1
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Ma X, Prokopenko D, Wang N, Aikawa T, Choi Y, Zhang C, Lei D, Ren Y, Kawatani K, Starling SC, Perkerson RB, Roy B, Quintero AC, Parsons TM, Pan Y, Li Z, Wang M, Bao H, Han X, Bu G, Tanzi RE, Kanekiyo T. Alzheimer's disease risk ABCA7 p.A696S variant disturbs the microglial response to amyloid pathology in mice. Neurobiol Dis 2025; 206:106813. [PMID: 39880319 PMCID: PMC11884743 DOI: 10.1016/j.nbd.2025.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.A696S variant that was substantially segregated with the development of AD in 3 African American families. Using the knockin mouse model, we investigated the effects of ABCA7-A696S substitution on amyloid pathology and brain immune response in 5xFAD transgenic mice. Importantly, our study demonstrated that ABCA7-A696S substitution reduces amyloid plaque-associated microgliosis and increases dystrophic neurites around amyloid deposits compared to control mice. We also found increased X-34-positive amyloid plaque burden in 5xFAD mice with ABCA7-A696S substitution, while there was no evident difference in insoluble Aβ levels between mouse groups. Thus, ABCA7-A696S substitution may disrupt amyloid compaction resulting in aggravated neuritic dystrophy due to insufficient microglia barrier function. In addition, we observed that ABCA7-A696S substitution disturbs the induction of proinflammatory cytokines interleukin 1β and interferon γ in the brains of 5xFAD mice, although some disease-associated microglia gene expression, including Trem2 and Tyrobp, are upregulated. Lipidomics also detected higher total lysophosphatidylethanolamine levels in the brains of 5xFAD mice with ABCA7-A696S substitution than controls. These results suggest that ABCA7-A696S substitution might compromise the adequate innate immune response to amyloid pathology in AD by modulating brain lipid metabolism, providing novel insight into the pathogenic mechanisms mediated by ABCA7. ONE SENTENCE SUMMARY: A rare Alzheimer's disease risk ABCA7 p.A696S variant compromises microglial response to amyloid pathology.
Collapse
Affiliation(s)
- Xiaoye Ma
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ni Wang
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tomonori Aikawa
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Dan Lei
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yingxue Ren
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keiji Kawatani
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Skylar C Starling
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ralph B Perkerson
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Astrid C Quintero
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tammee M Parsons
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yining Pan
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Zonghua Li
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanmei Bao
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Guojun Bu
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Takahisa Kanekiyo
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
3
|
Ogasawara F, Ueda K. ABCA1-mediated nascent HDL formation is precisely regulated by the plasma membrane cholesterol. J Lipid Res 2025; 66:100762. [PMID: 39978466 PMCID: PMC11957670 DOI: 10.1016/j.jlr.2025.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025] Open
Abstract
Intracellular cholesterol transport is essential for maintaining cellular cholesterol homeostasis. ATP-binding cassette A1 (ABCA1) continuously moves cholesterol from the inner leaflet to the outer leaflet of the plasma membrane (PM) to maintain low inner leaflet cholesterol levels. When PM inner leaflet cholesterol levels exceed ER cholesterol levels, which are maintained at approximately 5 mol% by the complex of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP), Aster-A/GramD1a transports the excess cholesterol to the ER. Furthermore, ABCA1 removes excess PM cholesterol by promoting its efflux as nascent high-density lipoprotein (HDL) particles. Thus, cellular cholesterol homeostasis is maintained by the coordinated action of SCAP-SREBP, Aster-A/GramD1a, and ABCA1. While the regulation of SCAP-SREBP and Aster-A/GramD1a is well-understood, the mechanism governing ABCA1 activity remains less understood. In this study, we investigated the impact of PM cholesterol levels on ABCA1-mediated cholesterol and phosphatidylcholine (PC) efflux. Cells were treated with various concentrations of methyl-β-cyclodextrin (MβCD) or MβCD-cholesterol for 30 min to modulate PM cholesterol levels. We found that the initial velocities of both cholesterol and PC efflux were dependent solely on PM cholesterol levels, despite both being substrates for ABCA1. Intriguingly, when PM cholesterol levels dropped below 70% of the level observed in cells cultured in the presence of 10% FBS, both cholesterol and PC efflux ceased, even in the presence of abundant PC in the PM. Our findings suggest that ABCA1-mediated nascent HDL formation is precisely regulated to maintain optimal PM cholesterol levels.
Collapse
Affiliation(s)
- Fumihiko Ogasawara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Prakash P, Randolph CE, Walker KA, Chopra G. Lipids: Emerging Players of Microglial Biology. Glia 2025; 73:657-677. [PMID: 39688320 PMCID: PMC11784843 DOI: 10.1002/glia.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Lipids are small molecule immunomodulators that play critical roles in maintaining cellular health and function. Microglia, the resident immune cells of the central nervous system, regulate lipid metabolism both in the extracellular environment and within intracellular compartments through various mechanisms. For instance, glycerophospholipids and fatty acids interact with protein receptors on the microglial surface, such as the Triggering Receptor Expressed on Myeloid Cells 2, influencing cellular functions like phagocytosis and migration. Moreover, cholesterol is essential not only for microglial survival but, along with other lipids such as fatty acids, is crucial for the formation, function, and accumulation of lipid droplets, which modulate microglial activity in inflammatory diseases. Other lipids, including acylcarnitines and ceramides, participate in various signaling pathways within microglia. Despite the complexity of the microglial lipidome, only a few studies have investigated the effects of specific lipid classes on microglial biology. In this review, we focus on major lipid classes and their roles in modulating microglial function. We also discuss novel analytical techniques for characterizing the microglial lipidome and highlight gaps in current knowledge, suggesting new directions for future research on microglial lipid biology.
