1
|
Okochi Y, Jinno Y, Okamura Y. Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1. Biophys J 2024; 123:4221-4232. [PMID: 39086135 DOI: 10.1016/j.bpj.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits. Dimerization of Hv1 is necessary for cooperative gating, but other roles of dimerization in physiological aspects are still largely unclear. In this study, we show that dimerization of Hv1 takes place in ER. Sea urchin Hv1 (Strongylocentrotus purpuratus Hv1: SpHv1) was glycosylated in the consensus sequence for N-linked glycosylation within the S1-S2 extracellular loop. However, glycosylation was not observed in the monomeric SpHv1 that lacks the coiled-coil domain. A version of mHv1 in which the S1-S2 loop was replaced by that of SpHv1 showed glycosylation and its monomeric form was not glycosylated. Tandem dimer of monomeric SpHv1 underwent glycosylation, suggesting that dimerization of Hv1 is required for glycosylation. Moreover, when monomeric Hv1 has a dilysine motif in the C-terminal end, which is known to act as a retrieval signal from Golgi to ER, prolonging the time of residency in ER, it was glycosylated. Overall, our results suggest that monomeric SpHv1 does not stay long in ER, thereby escaping glycosylation, while the dimerization causes the proteins to stay longer in ER. Thus, the findings highlight the novel significance of dimerization of Hv1: regulation of biogenesis and maturation of the proteins in intracellular compartments.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yuka Jinno
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Pequeño B, Millán de la Blanca MG, Castaño C, Toledano-Díaz A, Esteso MC, Alba E, Arrebola FA, Ungerfeld R, Martínez-Madrid B, Alvarez-Rodriguez M, Rodriguez-Martinez H, Santiago-Moreno J. Cooling rate modifies the location of aquaporin 3 in spermatozoa of sheep and goat. Theriogenology 2024; 223:29-35. [PMID: 38663138 DOI: 10.1016/j.theriogenology.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The freeze-thawing process induces osmotic changes that may affect the membrane domain location of aquaporins' (AQP) in spermatozoa. Recent studies suggest that changes in AQP3 localization allows better sperm osmo-adaptation, improving the cryoresistance. Ultra-rapid freezing is an alternative cryopreservation technique that requires less equipment than conventional freezing, and it is faster, simpler and can be used in the field. This study aimed to determine the influence of freezing-thawing rates (slow (control) vs. ultra-rapid) on AQP3 expression and location in the spermatozoa from small ruminants (sheep and goats) and its relationship with sperm cryo-damage. Spermatozoa were collected from 10 Merino rams and 10 Murciano-Granadina bucks. The presence and distribution of AQP3 were assessed by Western blotting and immunocytochemistry (ICC), employing a commercial rabbit polyclonal antibody. Sperm motility was CASA system-analyzed, and membrane and acrosome integrity assessed by fluorescence (PI/PNA-FITC). Western blotting did not detect a significant effect of freezing-thawing rate on the amount of AQP3 while ICC found freezing-thawing rate affecting AQP3 location (P < 0.05). In both species, the percentages of spermatozoa showing AQP3 in the post-acrosome region, mid-piece, and principal piece of the tail were greater in samples cryopreserved by slow freezing-thawing (control) than ultra-rapid freezing-thawing rates (P < 0.05). Spermatozoa cryopreserved using ultra-rapid freezing-thawing showed decrease motility, plasma membrane, and acrosome integrity (P < 0.05), which might be related, at least in part, to a lower expression of AQP3. In conclusion, the cooling rate modifies the location of AQP3 in spermatozoa of sheep and goat, which might be associated with sperm cryosurvival.
Collapse
Affiliation(s)
- Belén Pequeño
- Dept. of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | | | | | | | | | - Esther Alba
- Dept. of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | - Francisco A Arrebola
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera y Alimentaria (IFAPA) Hinojosa Del Duque, Córdoba, Spain
| | - Rodolfo Ungerfeld
- Dept. Biociencias Veterinarias, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
3
|
Melnyk S, Bollag WB. Aquaporins in the Cornea. Int J Mol Sci 2024; 25:3748. [PMID: 38612559 PMCID: PMC11011575 DOI: 10.3390/ijms25073748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The cornea is an avascular, transparent tissue that allows light to enter the visual system. Accurate vision requires proper maintenance of the cornea's integrity and structure. Due to its exposure to the external environment, the cornea is prone to injury and must undergo proper wound healing to restore vision. Aquaporins (AQPs) are a family of water channels important for passive water transport and, in some family members, the transport of other small molecules; AQPs are expressed in all layers of the cornea. Although their functions as water channels are well established, the direct function of AQPs in the cornea is still being determined and is the focus of this review. AQPs, primarily AQP1, AQP3, and AQP5, have been found to play an important role in maintaining water homeostasis, the corneal structure in relation to proper hydration, and stress responses, as well as wound healing in all layers of the cornea. Due to their many functions in the cornea, the identification of drug targets that modulate the expression of AQPs in the cornea could be beneficial to promote corneal wound healing and restore proper function of this tissue crucial for vision.
Collapse
Affiliation(s)
- Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
4
|
Tabata K, Ikarashi N, Shinozaki Y, Yoshida R, Kon R, Sakai H, Hosoe T, Kamei J. Effect of the gut microbiota on the expression of genes that are important for maintaining skin function: Analysis using aged mice. J Dermatol 2024; 51:419-428. [PMID: 38087767 DOI: 10.1111/1346-8138.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 03/05/2024]
Abstract
The gut microbiota changes greatly at the onset of disease, and the importance of intestinal bacteria has been highlighted. The gut microbiota also changes greatly with aging. Aging causes skin dryness, but it is not known how changes in the gut microbiota with aging affects the expression of genes that are important for maintaining skin function. In this study, we investigated how age-related changes in gut microbiota affect the expression of genes that regulate skin function. The gut microbiotas from young mice and aged mice were transplanted into germ-free mice (fecal microbiota transplantation [FMT]). These recipient mice were designated FMT-young mice and FMT-old mice respectively, and the expression levels of genes important for maintaining skin function were analyzed. The dermal water content was significantly lower in old mice than that in young mice, indicating dry skin. The gut microbiota significantly differed between old mice and young mice. The water channel aquaporin-3 (Aqp3) expression level in the skin of FMT-old mice was significantly higher than that in FMT-young mice. In addition, among the genes that play an important role in maintaining skin function, the expression levels of those encoding ceramide-degrading enzyme, ceramide synthase, hyaluronic acid-degrading enzyme, and Type I collagen were also significantly higher in FMT-old mice than in FMT-young mice. It was revealed that the gut microbiota, which changes with age, regulates the expression levels of genes related to skin function, including AQP3.
