl fumarate (DMF) is an oral therapeutic indicated for the treatment of relapsing multiple sclerosis. Recent data suggest that a primary pharmacodynamic response to DMF treatment is activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway; however, the gene targets modulated downstream of NRF2 that contribute to DMF-dependent effects are poorly understood. RESULTS Using wild-type and NRF2 knockout mice, we characterized DMF transcriptional responses throughout the brain and periphery to understand DMF effects in vivo and to explore the necessity of NRF2 in this process. Our findings identified tissue-specific expression of NRF2 target genes as well as NRF2-dependent and -independent gene regulation after DMF administration. Furthermore, using gene ontology, we identified common biological pathways that may be regulated by DMF and contribute to in vivo functional effects. INNOVATION Together, these data suggest that DMF modulates transcription through multiple pathways, which has implications for the cytoprotective, immunomodulatory, and clinical properties of DMF. CONCLUSION These findings provide further understanding of the DMF mechanism of action and propose potential therapeutic targets that warrant further investigation for treating neurodegenerative diseases. Antioxid. Redox Signal. 24, 1058-1071.
Collapse
Affiliation(s)
- Melanie S Brennan
- 1 Neurology Research, Biogen, Inc., Cambridge, Massachusetts.,2 GPN, Boston University School of Medicine , Boston, Massachusetts
| | - Hiral Patel
- 1 Neurology Research, Biogen, Inc., Cambridge, Massachusetts
| | - Norm Allaire
- 3 Computational Biology, Biogen, Inc., Cambridge, Massachusetts
| | - Alice Thai
- 3 Computational Biology, Biogen, Inc., Cambridge, Massachusetts
| | - Patrick Cullen
- 3 Computational Biology, Biogen, Inc., Cambridge, Massachusetts
| | - Sarah Ryan
- 4 Immunology Research, Biogen, Inc., Cambridge, Massachusetts
| | - Matvey Lukashev
- 4 Immunology Research, Biogen, Inc., Cambridge, Massachusetts
| | - Pradeep Bista
- 4 Immunology Research, Biogen, Inc., Cambridge, Massachusetts
| | - Ron Huang
- 5 DMPK, Biogen, Inc., Cambridge, Massachusetts
| | | | | |
Collapse
|
20
|
Dai L, Cao Y, Chen Y, Kaleeba JAR, Zabaleta J, Qin Z. Genomic analysis of xCT-mediated regulatory network: Identification of novel targets against AIDS-associated lymphoma. Oncotarget 2016; 6:12710-22. [PMID: 25860939 PMCID: PMC4494968 DOI: 10.18632/oncotarget.3710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), a rapidly progressing malignancy mostly arising in HIV-infected patients. Even under conventional chemotherapy, PEL continues to portend nearly 100% mortality within several months, which urgently requires novel therapeutic strategies. We have previously demonstrated that targeting xCT, an amino acid transporter for cystine/glutamate exchange, induces significant PEL cell apoptosis through regulation of multiple host and viral factors. More importantly, one of xCT selective inhibitors, Sulfasalazine (SASP), effectively prevents PEL tumor progression in an immune-deficient xenograft model. In the current study, we use Illumina microarray to explore the profile of genes altered by SASP treatment within 3 KSHV+ PEL cell-lines, and discover that many genes involved in oxidative stress/antioxidant defense system, apoptosis/anti-apoptosis/cell death, and cellular response to unfolded proteins/topologically incorrect proteins are potentially regulated by xCT. We further validate 2 downstream candidates, OSGIN1 (oxidative stress-induced growth inhibitor 1) and XRCC5 (X-ray repair cross-complementing protein 5), and evaluate their functional relationship with PEL cell survival/proliferation and chemoresistance, respectively. Together, our data indicate that targeting these novel xCT-regulated downstream genes may represent a promising new therapeutic strategy against PEL and/or other AIDS-related lymphoma.