Collapse
Affiliation(s)
- Priya Prakash
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Neuroscience Institute, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug Discovery, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue UniversityWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare Engineering, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
5
|
Simon TW, Ginsburg B, Javors MA, Hill-Kapturczak N, Lopez-Crusan M, Stark H, Dougherty DM, Roache JD. Calibration and evaluation of a refined pharmacokinetic model for three homologs of phosphatidylethanol. Chem Biol Interact 2025; 408:111414. [PMID: 39914503 DOI: 10.1016/j.cbi.2025.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
The use of phosphatidylethanol (PEth) as a biomarker for alcohol consumption is increasing likely due to its relatively long half-life in blood. Here, we present a pharmacokinetic model for three common homologs of PEth based on concentrations of each observed in a 5-day study of daily alcohol consumption. Adult participants were 11 females and 6 males with a median age of 32 years and median BMI of 24.3, all of whom drank on 1 or more days per week with at least 1 day per month of "heavy" drinking and also free from psychiatric disorders. All participants were abstinent for one week prior to beginning the study. The overall goals of this modeling effort are the use of PEth for assessment of alcohol consumption behavior and better understanding of the biological mechanisms underlying PEth pharmacokinetics. The modeling presented encompasses both the calibration of the pharmacokinetic model from daily individual PEth measurements and the prediction of model parameters in the study population with a regression model. The overall model was then evaluated by comparison of predicted PEth levels in blood with those measured in several groups of subjects in controlled drinking experiments. The results of this modeling effort indicate that the model can predict PEth concentrations in blood from alcohol consumption albeit with high variability both between individuals and within a single individual between drinking occasions. These results suggest the possible need to refine currently used cutoffs used in clinical and forensic contexts to predict alcohol consumption amounts. (249 words).
Collapse
Affiliation(s)
| | - Brett Ginsburg
- University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | - Haidyn Stark
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - John D Roache
- University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Garliyev V, Lyssenko CA, Wiener JP, Praticò D, Lyssenko NN. Very low levels of ABCA7 in the cerebrum and Alzheimer's disease onset between the ages of 60 and 80 independently of APOE. J Neuropathol Exp Neurol 2024; 83:808-821. [PMID: 38900184 DOI: 10.1093/jnen/nlae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
This cross-sectional study addressed the ABCA7-Alzheimer's disease (AD) association. ABCA7 protein levels were quantified in 3 cerebral regions of brain donors with Braak neurofibrillary tangle (NFT) stages 0-V. Ordinal regression models were implemented to estimate the effect of ABCA7 on stopping in an earlier Braak NFT stage versus progressing to the later stages in 2 prespecified age segments. In the final model, high ABCA7 levels in the parietal cortex increased the odds of remaining cognitively healthy (ie, in stages 0/I) versus experiencing AD onset (ie, progressing to stages II-V) in the 61-80 age segment (OR = 2.87, adj 95% CI = 1.41-7.86, adj P = .007, n = 109), after controlling for APOE and other covariates. No ABCA7-AD association was found in the 81-98 age segment (n = 113). Parietal ABCA7 levels in 61-80-year-old with stages II-V were very low, even significantly lower than in 81-98-year-old with stages II-V. ABCA7 levels in the prefrontal cortex and hippocampus predicted AD onset in the 61-80 age segment after adjustment for APOE. ABCA7 levels were also the lowest in 61-80-year-old with frequent neuritic plaques. Thus, very low ABCA7 levels in the cerebrum are associated with AD onset in the 7th-8th decade of life.
Collapse
Affiliation(s)
- Viktor Garliyev
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine A Lyssenko
- Office of Institutional Research & Analysis, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel P Wiener
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nicholas N Lyssenko
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Butler CA, Mendoza Arvilla A, Milinkeviciute G, Da Cunha C, Kawauchi S, Rezaie N, Liang HY, Javonillo D, Thach A, Wang S, Collins S, Walker A, Shi K, Neumann J, Gomez‐Arboledas A, Henningfield CM, Hohsfield LA, Mapstone M, Tenner AJ, LaFerla FM, Mortazavi A, MacGregor GR, Green KN. The Abca7 V1613M variant reduces Aβ generation, plaque load, and neuronal damage. Alzheimers Dement 2024; 20:4914-4934. [PMID: 38506634 PMCID: PMC11247689 DOI: 10.1002/alz.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/21/2024]
Abstract
BACKGROUND Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aβ) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aβ-associated inflammation, gliosis, and neuronal damage. DISCUSSION Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aβ pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.