Collapse
Affiliation(s)
- Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
5
|
Shinozaki Y, Ikarashi N, Tabata K, Miyazawa A, Kon R, Sakai H, Hosoe T. Expression analysis of genes important for maintaining skin function in a senescence-accelerated mouse prone model. Geriatr Gerontol Int 2023; 23:951-957. [PMID: 37908183 DOI: 10.1111/ggi.14718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
AIM Senescence-accelerated mouse prone (SAMP) mice can reproduce the same conditions as normal aging mice in a short period. Although SAMP mice have been widely used in aging research, research on skin function in SAMP mice is lacking. In this study, to investigate the skin function of SAMP mice, we analyzed the expression of genes important for maintaining skin function. METHODS Eight-month-old SAMP mice and senescence-accelerated mouse resistant (SAMR) mice with normal aging were used. The expression levels of various functional genes in the skin were analyzed. RESULTS The dermal water content of SAMP mice was significantly lower than that of SAMR mice, indicating dry skin. The mRNA expression levels of elastin (Ela), filaggrin (Flg), loricrin (Lor), collagen type I alpha 1 chain (Col1a1) and Col1a2 in the skin of SAMP mice were all significantly decreased compared with those of SAMR mice. Hyaluronan-degrading enzyme (Hyal1) expression levels in SAMP mice were similar to those in SAMR mice, but hyaluronan synthase (Has2) levels were significantly decreased. In addition, the expression level of aquaporin-3 in the skin of SAMP mice was significantly decreased at both the mRNA and protein levels. CONCLUSIONS In the skin of SAMP mice, the expression levels of various skin function-regulating genes were decreased, and this phenomenon might cause skin dryness. The SAMP mouse could be a tool for analyzing skin aging. Geriatr Gerontol Int 2023; 23: 951-957.
Collapse
Affiliation(s)
- Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Ayuka Miyazawa
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| |
Collapse
|
6
|
Zhao C, Liu Z, Liu Y, Zhan Y. Identification and characterization of cold-responsive aquaporins from the larvae of a crambid pest Agriphila aeneociliella (Eversmann) (Lepidoptera: Crambidae). PeerJ 2023; 11:e16403. [PMID: 38025732 PMCID: PMC10652857 DOI: 10.7717/peerj.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
As small ectotherms, insects need to cope with the challenges of winter cold by regulating the water content through water transport. Aquaporins (AQPs) are key players to enhance the cold resistance by mediating essential homeostatic processes in many animals but remain poorly characterized in insects. Agriphila aeneociliella is a newly discovered winter wheat pest in China, and its early-stage larvae have strong tolerance to low temperature stress. Six AQP genes were identified, which belong to five AQP subfamilies (RPIP, Eglp, AQP12L, PRIP, DRIP). All of them contained six hydrophobic transmembrane helices (TMHs) and two relatively conservative Asparagine-Proline-Alanine motifs. The three-dimensional homology modeling showed that the six TMHs folded into an hourglass-like shape, and the imperceptible replace of four ar/R residues in contraction region had critical effects on changing the pore size of channels. Moreover, the transcript levels of AaAQP 1, 3, and 6 increased significantly with the treatment time below 0 °C. Combined with the results of pore radius variation, it is suggested that AaAQP1 and AaAQP3 may be considered to be the key anti-hypothermia proteins in A. aeneociliella by regulating rapid cell dehydration and allowing the influx of extracellular cold resistance molecules, thus avoiding death in winter.
Collapse
Affiliation(s)
- Chunqing Zhao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhen Liu
- Weihai Huancui District Bureau of Agriculture and Rural Affairs, Weihai, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
8
|
Hagströmer CJ, Hyld Steffen J, Kreida S, Al-Jubair T, Frick A, Gourdon P, Törnroth-Horsefield S. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Sci Rep 2023; 13:14674. [PMID: 37674034 PMCID: PMC10482962 DOI: 10.1038/s41598-023-41616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Aquaporins are water channels found in the cell membrane, where they allow the passage of water molecules in and out of the cells. In the kidney collecting duct, arginine vasopressin-dependent trafficking of aquaporin-2 (AQP2) fine-tunes reabsorption of water from pre-urine, allowing precise regulation of the final urine volume. Point mutations in the gene for AQP2 may disturb this process and lead to nephrogenic diabetes insipidus (NDI), whereby patients void large volumes of highly hypo-osmotic urine. In recessive NDI, mutants of AQP2 are retained in the endoplasmic reticulum due to misfolding. Here we describe the structural and functional characterization of three AQP2 mutations associated with recessive NDI: T125M and T126M, situated close to a glycosylation site and A147T in the transmembrane region. Using a proteoliposome assay, we show that all three mutants permit the transport of water. The crystal structures of T125M and T126M together with biophysical characterization of all three mutants support that they retain the native structure, but that there is a significant destabilization of A147T. Our work provides unique molecular insights into the mechanisms behind recessive NDI as well as deepens our understanding of how misfolded proteins are recognized by the ER quality control system.
Collapse
Affiliation(s)
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Zhao G, Teng J, Dong R, Ban Q, Yang L, Du K, Wang Y, Pu H, Yang CS, Ren Z. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Cheung PW, Boukenna M, Babicz RSE, Mitra S, Kay A, Paunescu TC, Baylor N, Liu CCS, Nair AV, Bouley R, Brown D. Intracellular sites of AQP2 S256 phosphorylation identified using inhibitors of the AQP2 recycling itinerary. Am J Physiol Renal Physiol 2023; 324:F152-F167. [PMID: 36454701 PMCID: PMC9844975 DOI: 10.1152/ajprenal.00123.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Vasopressin (VP)-regulated aquaporin-2 (AQP2) trafficking between cytoplasmic vesicles and the plasma membrane of kidney principal cells is essential for water homeostasis. VP affects AQP2 phosphorylation at several serine residues in the COOH-terminus; among them, serine 256 (S256) appears to be a major regulator of AQP2 trafficking. Mutation of this serine to aspartic acid, which mimics phosphorylation, induces constitutive membrane expression of AQP2. However, the intracellular location(s) at which S256 phosphorylation occurs remains elusive. Here, we used strategies to block AQP2 trafficking at different cellular locations in LLC-PK1 cells and monitored VP-stimulated phosphorylation of S256 at these sites by immunofluorescence and Western blot analysis with phospho-specific antibodies. Using methyl-β-cyclodextrin, cold block or bafilomycin, and taxol, we blocked AQP2 at the plasma membrane, in the perinuclear trans-Golgi network, and in scattered cytoplasmic vesicles, respectively. Regardless of its cellular location, VP induced a significant increase in S256 phosphorylation, and this effect was not dependent on a functional microtubule cytoskeleton. To further investigate whether protein kinase A (PKA) was responsible for S256 phosphorylation in these cellular compartments, we created PKA-null cells and blocked AQP2 trafficking using the same procedures. We found that S256 phosphorylation was no longer increased compared with baseline, regardless of AQP2 localization. Taken together, our data indicate that AQP2 S256 phosphorylation can occur at the plasma membrane, in the trans-Golgi network, or in cytoplasmic vesicles and that this event is dependent on the expression of PKA in these cells.NEW & NOTEWORTHY Phosphorylation of aquaporin-2 by PKA at serine 256 (S256) occurs in various subcellular locations during its recycling itinerary, suggesting that the protein complex necessary for AQP2 S256 phosphorylation is present in these different recycling stations. Furthermore, we showed, using PKA-null cells, that PKA activity is required for vasopressin-induced AQP2 phosphorylation. Our data reveal a complex spatial pattern of intracellular AQP2 phosphorylation at S256, shedding new light on the role of phosphorylation in AQP2 membrane accumulation.