Collapse
Affiliation(s)
- Lu Dai
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of The Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Yueyu Cao
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of The Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Chen
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of The Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Johnan A R Kaleeba
- Department of Microbiology and Immunology, Uniformed Services University of The Health Sciences, Bethesda, MD, USA
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of The Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology/Immunology/Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, USA
| |
Collapse
|
21
|
Rodd AL, Ververis K, Sayakkarage D, Khan AW, Rafehi H, Ziemann M, Loveridge SJ, Lazarus R, Kerr C, Lockett T, El-Osta A, Karagiannis TC, Bennett LE. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells. Food Funct 2015; 6:2507-24. [PMID: 26114728 DOI: 10.1039/c5fo00467e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species.
Collapse
Affiliation(s)
- Annabelle L Rodd
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu M, Li Y, Chen L, Chan THM, Song Y, Fu L, Zeng TT, Dai YD, Zhu YH, Li Y, Chen J, Yuan YF, Guan XY. Allele-specific imbalance of oxidative stress-induced growth inhibitor 1 associates with progression of hepatocellular carcinoma. Gastroenterology 2014; 146:1084-96. [PMID: 24417816 DOI: 10.1053/j.gastro.2013.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/08/2013] [Accepted: 12/20/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Although there are a few highly penetrant mutations that are linked directly to cancer initiation, more less-penetrant susceptibility alleles have been associated with cancer risk and progression. We used RNA sequence analysis to search for genetic variations associated with pathogenesis of hepatocellular carcinoma (HCC). METHODS We analyzed 400 paired HCC and adjacent nontumor tissues, along with clinical information, from patients who underwent surgery at Sun Yat-Sen University in Guangzhou, China. Total RNA was extracted from tissues and sequenced, and variations with allele imbalance were identified. Effects of variants on cell functions were investigated in HCC cell lines and tumor xenografts in mice. Variants were associated with patient outcomes. RESULTS We found a high proportion of allele imbalance in genes related to cellular stress. A nucleotide variation in the Oxidative Stress-Induced Growth Inhibitor 1 (OSGIN1) gene (nt 1494: G-A) resulted in an amino acid substitution (codon 438: Arg-His). The variant form of OSGIN1 was specifically retained in the tumor tissues. Functional assays showed that the common form of OSGIN1 functioned as a tumor suppressor, sensitizing HCC cells to chemotherapeutic agents by inducing apoptosis. However, the variant form of OSGIN1 was less effective. It appeared to affect the translocation of OSGIN1 from the nucleus to mitochondria, which is important for its apoptotic function. The expression pattern and localization of OSGIN1 was altered in HCC specimens, compared with adjacent liver tissue. Levels of OSGIN1 messenger RNA were reduced in 24.7% of HCC specimens, and down-regulation was associated with shorter overall and disease-free survival times of patients. Patients with the OSGIN1 1494A variant had the shortest mean survival time (32.68 mo) among patient subgroups, and their tumor samples had the lowest apoptotic index. CONCLUSIONS We identified OSGIN1 as a tumor suppressor that is down-regulated or altered in human HCCs. Variants of OSGIN1 detected in HCC samples reduce apoptosis and are associated with shorter survival times of patients.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yangyang Song
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Li Fu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Dong Dai
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
23
|
Walesky C, Gunewardena S, Terwilliger EF, Edwards G, Borude P, Apte U. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G26-37. [PMID: 23104559 PMCID: PMC3543634 DOI: 10.1152/ajpgi.00064.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.