Collapse
Affiliation(s)
- Claire A. Butler
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adrian Mendoza Arvilla
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Narges Rezaie
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Heidi Y. Liang
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dominic Javonillo
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Annie Thach
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kai‐Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Angela Gomez‐Arboledas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Lindsay A. Hohsfield
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Mark Mapstone
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Molecular Biology & BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ali Mortazavi
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
9
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
10
|
Duchateau L, Wawrzyniak N, Sleegers K. The ABC's of Alzheimer risk gene ABCA7. Alzheimers Dement 2024; 20:3629-3648. [PMID: 38556850 PMCID: PMC11095487 DOI: 10.1002/alz.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Alzheimer's disease (AD) is a growing problem worldwide. Since ABCA7's identification as a risk gene, it has been extensively researched for its role in the disease. We review its recently characterized structure and what the mechanistic insights teach us about its function. We furthermore provide an overview of identified ABCA7 mutations, their presence in different ancestries and protein domains and how they might cause AD. For ABCA7 PTC variants and a VNTR expansion, haploinsufficiency is proposed as the most likely mode-of-action, although splice events could further influence disease risk. Overall, the need to better understand expression of canonical ABCA7 and its isoforms in disease is indicated. Finally, ABCA7's potential functions in lipid metabolism, phagocytosis, amyloid deposition, and the interplay between these three, is described. To conclude, in this review, we provide a comprehensive overview and discussion about the current knowledge on ABCA7 in AD, and what research questions remain. HIGHLIGHTS: Alzheimer's risk-increasing variants in ABCA7 can be found in up to 7% of AD patients. We review the recently characterized protein structure of ABCA7. We present latest insights in genetics, expression patterns, and functions of ABCA7.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease group, VIB‐UAntwerp Center for Molecular NeurologyWilrijkAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpWilrijkAntwerpBelgium
| | - Nicole Wawrzyniak
- Complex Genetics of Alzheimer's Disease group, VIB‐UAntwerp Center for Molecular NeurologyWilrijkAntwerpBelgium
- Chávez‐Gutiérrez Lab, VIB‐KU Leuven Center for Brain and Disease Research, VIBLeuvenBelgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease group, VIB‐UAntwerp Center for Molecular NeurologyWilrijkAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpWilrijkAntwerpBelgium
| |
Collapse
|
11
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
12
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Kong F, Wu T, Dai J, Cai J, Zhai Z, Zhu Z, Xu Y, Sun T. Knowledge domains and emerging trends of Genome-wide association studies in Alzheimer's disease: A bibliometric analysis and visualization study from 2002 to 2022. PLoS One 2024; 19:e0295008. [PMID: 38241287 PMCID: PMC10798548 DOI: 10.1371/journal.pone.0295008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive and behavioral function. Studies have shown that genetic factors are one of the main causes of AD risk. genome-wide association study (GWAS), as a novel and effective tool for studying the genetic risk of diseases, has attracted attention from researchers in recent years and a large number of studies have been conducted. This study aims to summarize the literature on GWAS in AD by bibliometric methods, analyze the current status, research hotspots and future trends in this field. METHODS We retrieved articles on GWAS in AD published between 2002 and 2022 from Web of Science. CiteSpace and VOSviewer software were applied to analyze the articles for the number of articles published, countries/regions and institutions of publication, authors and cited authors, highly cited literature, and research hotspots. RESULTS We retrieved a total of 2,751 articles. The United States had the highest number of publications in this field, and Columbia University was the institution with the most published articles. The identification of AD-related susceptibility genes and their effects on AD is one of the current research hotspots. Numerous risk genes have been identified, among which APOE, CLU, CD2AP, CD33, EPHA1, PICALM, CR1, ABCA7 and TREM2 are the current genes of interest. In addition, risk prediction for AD and research on other related diseases are also popular research directions in this field. CONCLUSION This study conducted a comprehensive analysis of GWAS in AD and identified the current research hotspots and research trends. In addition, we also pointed out the shortcomings of current research and suggested future research directions. This study can provide researchers with information about the knowledge structure and emerging trends in the field of GWAS in AD and provide guidance for future research.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Duchateau L, Küҫükali F, De Roeck A, Wittens MMJ, Temmerman J, Weets I, Timmers M, Engelborghs S, Bjerke M, Sleegers K. CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response. Alzheimers Res Ther 2023; 15:195. [PMID: 37946268 PMCID: PMC10634183 DOI: 10.1186/s13195-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aβ1-42, Aβ1-40, P-tau181, T-tau, sAPPα, sAPPβ, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aβ ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS Carriers of ABCA7 expansion mutations had significantly lower Aβ1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aβ1-40 (P = 0.023), sAPPα (P = 0.047), sAPPβ (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Fahri Küҫükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Arne De Roeck
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Present Address: Argenx, Ghent, Belgium
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Joke Temmerman
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Ilse Weets
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Experimental Pharmacology (EFAR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium.