Collapse
Affiliation(s)
- Pui W Cheung
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mey Boukenna
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard S E Babicz
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shimontini Mitra
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna Kay
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Theodor C Paunescu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chen-Chung Steven Liu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Luo Y, Uaratanawong R, Choudhary V, Hardin M, Zhang C, Melnyk S, Chen X, Bollag WB. Advanced Glycation End Products and Activation of Toll-like Receptor-2 and -4 Induced Changes in Aquaporin-3 Expression in Mouse Keratinocytes. Int J Mol Sci 2023; 24:1376. [PMID: 36674890 PMCID: PMC9864132 DOI: 10.3390/ijms24021376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Prolonged inflammation and impaired re-epithelization are major contributing factors to chronic non-healing diabetic wounds; diabetes is also characterized by xerosis. Advanced glycation end products (AGEs), and the activation of toll-like receptors (TLRs), can trigger inflammatory responses. Aquaporin-3 (AQP3) plays essential roles in keratinocyte function and skin wound re-epithelialization/re-generation and hydration. Suberanilohydroxamic acid (SAHA), a histone deacetylase inhibitor, mimics the increased acetylation observed in diabetes. We investigated the effects of TLR2/TLR4 activators and AGEs on keratinocyte AQP3 expression in the presence and absence of SAHA. Primary mouse keratinocytes were treated with or without TLR2 agonist Pam3Cys-Ser-(Lys)4 (PAM), TLR4 agonist lipopolysaccharide (LPS), or AGEs, with or without SAHA. We found that (1) PAM and LPS significantly upregulated AQP3 protein basally (without SAHA) and PAM downregulated AQP3 protein with SAHA; and (2) AGEs (100 µg/mL) increased AQP3 protein expression basally and decreased AQP3 levels with SAHA. PAM and AGEs produced similar changes in AQP3 expression, suggesting a common pathway or potential crosstalk between TLR2 and AGEs signaling. Our findings suggest that TLR2 activation and AGEs may be beneficial for wound healing and skin hydration under normal conditions via AQP3 upregulation, but that these pathways are likely deleterious in diabetes chronically through decreased AQP3 expression.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rawipan Uaratanawong
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Medicine (Dermatology), Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mary Hardin
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Catherine Zhang
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xunsheng Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Ikarashi N, Kaneko M, Wakana D, Shinozaki Y, Tabata K, Nishinaka Y, Yoshida R, Watanabe T, Wakui N, Kon R, Sakai H, Kamei J, Hosoe T. Effect of Chimpi, dried citrus peel, on aquaporin-3 expression in HaCaT human epidermal keratinocytes. Mol Biol Rep 2022; 49:10175-10181. [PMID: 36030474 DOI: 10.1007/s11033-022-07892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Chimpi, the dried peel of Citrus unshiu or Citrus reticulata, has various pharmacological effects. Chimpi extract was recently shown to affect the skin, including its inhibitory effect against atopic dermatitis. In this study, we analyzed the effects of Chimpi extract on the functional molecule aquaporin-3 (AQP3), which is involved in water transport and cell migration in the skin. METHODS AND RESULTS Chimpi extract was added to HaCaT human skin keratinocytes, and the AQP3 expression level was analyzed. A wound healing assay was performed to evaluate the effect of Chimpi extract on cell migration. The components of Chimpi extract and fractions obtained by liquid-liquid distribution studies were added to HaCaT cells, and AQP3 expression was analyzed. Chimpi extract significantly increased AQP3 expression in HaCaT cells at both the mRNA and protein levels. Immunocytochemical staining revealed that Chimpi extract also promoted the transfer of AQP3 to the cell membrane. Furthermore, Chimpi extract enhanced cell migration. Hesperidin, narirutin, and nobiletin did not increase AQP3 levels. Although the components contained in the fractions obtained from the chloroform, butanol, and water layer increased AQP3, the active components could not be identified. CONCLUSIONS These results reveal that Chimpi extract may increase AQP3 levels in keratinocytes and increase the dermal water content. Therefore, Chimpi extract may be effective for the management of dry skin.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Miho Kaneko
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Daigo Wakana
- Department of Bioregulatory Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yui Nishinaka
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomofumi Watanabe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nobuyuki Wakui
- Division of Applied Pharmaceutical Education and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junzo Kamei
- Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
14
|
O'Brien E, Malo C, Castaño C, García-Casado P, Toledano-Díaz A, Martínez-Madrid B, Rodriguez-Martinez H, Álvarez-Rodríguez M, Santiago-Moreno J. Sperm freezability is neither associated with the expression of aquaporin 3 nor sperm head dimensions in dromedary camel (Camelus dromedarius). Theriogenology 2022; 189:230-236. [DOI: 10.1016/j.theriogenology.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
|
15
|
Tricarico PM, Mentino D, De Marco A, Del Vecchio C, Garra S, Cazzato G, Foti C, Crovella S, Calamita G. Aquaporins Are One of the Critical Factors in the Disruption of the Skin Barrier in Inflammatory Skin Diseases. Int J Mol Sci 2022; 23:4020. [PMID: 35409378 PMCID: PMC8999368 DOI: 10.3390/ijms23074020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The skin is the largest organ of the human body, serving as an effective mechanical barrier between the internal milieu and the external environment. The skin is widely considered the first-line defence of the body, with an essential function in rejecting pathogens and preventing mechanical, chemical, and physical damages. Keratinocytes are the predominant cells of the outer skin layer, the epidermis, which acts as a mechanical and water-permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. During this migration process, keratinocytes undertake a differentiation program known as keratinization process. Dysregulation of this differentiation process can result in a series of skin disorders. In this context, aquaporins (AQPs), a family of membrane channel proteins allowing the movement of water and small neutral solutes, are emerging as important players in skin physiology and skin diseases. Here, we review the role of AQPs in skin keratinization, hydration, keratinocytes proliferation, water retention, barrier repair, wound healing, and immune response activation. We also discuss the dysregulated involvement of AQPs in some common inflammatory dermatological diseases characterised by skin barrier disruption.