Collapse
Affiliation(s)
- Chad Walesky
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Sumedha Gunewardena
- 2Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Ernest F. Terwilliger
- 3Division of Experimental Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Genea Edwards
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Prachi Borude
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Udayan Apte
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
24
|
Hu J, Yao H, Gan F, Tokarski A, Wang Y. Interaction of OKL38 and p53 in regulating mitochondrial structure and function. PLoS One 2012; 7:e43362. [PMID: 22912861 PMCID: PMC3422280 DOI: 10.1371/journal.pone.0043362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/20/2012] [Indexed: 11/25/2022] Open
Abstract
The tumor suppressor p53 is a well-known transcription factor controlling the expression of its target genes involved in cell cycle and apoptosis. In addition, p53 also plays a direct proapoptotic role in mitochondria by regulating cytochrome c release. Recently, we identified a novel downstream target of p53, OKL38, which relocalizes from nucleus to mitochondria upon forced expression to induce apoptosis. However, the mechanism underlying OKL38 targeting to mitochondria and apoptosis induction remains unclear. Here, we found that OKL38 interacts with p53 to regulate mitochondria function. After DNA damage, OKL38 colocalizes with p53 to mitochondria in U2OS cells. Further, p53 and OKL38 are targeted to mitochondria in synergy: forced expression of OKL38 leads to p53 localization to mitochondria while the expression of a mitochondria enriched p53 polymorphic variant, p53R72, leads to OKL38 enrichment in mitochondria. Biochemical analyses found that OKL38 and p53 interact in vivo and in vitro via multiple domains. In cell biological assays, multiple regions of OKL38 mediate its mitochondria localization and induce mitochondria morphology changes. OKL38 induces formation of megamitochondria and increases cellular levels of reactive oxygen species. Furthermore, OKL38 induces cytochrome c release upon incubation with mitochondria. Taken together, our studies suggest that OKL38 regulates mitochondria morphology and functions during apoptosis together with p53.
Collapse
Affiliation(s)
- Jing Hu
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hongjie Yao
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anthony Tokarski
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yanming Wang
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Yu W, Chan-On W, Teo M, Ong CK, Cutcutache I, Allen GE, Wong B, Myint SS, Lim KH, Voorhoeve PM, Rozen S, Soo KC, Tan P, Teh BT. First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum. Genome Biol 2011; 12:R96. [PMID: 21955916 PMCID: PMC3308059 DOI: 10.1186/gb-2011-12-9-r96] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/09/2011] [Accepted: 09/28/2011] [Indexed: 12/05/2022] Open
Abstract
Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1.
Collapse
Affiliation(s)
- Willie Yu
- NCCS-VARI Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 2010; 56:1145-54. [DOI: 10.1016/j.toxicon.2010.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/31/2010] [Accepted: 04/25/2010] [Indexed: 11/20/2022]
|
27
|
Analysis of genomic profile in mouse lymphoma L5178Y cells exposed to food colorant gardenia yellow. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4405-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF, Wang Y. Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 2008; 283:20060-8. [PMID: 18499678 PMCID: PMC2459274 DOI: 10.1074/jbc.m802940200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/21/2008] [Indexed: 11/06/2022] Open
Abstract
Protein Arg methyltransferases function as coactivators of the tumor suppressor p53 to regulate gene expression. Peptidylarginine deiminase 4 (PAD4/PADI4) counteracts the functions of protein Arg methyltransferases in gene regulation by deimination and demethylimination. Here we show that the expression of a tumor suppressor gene, OKL38, is activated by the inhibition of PAD4 or the activation of p53 following DNA damage. Chromatin immunoprecipitation assays showed a dynamic change of p53 and PAD4 occupancy and histone Arg modifications at the OKL38 promoter during DNA damage, suggesting a direct role of PAD4 and p53 in the expression of OKL38. Furthermore, we found that OKL38 induces apoptosis through localization to mitochondria and induction of cytochrome c release. Together, our studies identify OKL38 as a novel p53 target gene that is regulated by PAD4 and plays a role in apoptosis.