| |
Collapse
|
16
|
Wiener JP, Desire S, Garliyev V, Lyssenko III N, Praticò D, Lyssenko NN. Down-Regulation of ABCA7 in Human Microglia, Astrocyte and THP-1 Cell Lines by Cholesterol Depletion, IL-1β and TNFα, or PMA. Cells 2023; 12:2143. [PMID: 37681876 PMCID: PMC10486366 DOI: 10.3390/cells12172143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-β-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1β and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1β and TNFα inflammatory responses in human microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Singh A, Kukal S, Kanojia N, Singh M, Saso L, Kukreti S, Kukreti R. Lipid Mediated Brain Disorders: A Perspective. Prostaglandins Other Lipid Mediat 2023; 167:106737. [PMID: 37086954 DOI: 10.1016/j.prostaglandins.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
The brain, one of the most resilient organs of the body is highly enriched in lipid content, suggesting the essential role of lipids in brain physiological activities. Lipids constitute an important structural part of the brain and act as a rich source of metabolic energy. Besides, lipids in their bioactive form (known as bioactive lipids) play an essential signaling and regulatory role, facilitating neurogenesis, synaptogenesis, and cell-cell communication. Brain lipid metabolism is thus a tightly regulated process. Any alteration/dysregulation of lipid metabolism greatly impact brain health and activity. Moreover, since central nervous system (CNS) is the most metabolically active system and lacks an efficient antioxidative defence system, it acts as a hub for the production of reactive oxygen species (ROS) and subsequent lipid peroxidation. These peroxidation events are reported during pathological changes such as neuronal tissue injury and inflammation. Present review is a modest attempt to gain insights into the role of dysregulated bioactive lipid levels and lipid oxidation status in the pathogenesis and progression of neurodegenerative disorders. This may open up new avenues exploiting lipids as the therapeutic targets for improving brain health, and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India; Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Mahak Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
| |
Collapse
|
19
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
21
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
22
|
Iqbal J, Suarez MD, Yadav PK, Walsh MT, Li Y, Wu Y, Huang Z, James AW, Escobar V, Mokbe A, Brickman AM, Luchsinger JA, Dai K, Moreno H, Hussain MM. ATP-binding cassette protein ABCA7 deficiency impairs sphingomyelin synthesis, cognitive discrimination, and synaptic plasticity in the entorhinal cortex. J Biol Chem 2022; 298:102411. [PMID: 36007616 PMCID: PMC9513280 DOI: 10.1016/j.jbc.2022.102411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
Sphingomyelin (SM) is an abundant plasma membrane and plasma lipoprotein sphingolipid. We previously reported that ATP-binding cassette family A protein 1 (ABCA1) deficiency in humans and mice decreases plasma SM levels. However, overexpression, induction, downregulation, inhibition, and knockdown of ABCA1 in human hepatoma Huh7 cells did not decrease SM efflux. Using unbiased siRNA screening, here, we identified that ABCA7 plays a role in the biosynthesis and efflux of SM without affecting cellular uptake and metabolism. Since loss of function mutations in the ABCA7 gene exhibit strong associations with late-onset Alzheimer's disease across racial groups, we also studied the effects of ABCA7 deficiency in the mouse brain. Brains of ABCA7-deficient (KO) mice, compared with WT, had significantly lower levels of several SM species with long chain fatty acids. In addition, we observed that older KO mice exhibited behavioral deficits in cognitive discrimination in the active place avoidance task. Next, we performed synaptic transmission studies in brain slices obtained from older mice. We found anomalies in synaptic plasticity at the intracortical synapse in layer II/III of the lateral entorhinal cortex but not in the hippocampal CA3-CA1 synapses in KO mice. These synaptic abnormalities in KO brain slices were rescued with extracellular SM supplementation but not by supplementation with phosphatidylcholine. Taken together, these studies identify a role of ABCA7 in brain SM metabolism and the importance of SM in synaptic plasticity and cognition, as well as provide a possible explanation for the association between ABCA7 and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA; King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Manuel D Suarez
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, and Kings County Hospital, Brooklyn, New York, USA
| | - Pradeep K Yadav
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Meghan T Walsh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Yimeng Li
- Institute of Mental Health, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyang Wu
- Institute of Mental Health, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengwei Huang
- Institute of Mental Health, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Antonisamy William James
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Victor Escobar
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, and Kings County Hospital, Brooklyn, New York, USA
| | - Ashwag Mokbe
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, and Kings County Hospital, Brooklyn, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Kezhi Dai
- Institute of Mental Health, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China; School of Mental Health, Wenzhou Medical University, Wenzhou, China.
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, and Kings County Hospital, Brooklyn, New York, USA.
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA; Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA.
| |
Collapse
|
23
|
Decoding Functional High-Density Lipoprotein Particle Surfaceome Interactions. Int J Mol Sci 2022; 23:ijms23169506. [PMID: 36012766 PMCID: PMC9409371 DOI: 10.3390/ijms23169506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the molecular level. During HDL’s journey throughout the body, its functions are mediated through interactions with cell surface receptors on different cell types. To characterize and better understand the functional interplay between HDL particles and tissue, we analyzed the surfaceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (auto-CSC) and HATRIC-based ligand–receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL receptor scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors representing potential HDL interaction candidates. Since vascular endothelial growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the auto-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 additional receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated receptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor tyrosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.
Collapse
|
24
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
25
|
Picataggi A, Rodrigues A, Cromley DA, Wang H, Wiener JP, Garliyev V, Billheimer JT, Grabiner BC, Hurt JA, Chen AC, Han X, Rader DJ, Praticò D, Lyssenko NN. Specificity of ABCA7-mediated cell lipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159157. [PMID: 35381375 PMCID: PMC9058236 DOI: 10.1016/j.bbalip.2022.159157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022]
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3-5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.