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy;
| | - Donatella Mentino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| | - Aurora De Marco
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70121 Bari, Italy;
| | - Cecilia Del Vecchio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70121 Bari, Italy;
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| |
Collapse
|
16
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
17
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Verta R, Gurrieri M, Borga S, Benetti E, Pollicino P, Cavalli R, Thurmond RL, Chazot PL, Pini A, Rosa AC, Grange C. The Interplay between Histamine H 4 Receptor and the Kidney Function: The Lesson from H 4 Receptor Knockout Mice. Biomolecules 2021; 11:biom11101517. [PMID: 34680152 PMCID: PMC8533779 DOI: 10.3390/biom11101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies implicated the histamine H4 receptor in renal pathophysiology. The aim here is to elucidate the role of this receptor on renal function using H4 receptor knockout mice (H4R-/-). Healthy and diabetic H4R-/- mice compared to their C57BL/6J wild-type counterpart for renal function and the expression of crucial tubular proteins. H4R-/- and wild-type mice, matched for ages, showed comparable weight gain curves reaching similar median weight at the end of the study. However, H4R-/- mice displayed a higher basal glycemia. H4R-/- mice showed a lower urine 24 h outflow, and albumin-to-creatinine ratio (ACR) compared to wild-type mice. Consistently, H4R-/- mice presented a higher expression of megalin and a lower basal expression of the sodium-hydrogen exchanger (NHE)3 and aquaporin (AQP)2. According to these basal differences, diabetic H4R-/- mice developed more severe hyperglycemia and a higher 24 h urine volume, but a lower increase in ACR and decrease in urine pH were observed. These events were paralleled by a reduced NHE3 over-expression and megalin loss in diabetic H4R-/- mice. The AQP1 and AQP7 patterns were also different between H4R-/- and wild-type diabetic mice. The collected results highlight the role of the histamine H4 receptor in the control of renal reabsorption processes, particularly albumin uptake.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Biotechnology and Health Sciences, University of Turin, C.So Dogliotti 14, 10126 Turin, Italy;
| | - Maura Gurrieri
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Sara Borga
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Elisa Benetti
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Paolo Pollicino
- Direzione Ricerca e Terza Missione, University of Turin, Via Bogino 9 Torino, 10123 Turin, Italy;
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Robin L. Thurmond
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA;
| | - Paul L. Chazot
- Department of Biosciences and Wolfson Research Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - Alessandro Pini
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
- Correspondence: ; Tel.: +39-011-6707955
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, C.So Dogliotti 14, 10126 Turin, Italy;
| |
Collapse
|
19
|
Ikarashi N, Shiseki M, Yoshida R, Tabata K, Kimura R, Watanabe T, Kon R, Sakai H, Kamei J. Cannabidiol Application Increases Cutaneous Aquaporin-3 and Exerts a Skin Moisturizing Effect. Pharmaceuticals (Basel) 2021; 14:ph14090879. [PMID: 34577578 PMCID: PMC8469387 DOI: 10.3390/ph14090879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD) is a major nonpsychotropic component of Cannabis sativa with various pharmacological activities. In this study, we investigated the skin moisturizing effect of CBD and its mechanism. A 1% CBD solution was applied daily to skin of HR-1 hairless (Seven-week-old, male) for 14 days. The dermal water content in CBD-treated mice was significantly increased compared to that in the control group. Furthermore, no inflammatory reaction in the skin and no obvious skin disorders were observed. The mRNA expression levels of loricrin, filaggrin, collagen, hyaluronic acid degrading enzyme, hyaluronic acid synthase, ceramide degrading enzyme, and ceramide synthase in the skin were not affected by the application of CBD. However, only aquaporin-3 (AQP3), a member of the aquaporin family, showed significantly higher levels in the CBD-treated group than in the control group at both the mRNA and protein levels. It was revealed that CBD has a moisturizing effect on the skin. In addition, it is possible that increased expression of AQP3, which plays an important role in skin water retention, is a contributor to the mechanism. CBD is expected to be developed in the future as a cosmetic material with a unique mechanism.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| | - Marina Shiseki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Rina Kimura
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Tomofumi Watanabe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| |
Collapse
|
20
|
Wound-Healing and Skin-Moisturizing Effects of Sasa veitchii Extract. Healthcare (Basel) 2021; 9:healthcare9060761. [PMID: 34205315 PMCID: PMC8235400 DOI: 10.3390/healthcare9060761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling.
Collapse
|
21
|
Role of Cutaneous Aquaporins in the Development of Xeroderma in Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9020104. [PMID: 33494453 PMCID: PMC7912687 DOI: 10.3390/biomedicines9020104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Xeroderma is induced by diabetes, reducing patients’ quality of life. We aimed to clarify the roles of cutaneous water channel aquaporin-3 (AQP3) in diabetic xeroderma using type 2 diabetes model db/db mice. Blood glucose levels were unchanged in 5-week-old db/db mice compared to db/+ mice (control mice), but the pathophysiology of type 2 diabetes was confirmed in 12-week-old db/db mice. The dermal water content and AQP3 expression in 5-week-old db/db mice were almost the same as those in the control mice. On the other hand, in 12-week-old db/db mice, the dermal water content and AQP3 expression were significantly decreased. The addition of glucose to HaCaT cells had no effect on AQP3, but tumor necrosis factor-α (TNF-α) decreased the AQP3 expression level. Blood TNF-α levels or skin inflammation markers in the 12-week-old db/db mice were significantly higher than those in control mice. AQP3 levels in the skin were decreased in type 2 diabetes, and this decrease in AQP3 may be one of the causes of xeroderma. Therefore, a substance that increases AQP3 may be useful for improving xeroderma. Additionally, a decrease in skin AQP3 may be triggered by inflammation. Therefore, anti-inflammatory drugs may be effective as new therapeutic agents for diabetic xerosis.