Collapse
Affiliation(s)
- Hongjie Yao
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Takahashi M, Shibutani M, Woo GH, Inoue K, Fujimoto H, Igarashi K, Kanno J, Hirose M, Nishikawa A. Cellular distributions of molecules with altered expression specific to the tumor promotion process from the early stage in a rat two-stage hepatocarcinogenesis model. Carcinogenesis 2008; 29:2218-26. [PMID: 18586688 DOI: 10.1093/carcin/bgn135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A global gene expression profiling specific to the early process of tumor promotion by fenbendazole (FB) or phenobarbital (PB) in a rat two-stage hepatocarcinogenesis model revealed 33 genes to show altered expression in common with both chemicals. The immunohistochemical distribution of transferrin receptor (Tfrc), nuclear receptor subfamily 0, group B, member 2 (Nr0b2) and minichromosome maintenance deficient 6 (MCM6), included in the altered expression profile, were therefore examined in FB- and PB-induced proliferative lesions at both early and late stages of tumor promotion. In addition, immunoexpression of transforming growth factor beta receptor (TGFbetaR) I, TGFbetaRII, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and phosphorylated phosphatase and tensin homolog deleted on chromosome 10 (pPTEN) was also examined. In the early stage, most hepatocellular foci positive for glutathione S-transferase placental form (GST-P) showed co-expression of TGFbetaRI and lack of PTEN and pPTEN, some GST-P-positive foci co-expressing Tfrc and Nr0b2. In the late stage, selective expression of TGFbetaRI, but not TGFbetaRII, was also observed in many adenomas and carcinomas consistently expressing GST-P. Nr0b2 was variably expressed in the proliferative lesions, irrespective of the carcinogenic stage. Like the GST-P-positive foci, adenomas and carcinomas consistently lacked PTEN and pPTEN. Expression of Tfrc and MCM6 was increased in parallel with the carcinogenic stage. In conclusion, loss of PTEN and dysregulation of transforming growth factor beta signaling can be considered to be involved in rat hepatocarcinogenesis from early stages. Selective expression of Tfrc in proliferative lesions suggests an involvement of changes in iron homeostasis during the process of tumor promotion/progression driven by FB or PB.
Collapse
Affiliation(s)
- Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ong CK, Leong C, Tan PH, Van T, Huynh H. The role of 5′ untranslated region in translational suppression of OKL38 mRNA in hepatocellular carcinoma. Oncogene 2006; 26:1155-65. [PMID: 16924236 DOI: 10.1038/sj.onc.1209896] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide. OKL38 is a pregnancy-induced growth inhibitory gene and its expression is lost in various breast cancer cell lines and kidney tumor. To determine the role of OKL38 expression in HCC, we investigated its expression in various HCC samples and liver cancer cell lines. Western blot analysis revealed that OKL38 protein was absent or reduced in 64.2% (18 of 28) of the HCCs examined and four liver cancer cell lines. Immunohistochemistry study demonstrated that OKL38 protein was undetectable in 41.3% (38 of 92) of HCC, whereas 39.1% (36 of 92) of HCC showed low expression of the protein. Lost or reduced expression level of OKL38 protein was significantly correlated to high tumor stages in HCC (P=0.0042). Overexpression of the OKL38 caused cell death in Chang liver cells. 5' Untranslated region (5'UTR) deletion studies demonstrated that OKL38 was downregulated via translation suppression associated with the 5'UTR of its mRNA. Taken together, the 5'UTRs of OKL38 might play an important role in downregulation of its protein and the absence of OKL38 could lead to the development or progression of HCC.
Collapse
Affiliation(s)
- C K Ong
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, National Cancer Centre of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
31
|
Abstract
Using differential display methodology, we isolated a tamoxifen-regulated cDNA. This cDNA was identical to the ps20 cDNA isolated from urogenital sinus mesenchymal cells. ps20 expression was detected in various female rat tissues, with the highest expression in lung and heart. ps20 transcripts were low during estrus and proestrus, but high during the diestrous stage of the estrous cycle coincident with estrogen-induced uterine cell proliferation. Treatment of ovary-intact or ovariectomized rats with estrogens or tamoxifen resulted in increased uterine weight and decreased ps20 expression. Uterine involution associated with ovariectomy or antiestrogen treatment led to up-regulation of ps20. Antibody against rat ps20 recognized the native rat ps20 in conditioned medium of primary rat uterine cells and stable ps20-transfected MCF-7 cells with molecular masses of approximately 24, 27, and 29 kDa. In primary rat uterine cells, ps20 secretion was enhanced by ICI 182,780, but was inhibited by estrogens and tamoxifen. Immunohistochemistry revealed that ps20 was localized to smooth muscle and luminal epithelial cells as well as the glandular population of uterine tissue. Conditioned medium derived from ps20-transfected MCF-7 cells, but not Escherichia coli recombinant ps20, exhibited mild growth suppression on PC-3 cells. The data indicate that ps20 expression is negatively regulated by estrogens and tamoxifen and suggest that ps20 may function as a mediator of local growth.