Collapse
Affiliation(s)
- Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amrith Rodrigues
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debra A Cromley
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hu Wang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Joel P Wiener
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Viktor Garliyev
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jeffrey T Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nicholas N Lyssenko
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
26
|
Stage E, Risacher SL, Lane KA, Gao S, Nho K, Saykin AJ, Apostolova LG. Association of the top 20 Alzheimer's disease risk genes with [ 18F]flortaucipir PET. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12308. [PMID: 35592828 PMCID: PMC9092485 DOI: 10.1002/dad2.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 04/12/2023]
Abstract
Introduction We previously reported genetic associations of the top Alzheimer's disease (AD) risk alleles with amyloid deposition and neurodegeneration. Here, we report the association of these variants with [18F]flortaucipir standardized uptake value ratio (SUVR). Methods We analyzed the [18F]flortaucipir scans of 352 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 54 dementia (DEM) participants from Alzheimer's Disease Neuroimaging Initiative (ADNI)2 and 3. We ran step-wise regression with log-transformed [18F]flortaucipir meta-region of interest SUVR as the outcome measure and genetic variants, age, sex, and apolipoprotein E (APOE) ε4 as predictors. The results were visualized using parametric mapping at familywise error cluster-level-corrected P < .05. Results APOE ε4 showed significant (P < .05) associations with tau deposition across all disease stages. Other significantly associated genes include variants in ABCA7 in CN, CR1 in MCI, BIN1 and CASS4 in MCI and dementia participants. Discussion We found significant associations to tau deposition for ABCA7, BIN1, CASS4, and CR1, in addition to APOE ε4. These four variants have been previously associated with tau metabolism through model systems.
Collapse
Affiliation(s)
- Eddie Stage
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kathleen A. Lane
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
27
|
Fu Y, He Y, Phan K, Pickford R, Kim YB, Dzamko N, Halliday GM, Kim WS. Sex-specific lipid dysregulation in the Abca7 knockout mouse brain. Brain Commun 2022; 4:fcac120. [PMID: 35620166 PMCID: PMC9127619 DOI: 10.1093/braincomms/fcac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease is a devastating neurodegenerative disease that affects more women than men. The pathomechanism underlying the sex disparity, especially in the brain, is unclear. ABCA7 is one of the strongest susceptibility genes for Alzheimer's disease. It mediates the transport of lipids across membranes and is associated with pathways related to amyloid-β neuropathology. However, the role of ABCA7 in the regulation of brain lipids is largely unknown. Sex-specific differences in the pathological link between brain lipid dysregulation and amyloid-β are also unknown. Here, we undertook quantitative discovery lipidomics of male and female Abca7 knockout (n = 52) and wild type (n = 35) mouse brain using sophisticated liquid chromatography/mass spectrometry. We identified 61 lipid subclasses in the mouse brain and found sex-specific differences in lipids that were altered with Abca7 deletion. The altered lipids belong to cellular pathways that control cell signalling, sterol metabolism, mitochondrial function and neuroprotection. We also investigated the relationship between lipids and amyloid-β levels in the Abca7 knockout mice and found elevated free cholesterol only in female mice that was significantly correlated with amyloid-β42 levels. In male Abca7 knockout mice, the neuroprotective ganglioside GD1a levels were elevated and inversely correlated with amyloid-β42 levels. Collectively, these results demonstrate that Abca7 deletion leads to sex-specific lipid dysregulation in the brain, providing insight into the underlying sex disparity in the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ying He
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicolas Dzamko
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M. Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales & Neuroscience Research Australia, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales & Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
28
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
29
|
Yu L, Ji H, Zhou M, Guo Y, Liu J, Lei D, Han C, Ma T. ABCA7 rs3764650 Polymorphism is Associated with Delayed Neurocognitive Recovery. Pharmgenomics Pers Med 2022; 15:301-309. [PMID: 35387413 PMCID: PMC8977477 DOI: 10.2147/pgpm.s352810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Several studies have shown that ATP-binding cassette transporter A7 (ABCA7) gene variation is associated with cognitive impairment. This study was aimed to investigate the relationship between ABCA7 rs3764650 polymorphism and perioperative neurocognitive disorder (pNCD). METHODS A total of 132 elderly patients aged 65 and over who underwent elective non-cardiac surgery were enrolled in the study, while 28 healthy volunteers matching age and sex were recruited as the control group. A battery of neuropsychological tests was conducted 1 day before, 7 days, and 3 months after surgeries. Delayed neurocognitive recovery (dNCR) and postoperative mild or major neurocognitive disorder (POCD) were determined using the Z value method. The venous blood sample of the surgical patients was taken before the operation. Genotyping of rs3764650 was performed using polymerase chain reaction amplification and restriction fragment length polymorphism analysis. RESULTS The incidences of dNCR and POCD were 29.7% and 16.8% at 7 days and 3 months after surgery, respectively. The G allele frequency and GG frequency of dNCR patients were significantly higher than that of non-dNCR patients (43.3% vs 28.2%, P=0.035; 23.3% vs 4.2%, P=0.013, respectively) at 7 days following surgery. No significant differences in ABCA7 alleles between POCD and non-POCD patients were observed 3 months postoperatively. CONCLUSION ABCA7 rs3764650 gene polymorphism is associated with dNCR and GG genotype might be a predisposing factor for postoperative cognitive impairment in Chinese Han elderly populations.