Collapse
|
22
|
Zhao G, Wu X, Wang W, Yang CS, Zhang J. Tea Drinking Alleviates Diabetic Symptoms via Upregulating Renal Water Reabsorption Proteins and Downregulating Renal Gluconeogenic Enzymes in db/db Mice. Mol Nutr Food Res 2020; 64:e2000505. [PMID: 33052021 DOI: 10.1002/mnfr.202000505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/19/2020] [Indexed: 01/01/2023]
Abstract
SCOPE Tea, made from the plant Camellia sinensis, is known to have anti-diabetes effects and different mechanisms of action are proposed. Kidney is a vital organ in managing water reabsorption and glucose metabolism, and is greatly influenced by diabetes. The present study investigates the effects of tea administration on water reabsorption and gluconeogenesis in the kidney of diabetic mice. METHODS AND RESULTS Db/db mice are given tea infusion as drinking fluid when they begin to exhibit hyperglycemia. It is found that green tea or black tea infusion potently elevates renal proteins vital for water reabsorption, including protein kinase C-α, aquaporin 2, and urea transporter-A1, as well as increases trafficking of these proteins to apical plasma membrane where they exert water reabsorption function. The treatment also downregulates renal gluconeogenic enzymes, including glucose-6-phosphatase-α and phosphoenolpyruvate carboxykinase. Associated with these biochemical changes are the rectified polyuria, polydipsia, polyphagia, and hyperglycemia, all symptoms of diabetes. CONCLUSIONS For the first time, the present study demonstrates that tea has robust effects in enhancing kidney water reabsorption proteins and downregulating gluconeogenic enzymes in db/db mice. It remains to be investigated whether such beneficial effects of tea occur in humans.
Collapse
Affiliation(s)
- Guangshan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Biology Postdoctoral Research Station, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ximing Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wenping Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
23
|
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells 2020; 9:cells9102172. [PMID: 32993088 PMCID: PMC7599609 DOI: 10.3390/cells9102172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.
Collapse
|
24
|
Ikarashi N, Kon R, Nagoya C, Ishikura A, Sugiyama Y, Takahashi J, Sugiyama K. Effect of Astaxanthin on the Expression and Activity of Aquaporin-3 in Skin in an In-Vitro Study. Life (Basel) 2020; 10:life10090193. [PMID: 32932769 PMCID: PMC7554991 DOI: 10.3390/life10090193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is a red lipophilic pigment with strong antioxidant action. Oral or topical administration of astaxanthin has been reported to improve skin function, including increasing skin moisture. In this study, we examined the mechanism by which astaxanthin improves skin function by focusing on the water channel aquaporin-3 (AQP3), which plays important roles in maintaining skin moisture and function. When astaxanthin was added to PHK16-0b or HaCaT cells, the mRNA expression level of AQP3 increased significantly in a concentration-dependent manner in both cell lines. The AQP3 protein expression level was also confirmed to increase when astaxanthin was added to HaCaT cells. Similarly, when astaxanthin was added to 3D human epidermis model EpiSkin, AQP3 expression increased. Furthermore, when glycerol and astaxanthin were simultaneously added to EpiSkin, glycerol permeability increased significantly compared with that observed for the addition of glycerol alone. We demonstrated that astaxanthin increases AQP3 expression in the skin and enhances AQP3 activity. This result suggests that the increased AQP3 expression in the skin is associated with the increase in skin moisture by astaxanthin. Thus, we consider astaxanthin useful for treating dry skin caused by decreased AQP3 due to factors such as diabetes mellitus and aging.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Airi Ishikura
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Yuri Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Jiro Takahashi
- Fuji Chemical Industries Co., Ltd., 1 Gohkakizawa, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0405, Japan;
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| |
Collapse
|
25
|
Misyura L, Grieco Guardian E, Durant AC, Donini A. A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water. PLoS One 2020; 15:e0234892. [PMID: 32817668 PMCID: PMC7440623 DOI: 10.1371/journal.pone.0234892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
The mosquito Aedes aegypti vectors the arboviral diseases yellow fever, dengue, Zika and chikungunya. Larvae are usually found developing in freshwater; however, more recently they have been increasingly found in brackish water, potential habitats which are traditionally ignored by mosquito control programs. Aedes aegypti larvae are osmo-regulators maintaining their hemolymph osmolarity in a range of ~ 250 to 300 mOsmol l-1. In freshwater, the larvae must excrete excess water while conserving ions while in brackish water, they must alleviate an accumulation of salts. The compensatory physiological mechanisms must involve the transport of ions and water but little is known about the water transport mechanisms in the osmoregulatory organs of these larvae. Water traverses cellular membranes predominantly through transmembrane proteins named aquaporins (AQPs) and Aedes aegypti possesses 6 AQP homologues (AaAQP1 to 6). The objective of this study was to determine if larvae that develop in freshwater or brackish water have differential aquaporin expression in osmoregulatory organs, which could inform us about the relative importance and function of aquaporins to mosquito survival under these different osmotic conditions. We found that AaAQP transcript abundance was similar in organs of freshwater and brackish water mosquito larvae. Furthermore, in the Malpighian tubules and hindgut AaAQP protein abundance was unaffected by the rearing conditions, but in the gastric caeca the protein level of one aquaporin, AaAQP1 was elevated in brackish water. We found that AaAQP1 was expressed apically while AaAQP4 and AaAQP5 were found to be apical and/or basal in the epithelia of osmoregulatory organs. Overall, the results suggest that aquaporin expression in the osmoregulatory organs is mostly consistent between larvae that are developing in freshwater and brackish water. This suggests that aquaporins may not have major roles in adapting to longterm survival in brackish water or that aquaporin function may be regulated by other mechanisms like post-translational modifications.
Collapse
Affiliation(s)
- Lidiya Misyura
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008458. [PMID: 32644992 PMCID: PMC7413563 DOI: 10.1371/journal.pntd.0008458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
Collapse
Affiliation(s)
- Juan F. Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Juan Bueren-Calabuig
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Harry P. de Koning
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
27
|
Bollag WB, Aitkens L, White J, Hyndman KA. Aquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol 2020; 318:C1144-C1153. [PMID: 32267715 DOI: 10.1152/ajpcell.00075.2020] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is essential for terrestrial life. It is responsible for regulating water permeability and functions as a mechanical barrier that protects against environmental insults such as microbial infection, ultraviolet light, injury, and heat and cold, which could damage the cells of the body and compromise survival of the organism. This barrier is provided by the outer layer, the epidermis, which is composed predominantly of keratinocytes; keratinocytes undergo a program of differentiation to form the stratum corneum comprising the cornified squame "bricks" and lipid "mortar." Dysregulation of this differentiation program can result in skin diseases, including psoriasis and nonmelanoma skin cancers, among others. Accumulating evidence in the literature indicates that the water-, glycerol-, and hydrogen peroxide-transporting channel aquaporin-3 (AQP3) plays a key role in various processes involved in keratinocyte function, and abnormalities in this channel have been observed in several human skin diseases. Here, we discuss the data linking AQP3 to keratinocyte proliferation, migration, differentiation, and survival as well as its role in skin properties and functions like hydration, water retention, wound healing, and barrier repair. We also discuss the mechanisms regulating AQP3 levels, localization, and function and the anomalies in AQP3 that are associated with various skin diseases.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lorry Aitkens
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Joseph White
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Kelly A Hyndman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Ikarashi N, Kaneko M, Watanabe T, Kon R, Yoshino M, Yokoyama T, Tanaka R, Takayama N, Sakai H, Kamei J. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Erlotinib Induces Dry Skin via Decreased in Aquaporin-3 Expression. Biomolecules 2020; 10:biom10040545. [PMID: 32260143 PMCID: PMC7225942 DOI: 10.3390/biom10040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
An adverse reaction of dry skin occurs frequently during treatment with anticancer epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In this study, we conducted basic research to clarify the mechanism of EGFR-TKI-induced dry skin and propose new treatments or preventative measures. Dermal water content was significantly lower in the erlotinib-treated mice than in the control group. An assessment of the expression levels of functional genes in the skin revealed that only the expression of the water channel aquaporin-3 (AQP3) was significantly decreased in the erlotinib-treated group. When erlotinib was added to epidermal keratinocyte HaCaT cells, the expression levels of both AQP3 mRNA and protein decreased. Erlotinib treatment also significantly decreased the expression levels of phospho-EGFR and phospho-extracellular signal-regulated kinase (ERK), both in HaCaT cells and mouse skin. Dry skin due to erlotinib may be caused by the decreased expression of AQP3 in the skin, thereby limiting water transport from the vascular side to the corneum side. The decrease in AQP3 may also be attributable to ERK suppression via inhibition of EGFR activity by erlotinib. Therefore, substances that increase AQP3 expression may be effective for erlotinib-induced dry skin.