Collapse
Affiliation(s)
- Huynh Hung
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, National Cancer Center of Singapore, Singapore 169610.
| |
Collapse
|
32
|
Wang T, Xia D, Li N, Wang C, Chen T, Wan T, Chen G, Cao X. Bone marrow stromal cell-derived growth inhibitor inhibits growth and migration of breast cancer cells via induction of cell cycle arrest and apoptosis. J Biol Chem 2004; 280:4374-82. [PMID: 15569677 DOI: 10.1074/jbc.m408708200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genes encoding growth-inhibitory proteins are postulated to be candidate tumor suppressors. The identification of such proteins may benefit the early diagnosis and therapy of tumors. Here we report the cloning and functional characterization of a novel human bone marrow stromal cell (BMSC)-derived growth inhibitor (BDGI) by large scale random sequencing of a human BMSC cDNA library. Human BDGI cDNA encodes a 477-amino acid residue protein that shares high homology with rat and mouse pregnancy-induced growth inhibitors. The C-terminal of BDGI is identical to a novel human pregnancy-induced growth inhibitor, OKL38. BDGI is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved family of BDGI-like proteins. BDGI overexpression inhibits the proliferation, decreases anchorage-dependent growth, and reduces migration of MCF-7 human breast cancer cells, whereas down-regulation of BDGI expression promotes the proliferation of MCF-7 and HeLa cervix epitheloid carcinoma cells. Interestingly, the inhibitory effect of BDGI on MCF-7 cells is more potent than that of OKL38. We demonstrate that BDGI induces cell cycle arrest in S phase and subsequent apoptosis of MCF-7 cells, which is likely to account for the antiproliferative effects of BDGI. This process may involve up-regulation of p27Kip1 and down-regulation of cyclin A, Bcl-2, and Bcl-xL. The inhibitory effect of BDGI on cell proliferation and the induction of apoptosis were also observed in A549 lung cancer cells but not HeLa cells. These results indicate that BDGI might be a growth inhibitor for human tumor cells, especially breast cancer cells, possibly contributing to the development of new therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Immunology, Zhejiang University, Hangzhou 310031, China and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ong CK, Ng CY, Leong C, Ng CP, Ong CS, Nguyen TTT, Huynh H. Structural characterization of three novel rat OKL38 transcripts, their tissue distributions, and their regulation by human chorionic gonadotropin. Endocrinology 2004; 145:4763-74. [PMID: 15217983 DOI: 10.1210/en.2004-0446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously identified a novel pregnancy-induced growth inhibitory gene, OKL38. To develop a rat model for further characterization of OKL38's role in the initiation and progression of breast and ovarian cancer, we now report the cloning and characterization of three novel rat OKL38 cDNAs that are derived through alternative splicing and differential promoter usage. These three transcripts differ in their 5' untranslated regions but share a common open reading frame that encoded for a 52-kDa protein. OKL38 is mapped to chromosome 19, spanning a region of approximately 15 kb, and contains eight exons. Differential expression of these three rat OKL38 transcripts was observed in liver, kidney, ovary, mammary gland, and uterus. In situ hybridization localized the rat OKL38 transcripts to the luminal epithelial cells of the rat mammary gland and to the granulosa cells in the rat ovary. In vivo studies showed that the RtOKL38-2.0 transcript and protein were regulated by human chorionic gonadotropin in the rat mammary gland and ovary. Importantly, overexpression of RtOKL38-enhanced green fluorescence protein fusion protein in Buffalo rat liver cells resulted in growth inhibition and cell death. Our present findings suggest that OKL38 may function as an effector for human chorionic gonadotropin protection against mammary carcinogenesis, and the availability of the three rat OKL38 cDNAs may help to elucidate the possible role of OKL38 in cellular growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- Choon Kiat Ong
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, National Cancer Centre of Singapore, 11 Hospital Drive, Singapore 169610
| | | | | | | | | | | | | |
Collapse
|