Collapse
Affiliation(s)
- Lu Yu
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| | - Haiyan Ji
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Minmin Zhou
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| | - Yaxin Guo
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Junfeng Liu
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Daoyun Lei
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Chao Han
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| | - Tieliang Ma
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| |
Collapse
|
30
|
Stepler KE, Gillyard TR, Reed CB, Avery TM, Davis JS, Robinson RA. ABCA7, a Genetic Risk Factor Associated with Alzheimer's Disease Risk in African Americans. J Alzheimers Dis 2022; 86:5-19. [PMID: 35034901 PMCID: PMC10984370 DOI: 10.3233/jad-215306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.
Collapse
Affiliation(s)
| | - Taneisha R. Gillyard
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
| | - Calla B. Reed
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
| | - Tyra M. Avery
- Fisk University Department of Life and Physical Sciences, Nashville, TN, USA
| | - Jamaine S. Davis
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renã A.S. Robinson
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
- Vanderbilt University Medical Center Department of Neurology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| |
Collapse
|
31
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
32
|
Interleukin-9 Facilitates Osteoclastogenesis in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms221910397. [PMID: 34638736 PMCID: PMC8508938 DOI: 10.3390/ijms221910397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
In rheumatoid arthritis (RA), inflammatory cytokines play a pivotal role in triggering abnormal osteoclastogenesis leading to articular destruction. Recent studies have demonstrated enhanced levels of interleukin-9 (IL-9) in the serum and synovial fluid of patients with RA. In RA, strong correlation has been observed between tissue inflammation and IL-9 expression in synovial tissue. Therefore, we investigated whether IL-9 influences osteoclastogenesis in patients with RA. We conducted the study in active RA patients. For inducing osteoclast differentiation, mononuclear cells were stimulated with soluble receptor activator of NF-kB ligand (sRANKL) and macrophage-colony-stimulating factor (M-CSF) in the presence or absence of recombinant (r) IL-9. IL-9 stimulation significantly enhanced M-CSF/sRANKL-mediated osteoclast formation and function. Transcriptome analysis revealed differential gene expression induced with IL-9 stimulation in the process of osteoclast differentiation. IL-9 mainly modulates the expression of genes, which are involved in the metabolic pathway. Moreover, we observed that IL-9 modulates the expression of matrix metalloproteinases (MMPs), which are critical players in bone degradation. Our results indicate that IL-9 has the potential to influence the structural damage in the RA by promoting osteoclastogenesis and modulating the expression of MMPs. Thus, blocking IL-9 pathways might be an attractive immunotherapeutic target for preventing bone degradation in RA.
Collapse
|
33
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
34
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
35
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|
36
|
Aikawa T, Ren Y, Holm ML, Asmann YW, Alam A, Fitzgerald ML, Bu G, Kanekiyo T. ABCA7 Regulates Brain Fatty Acid Metabolism During LPS-Induced Acute Inflammation. Front Neurosci 2021; 15:647974. [PMID: 33897360 PMCID: PMC8059705 DOI: 10.3389/fnins.2021.647974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
The ATP binding cassette subfamily A member 7 (ABCA7) gene is one of the significant susceptibility loci for Alzheimer's disease (AD). Furthermore, ABCA7 loss of function variants resulting from premature termination codon in the gene are associated with increased risk for AD. ABCA7 belongs to the ABC transporter family, which mediates the transport of diverse metabolites across the cell membrane. ABCA7 is also involved in modulating immune responses. Because the immune system and lipid metabolism causatively engage in the pathogenesis of AD, we investigated how ABCA7 haplodeficiency modulates the metabolic profile in mouse brains during acute immune response using a metabolomics approach through LC/Q-TOF-MS. Peripheral lipopolysaccharide (LPS) stimulation substantially influenced the metabolite content in the cortex, however, the effect on metabolic profiles in Abca7 heterozygous knockout mice (Abca7 ±) was modest compared to that in the control wild-type mice. Weighted gene co-expression network analysis (WGCNA) of the metabolomics dataset identified two modules influenced by LPS administration and ABCA7 haplodeficiency, in which glycerophospholipid metabolism, linoleic acid metabolism, and α-linolenic acid metabolism were identified as major pathways. Consistent with these findings, we also found that LPS stimulation increased the brain levels of eicosapentaenoic acid, oleic acid, and palmitic acid in Abca7 ± mice, but not control mice. Together, our results indicate that ABCA7 is involved in the crosstalk between fatty acid metabolism and inflammation in the brain, and disturbances in these pathways may contribute to the risk for AD.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | - Marie-Louise Holm
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yan W. Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | - Amer Alam
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Michael L. Fitzgerald
- Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
37
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
38
|
Lee JY, Marian OC, Don AS. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromolecular Med 2021; 23:1-24. [PMID: 33550528 DOI: 10.1007/s12017-021-08644-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson's disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.