Collapse
|
29
|
Wang WL, Su SH, Wong KY, Yang CW, Liu CF, Yu MJ. Rab7 involves Vps35 to mediate AQP2 sorting and apical trafficking in collecting duct cells. Am J Physiol Renal Physiol 2020; 318:F956-F970. [PMID: 32088968 DOI: 10.1152/ajprenal.00297.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.
Collapse
Affiliation(s)
- Wei-Ling Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Han Su
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kit Yee Wong
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Wei Yang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Fu Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
31
|
|
32
|
Sreedharan S, Sankaranarayanan K. Water channel activity of putative aquaporin-6 present in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21519. [PMID: 30456765 DOI: 10.1002/arch.21519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquaporins (AQPs) are integral membrane channels that facilitate the bidirectional transport of water and sometimes other small solutes across biological membranes. AQPs are important in mediating environmental adaptations in mosquitoes and are considered as a novel target for the development of effective insecticides against mosquitoes. Here, we expressed Aedes aegypti AQP6 ( AaAQP6) in human embryonic kidney (HEK) 293 cells and analyzed the water permeability by a conventional swelling assay, that is, a real-time change in cell size corresponding to the cell swelling induced by hyposmotic solution. The swelling assay revealed that AaAQP6 is a mercury-sensitive water channel. Gene expression studies showed that AaAQP6 is highly expressed in the pupae than other developmental stages. Heterologous expression of AaAQP6 in HEK cell was mainly observed intracellularly suggesting AaAQP6 possibly could be a subcellular water channel and may play an osmoregulatory function in the pupae of A. aegypti.
Collapse
Affiliation(s)
- Sandhya Sreedharan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| |
Collapse
|
33
|
Calvanese L, D'Auria G, Vangone A, Falcigno L, Oliva R. Structural Basis for Mutations of Human Aquaporins Associated to Genetic Diseases. Int J Mol Sci 2018; 19:E1577. [PMID: 29799470 PMCID: PMC6032259 DOI: 10.3390/ijms19061577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) are among the best structural-characterized membrane proteins, fulfilling the role of allowing water flux across cellular membranes. Thus far, 34 single amino acid polymorphisms have been reported in HUMSAVAR for human aquaporins as disease-related. They affect AQP2, AQP5 and AQP8, where they are associated with nephrogenic diabetes insipidus, keratoderma and colorectal cancer, respectively. For half of these mutations, although they are mostly experimentally characterized in their dysfunctional phenotypes, a structural characterization at a molecular level is still missing. In this work, we focus on such mutations and discuss what the structural defects are that they appear to cause. To achieve this aim, we built a 3D molecular model for each mutant and explored the effect of the mutation on all of their structural features. Based on these analyses, we could collect the structural defects of all the pathogenic mutations (here or previously analysed) under few main categories, that we found to nicely correlate with the experimental phenotypes reported for several of the analysed mutants. Some of the structural analyses we present here provide a rationale for previously experimentally observed phenotypes. Furthermore, our comprehensive overview can be used as a reference frame for the interpretation, on a structural basis, of defective phenotypes of other aquaporin pathogenic mutants.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/chemistry
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Aquaporin 5/chemistry
- Aquaporin 5/genetics
- Aquaporin 5/metabolism
- Aquaporins/chemistry
- Aquaporins/genetics
- Aquaporins/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Databases, Protein
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- Gene Expression
- Genetic Predisposition to Disease
- Genotype
- Humans
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/metabolism
- Keratoderma, Palmoplantar/pathology
- Models, Molecular
- Mutation
- Phenotype
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Napoli I-80143, Italy.
| |
Collapse
|
34
|
Stogsdill B, Frisbie J, Krane CM, Goldstein DL. Expression of the aquaglyceroporin HC-9 in a freeze-tolerant amphibian that accumulates glycerol seasonally. Physiol Rep 2018; 5:5/15/e13331. [PMID: 28784850 PMCID: PMC5555883 DOI: 10.14814/phy2.13331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
As ambient temperatures fall in the autumn, freeze‐tolerant Cope's gray treefrogs, Dryophytes chrysoscelis (formerly Hyla chrysoscelis), accumulate glycerol as a cryoprotective agent. We hypothesized that these treefrogs express an ortholog of the mammalian aquaglyceroporin AQP9 and that AQP9 expression is upregulated in the cold to facilitate glycerol transport. We sequenced 1790 bp from cloned cDNA that codes for a 315 amino acid protein, HC‐9, containing the predicted six transmembrane spanning domains, two Asn‐Pro‐Ala (NPA) motifs, and five amino acid residues characteristic of aquaglyceroporins. Functional characterization after heterologous expression of HC‐9 cRNA in Xenopus laevis oocytes indicated that HC‐9 facilitates glycerol and water permeability and is partially inhibited by 0.5 mmol/L phloretin or 0.3 mmol/L HgCl2. HC‐9 mRNA (qPCR) and protein (immunoblot) were expressed in most treefrog tissues analyzed (muscle, liver, bladder, stomach, kidney, dorsal skin, and ventral skin) except the protein fraction of red blood cells. Contrary to our prediction, both mRNA and protein expression were either unchanged or downregulated in most tissues in response to cold, freezing, and thawing. A notable exception to that pattern occurred in liver, where protein expression was significantly elevated in frozen (~4‐fold over warm) and thawed (~6‐fold over warm) conditions. Immunofluorescence labeling of HC‐9 protein revealed a signal that appeared to be localized to the plasma membrane of hepatocytes. Our results indicate that gray treefrogs express an AQP9‐like protein that facilitates glycerol permeability. Both the transcriptional and translational levels of HC‐9 change in response to thermal challenges, with a unique increase in liver during freezing and thawing.
Collapse
Affiliation(s)
- Brian Stogsdill
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - James Frisbie
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | | | - David L Goldstein
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
35
|
Noitem R, Yuajit C, Soodvilai S, Muanprasat C, Chatsudthipong V. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation. Biomed Pharmacother 2018. [PMID: 29524884 DOI: 10.1016/j.biopha.2018.02.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Overexpression of aquaporin 2 (AQP2) was observed and suggested to be involved in fluid secretion leading to cyst enlargement in polycystic kidney disease (PKD). The cyst expansion deteriorates the renal function and, therefore, therapies targeting cyst enlargement are of clinical interest. Of note, inhibition of vasopressin function using vasopressin 2 receptor (V2R) antagonist which decreased cAMP production along with AQP2 production and function can slow cyst growth in ADPKD. This finding supports the role of AQP2 in cyst enlargement. Steviol, a major metabolite of the sweetening compound stevioside, was reported to retard MDCK cyst growth and enlargement by inhibiting CFTR activity. Interestingly, its efficacy was found to be higher than that of CFTRinh-172. Since steviol was also found to produce diuresis in rodent, it is likely that steviol might have an additional effect in retarding cyst progression, such as inhibition of AQP2 expression and function. Here, we investigated the effect of steviol on AQP2 function and on cyst growth using an in vitro cyst model (MDCK and Pkd1-/- cells). We found that steviol could markedly inhibit cyst growth by reducing AQP2 expression in both Pkd1-/- and MDCK cells. Real-time PCR also revealed that steviol decreased AQP2 mRNA expression level as well. Moreover, a proteasome inhibitor, MG-132, and the lysosomotropic agent, hydroxychloroquine (HCQ) were found to abolish the inhibitory effect of steviol in Pkd1-/- cells. Increased lysosomal enzyme marker (LAMP2) expression following steviol treatment clearly confirmed the involvement of lysosomes in steviol action. In conclusion, our finding showed for the first time that steviol slowed cyst growth, in part, by reducing AQP2 transcription, promoted proteasome, and lysosome-mediated AQP2 degradation. Due to its multiple actions, steviol is a promising compound for further development in the treatment of PKD.
Collapse
Affiliation(s)
- Rattikarn Noitem
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Chaowalit Yuajit
- College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Ratchathewi, Bangkok, Thailand; Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand.
| |
Collapse
|
36
|
Umejiego EN, Wang Y, Knepper MA, Chou CL. Roflumilast and aquaporin-2 regulation in rat renal inner medullary collecting duct. Physiol Rep 2017; 5:5/2/e13121. [PMID: 28108651 PMCID: PMC5269416 DOI: 10.14814/phy2.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Roflumilast is a cyclic nucleotide phosphodiesterase inhibitor that is FDA‐approved for treatment of chronic obstructive pulmonary disease. With a view toward possible use for treatment of patients with X‐linked nephrogenic diabetes insipidus (NDI) due to hemizygous mutations in the V2 vasopressin receptor, this study sought to determine the effect of roflumilast on aquaporin‐2 (AQP2) phosphorylation, AQP2 trafficking, and water permeability in the rat inner medullary collecting duct (IMCD). In the presence of the vasopressin analog dDAVP (0.1 nmol/L), both roflumilast and its active metabolite roflumilast N‐oxide (RNO) significantly increased phosphorylation at S256, S264, and S269, and decreased phosphorylation at S261 (immunoblotting) in IMCD suspensions in a dose‐dependent manner (3–3000 nmol/L). Another commonly used phosphodiesterase inhibitor, IBMX, affected phosphorylation only at the highest concentration in this range. However, neither roflumilast nor RNO had an effect on AQP2 phosphorylation in the absence of vasopressin. Furthermore, roflumilast alone did not increase AQP2 trafficking to the plasma membrane (immunofluorescence) or increase water permeability in freshly microdissected perfused IMCD segments. We conclude that roflumilast can be used to enhance vasopressin's action on AQP2 activity in the renal collecting duct, but has no detectable effect in the absence of vasopressin. These findings suggest that roflumilast may not have a beneficial effect in X‐linked NDI, but could find useful application in acquired NDI.
Collapse
Affiliation(s)
- Ezigbobiara N Umejiego
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, 30322
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| |
Collapse
|
37
|
Alsady M, de Groot T, Kortenoeven MLA, Carmone C, Neijman K, Bekkenkamp-Grovenstein M, Engelke U, Wevers R, Baumgarten R, Korstanje R, Deen PMT. Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F230-F239. [PMID: 29070571 DOI: 10.1152/ajprenal.00297.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands.,The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | | - Claudia Carmone
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kim Neijman
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | | | - Udo Engelke
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ron Wevers
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ruben Baumgarten
- Society of Experimental Laboratory Medicine , Amersfoort , The Netherlands
| | - Ron Korstanje
- The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | |
Collapse
|
38
|
Rahman SS, Moffitt AEJ, Trease AJ, Foster KW, Storck MD, Band H, Boesen EI. EHD4 is a novel regulator of urinary water homeostasis. FASEB J 2017; 31:5217-5233. [PMID: 28778975 DOI: 10.1096/fj.201601182rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/25/2017] [Indexed: 01/08/2023]
Abstract
The Eps15-homology domain-containing (EHD) protein family comprises 4 members that regulate endocytic recycling. Although the kidney expresses all 4 EHD proteins, their physiologic roles are largely unknown. This study focused on EHD4, which we found to be expressed differentially across nephron segments with the highest expression in the inner medullary collecting duct. Under baseline conditions, Ehd4-/- [EHD4-knockout (KO)] mice on a C57Bl/6 background excreted a higher volume of more dilute urine than control C57Bl/6 wild-type (WT) mice while maintaining a similar plasma osmolality. Urine excretion after an acute intraperitoneal water load was significantly increased in EHD4-KO mice compared to WT mice, and although EHD4-KO mice concentrated their urine during 24-h water restriction, urinary osmolality remained significantly lower than in WT mice, suggesting that EHD4 plays a role in renal water handling. Total aquaporin 2 (AQP2) and phospho-S256-AQP2 (pAQP2) protein expression in the inner medulla was similar in the two groups in baseline conditions. However, localization of both AQP2 and pAQP2 in the renal inner medullary principal cells appeared more dispersed, and the intensity of apical membrane staining for AQP2 was reduced significantly (by ∼20%) in EHD4-KO mice compared to WT mice in baseline conditions, suggesting an important role of EHD4 in trafficking of AQP2. Together, these data indicate that EHD4 play important roles in the regulation of water homeostasis.-Rahman, S. S., Moffitt, A. E. J., Trease, A. J., Foster, K. W., Storck, M. D., Band, H., Boesen, E. I. EHD4 is a novel regulator of urinary water homeostasis.