Collapse
Affiliation(s)
- Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oana C Marian
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
39
|
Lyssenko NN, Praticò D. ABCA7 and the altered lipidostasis hypothesis of Alzheimer's disease. Alzheimers Dement 2020; 17:164-174. [PMID: 33336544 PMCID: PMC7986801 DOI: 10.1002/alz.12220] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
We propose the altered lipidostasis hypothesis of Alzheimer's disease (AD). It holds that vulnerable neurons of the entorhinal region generate a neurodegenerative lipid during normal function, adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) protects from AD pathogenesis by removing it out of the cell, generation of the lipid increases with age, and the minimal amount of ABCA7 needed to dispose of the rising volumes of the lipid also increases with age. A survey of ABCA7 protein levels in the hippocampus or parietal cortex of 123 individuals with or without AD neuropathology showed that individuals with low ABCA7 developed AD neuropathology at a younger age, those with intermediate ABCA7 developed it later, and individuals who developed it very late had high ABCA7, the same as the youngest controls. ABC transporters closely similar to ABCA7 protect cells by removing toxic lipids. ABCA7 may have analogous functions. The hypothesis predicts lipidosis and membrane protein dysfunction in neurons with low ABCA7. Further work will identify the neurodegenerative lipid and determine approaches to exploit ABCA7 for therapeutic purposes.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- The Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Domenico Praticò
- The Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
ABCA7 links sterol metabolism to the host defense system: Molecular background for potential management measure of Alzheimer's disease. Gene 2020; 768:145316. [PMID: 33221536 DOI: 10.1016/j.gene.2020.145316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette transporter (ABC) A7 is a membrane protein that belongs to the large family of ABC transporters. It is 54% homologous in amino acid residue sequence to ABCA1 which mediates biogenesis of plasma high density lipoprotein (HDL) from cellular phospholipid and cholesterol with extracellular helical apolipoproteins such as apolipoprotein (apo) A-I. When transfected and expressed, ABCA7 also mediates generation of HDL-like particles but small and of less cholesterol content. However, endogenous ABCA7 is unlikely involved in HDL biogenesis and rather to regulate the host-defense system such as phagocytotic function of the cells. ABCA1 expression is regulated by cellular cholesterol levels, positively by the liver X receptor (LXR) in extrahepatic peripheral cells. However, it is modulated dually in the liver being relevant to transport of cholesterol for its catabolism; positively by LXR and negatively by sterol regulatory element binding protein (SREBP) or hepatic nuclear factor 4α (HNF4α). In contrast, ABCA7 expression was shown to be regulated negatively by the SREBP system so that decrease of cell cholesterol enhances ABCA7 function such as cellular phagocytotic reaction, suggesting that it links cholesterol metabolism to the host defense system. The interest is being build up in ABCA7 as its genomic diversity has been found related to a risk for late-onset Alzheimer's diseases. More recent findings indicate that ABCA7 is involved in metabolism of amyloid β peptide including its phagocytotic clearance. Accordingly, modulation of ABCA7 activity by manipulating cholesterol metabolism may open a new path for management of Alzheimer's disease.
Collapse
|
41
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
42
|
Zhang L, Yu C, Ge Z, Tao H, Meng F, Xu X, Tian T, Song C, Hu Z, Li J, Zhu F. Whole exome sequencing reveals the different responsiveness to Enterovirus 71 vaccination in Chinese children. Int J Infect Dis 2020; 97:47-53. [DOI: 10.1016/j.ijid.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
|
43
|
Lambadiari V, Korakas E, Tsimihodimos V. The Impact of Dietary Glycemic Index and Glycemic Load on Postprandial Lipid Kinetics, Dyslipidemia and Cardiovascular Risk. Nutrients 2020; 12:E2204. [PMID: 32722053 PMCID: PMC7468809 DOI: 10.3390/nu12082204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Many recent studies have acknowledged postprandial hypetriglyceridemia as a distinct risk factor for cardiovascular disease. This dysmetabolic state is the result of the hepatic overproduction of very low-density lipoproteins (VLDLs) and intestinal secretion of chylomicrons (CMs), which leads to highly atherogenic particles and endothelial inflammation. Postprandial lipid metabolism does not only depend on consumed fat but also on the other classes of nutrients that a meal contains. Various mechanisms through which carbohydrates exacerbate lipidemia have been identified, especially for fructose, which stimulates de novo lipogenesis. Glycemic index and glycemic load, despite their intrinsic limitations, have been used as markers of the postprandial glucose and insulin response, and their association with metabolic health and cardiovascular events has been extensively studied with contradictory results. This review aims to discuss the importance and pathogenesis of postprandial hypertriglyceridemia and its association with cardiovascular disease. Then, we describe the mechanisms through which carbohydrates influence lipidemia and, through a brief presentation of the available clinical studies on glycemic index/glycemic load, we discuss the association of these indices with atherogenic dyslipidemia and address possible concerns and implications for everyday practice.
Collapse
Affiliation(s)
- Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Vasilios Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece;
| |
Collapse
|
44
|
Yang J, Wise L, Fukuchi KI. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Front Immunol 2020; 11:724. [PMID: 32391019 PMCID: PMC7190872 DOI: 10.3389/fimmu.2020.00724] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Amyloid plaques, mainly composed of abnormally aggregated amyloid β-protein (Aβ) in the brain parenchyma, and neurofibrillary tangles (NFTs), consisting of hyperphosphorylated tau protein aggregates in neurons, are two pathological hallmarks of Alzheimer's disease (AD). Aβ fibrils and tau aggregates in the brain are closely associated with neuroinflammation and synapse loss, characterized by activated microglia and dystrophic neurites. Genome-wide genetic association studies revealed important roles of innate immune cells in the pathogenesis of late-onset AD by recognizing a dozen genetic risk loci that modulate innate immune activities. Furthermore, microglia, brain resident innate immune cells, have been increasingly recognized to play key, opposing roles in AD pathogenesis by either eliminating toxic Aβ aggregates and enhancing neuronal plasticity or producing proinflammatory cytokines, reactive oxygen species, and synaptotoxicity. Aggregated Aβ binds to toll-like receptor 4 (TLR4) and activates microglia, resulting in increased phagocytosis and cytokine production. Complement components are associated with amyloid plaques and NFTs. Aggregated Aβ can activate complement, leading to synapse pruning and loss by microglial phagocytosis. Systemic inflammation can activate microglial TLR4, NLRP3 inflammasome, and complement in the brain, leading to neuroinflammation, Aβ accumulation, synapse loss and neurodegeneration. The host immune response has been shown to function through complex crosstalk between the TLR, complement and inflammasome signaling pathways. Accordingly, targeting the molecular mechanisms underlying the TLR-complement-NLRP3 inflammasome signaling pathways can be a preventive and therapeutic approach for AD.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Leslie Wise
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| |
Collapse
|
45
|
Santos LRD, Almeida JFF, Pimassoni LHS, Morelato RL, Paula FD. The combined risk effect among BIN1, CLU, and APOE genes in Alzheimer's disease. Genet Mol Biol 2020; 43:e20180320. [PMID: 31469155 PMCID: PMC7198034 DOI: 10.1590/1678-4685-gmb-2018-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
Genome-wide associations studies (GWAS) are detecting new variants associated
with late-onset of Alzheimer’s disease (LOAD), a multifactorial
neurodegenerative disorder. The variants rs744373 BIN1,
rs11136000 CLU and rs3764650 ABCA7 uncovered
by GWAS led to different AD pathways, such as metabolism, trafficking and
endocytosis of lipids and inflammation. However, most of the association studies
did not replicate these variants with significance. This could be due to a small
power effect evident when these variants are tested independently with LOAD.
Therefore, we aimed to investigate whether the combination of different variants
would additively modify the risk of association with LOAD that is observed in
GWAS. We performed an association study testing pairwise variants in metabolism,
trafficking and endocytosis of lipid (rs429358 and rs7412 APOE,
rs744373 BIN1, rs3764650 ABCA7 and rs11136000
CLU) pathways with LOAD in samples from southeastern
Brazil. Our data suggest a risk effect for LOAD between APOE
with CLU and APOE with BIN1
genes.
Collapse
Affiliation(s)
- Lígia Ramos Dos Santos
- Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Jucimara Ferreira Figueiredo Almeida
- Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| | | | - Renato Lírio Morelato
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, Vitória, ES, Brazil.,Hospital da Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, Vitória, ES, Brazil
| | - Flavia de Paula
- Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| |
Collapse
|
46
|
ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain. Proc Natl Acad Sci U S A 2019; 116:23790-23796. [PMID: 31690660 DOI: 10.1073/pnas.1908529116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carrying premature termination codons in 1 allele of the ABCA7 gene is associated with an increased risk for Alzheimer's disease (AD). While the primary function of ABCA7 is to regulate the transport of phospholipids and cholesterol, ABCA7 is also involved in maintaining homeostasis of the immune system. Since inflammatory pathways causatively or consequently participate in AD pathogenesis, we studied the effects of Abca7 haplodeficiency in mice on brain immune responses under acute and chronic conditions. When acute inflammation was induced through peripheral lipopolysaccharide injection in control or heterozygous Abca7 knockout mice, partial ABCA7 deficiency diminished proinflammatory responses by impairing CD14 expression in the brain. On breeding to App NL-G-F knockin mice, we observed increased amyloid-β (Aβ) accumulation and abnormal endosomal morphology in microglia. Taken together, our results demonstrate that ABCA7 loss of function may contribute to AD pathogenesis by altering proper microglial responses to acute inflammatory challenges and during the development of amyloid pathology, providing insight into disease mechanisms and possible treatment strategies.
Collapse
|
47
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
48
|
Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci 2019; 20:ijms20174272. [PMID: 31480448 PMCID: PMC6747457 DOI: 10.3390/ijms20174272] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.
Collapse
|
49
|
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 2019; 138:201-220. [PMID: 30903345 PMCID: PMC6660495 DOI: 10.1007/s00401-019-01994-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
50
|
Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int J Mol Sci 2019; 20:ijms20051149. [PMID: 30845751 PMCID: PMC6429061 DOI: 10.3390/ijms20051149] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Lin Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 10449, Taiwan.
| | - Gopal K Marathe
- Department of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India.
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|