Collapse
Affiliation(s)
- Shamma S Rahman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alexandra E J Moffitt
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew D Storck
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hamid Band
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA; .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA; and.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
39
|
Relationship between Aging-Related Skin Dryness and Aquaporins. Int J Mol Sci 2017; 18:ijms18071559. [PMID: 28718791 PMCID: PMC5536047 DOI: 10.3390/ijms18071559] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
Skin function deteriorates with aging, and the dermal water content decreases. In this study, we have analyzed the mechanism of aging-related skin dryness focusing on aquaporins (AQPs), which are the water channels. Mice aged 3 and 20 months were designated as young and aged mice, respectively, to be used in the experiments. No differences were observed in transepidermal water loss between the young mice and aged mice. However, the dermal water content in aged mice was significantly lower than that in young mice, thus showing skin dryness. The expression of AQP1, AQP3, AQP4, AQP7, and AQP9 was observed in the skin. All the mRNA expression levels of these AQPs were significantly lower in aged mice. For AQP3, which was expressed dominantly in the skin, the protein level was lower in aged mice than in young mice. The results of the study showed that the expression level of AQPs in the skin decreased with aging, suggesting the possibility that this was one of the causes of skin dryness. New targets for the prevention and treatment of aging-related skin dryness are expected to be proposed when the substance that increases the expression of AQP3 is found.
Collapse
|
40
|
Choudhary V, Olala LO, Kagha K, Pan ZQ, Chen X, Yang R, Cline A, Helwa I, Marshall L, Kaddour-Djebbar I, McGee-Lawrence ME, Bollag WB. Regulation of the Glycerol Transporter, Aquaporin-3, by Histone Deacetylase-3 and p53 in Keratinocytes. J Invest Dermatol 2017; 137:1935-1944. [PMID: 28526298 DOI: 10.1016/j.jid.2017.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Aquaporin- (AQP) 3, a water and glycerol channel, plays an important role in epidermal function, with studies showing its involvement in keratinocyte proliferation, differentiation, and migration and in epidermal wound healing and barrier repair. Increasing speculation about the use of histone deacetylase (HDAC) inhibitors to treat skin diseases led us to investigate HDAC's role in the regulation of AQP3. The broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid induced AQP3 mRNA and protein expression in a dose- and time-dependent manner in normal keratinocytes. The SAHA-induced increase in AQP3 levels resulted in enhanced [3H]glycerol uptake in normal but not in AQP3-knockout keratinocytes, confirming that the expressed AQP3 was functional. Use of HDAC inhibitors with different specificities limited our exploration of the responsible HDAC member to HDAC1, HDAC2, or HDAC3. Cre-recombinase-mediated knockdown and overexpression of HDAC3 suggested a role for HDAC3 in suppressing AQP3 expression basally. Further investigation implicated p53 as a transcription factor involved in regulating HDAC inhibitor-induced AQP3 expression. Thus, our study supports the regulation of AQP3 expression by HDAC3 and p53. Because suberoylanilide hydroxamic acid is already approved to treat cutaneous T-cell lymphoma, it could potentially be used as a therapy for skin diseases like psoriasis, where AQP3 is abnormally expressed.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA.
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Karen Kagha
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Zhi-Qiang Pan
- Department of Physiology, Augusta University, Augusta, Georgia, USA; School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunsheng Chen
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Rong Yang
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Physiology, Medical School, Jianghan University, Wuhan, China
| | - Abigail Cline
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Inas Helwa
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| | - Lauren Marshall
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | | | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
41
|
Suzuki T, Seki S, Hiramoto K, Naganuma E, Kobayashi EH, Yamaoka A, Baird L, Takahashi N, Sato H, Yamamoto M. Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus. Nat Commun 2017; 8:14577. [PMID: 28233855 PMCID: PMC5333130 DOI: 10.1038/ncomms14577] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/13/2017] [Indexed: 12/27/2022] Open
Abstract
NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Seki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiichiro Hiramoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eriko Naganuma
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eri H Kobayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Ayaka Yamaoka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Liam Baird
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nobuyuki Takahashi
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences Sendai, 980-8578, Japan
| | - Hiroshi Sato
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences Sendai, 980-8578, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.,Tohoku Medical-Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
42
|
|
43
|
Misyura L, Yerushalmi GY, Donini A. A mosquito entomoglyceroporin, Aedes aegypti AQP5 participates in water transport across the Malpighian tubules of larvae. J Exp Biol 2017; 220:3536-3544. [DOI: 10.1242/jeb.158352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
The mosquito, Aedes aegypti, is the primary vector for arboviral diseases such as Zika fever, dengue fever, chikungunya, and yellow fever. The larvae reside in hypo-osmotic freshwater habitats, where they face dilution of their body fluids from osmotic influx of water. The Malpighian tubules help maintain ionic and osmotic homeostasis by removing excess water from the hemolymph, but the transcellular pathway for this movement remains unresolved. Aquaporins are transmembrane channels thought to permit transcellular transport of water from the hemolymph into the Malpighian tubule lumen. Immunolocalization of Aedes aegypti aquaporin 5 (AaAQP5) revealed expression by Malpighian tubule principal cells of the larvae, with localization to both the apical and basolateral membranes. Knockdown of AaAQP5 with double stranded RNA decreased larval survival, reduced rates of fluid, K+, and Na+ secretion by the Malpighian tubules and reduced Cl− concentrations in the hemolymph. These findings indicate that AaAQP5 participates in transcellular water transport across the Malpighian tubules of larval Aedes aegypti where global AaAQP5 expression is important for larval survival.
Collapse
Affiliation(s)
- Lidiya Misyura
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | - Gil Y. Yerushalmi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| |
Collapse
|
44
|
Aquaporins in the Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:173-191. [DOI: 10.1007/978-94-024-1057-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Abstract
Aquaporins (AQPs ) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen AQPs , which are distributed widely in specific cell types in various organs and tissues, have been characterized in humans. Four AQP monomers, each of which consists of six membrane-spanning alpha-helices that have a central water-transporting pore, assemble to form tetramers, forming the functional units in the membrane. AQP facilitates osmotic water transport across plasma membranes and thus transcellular fluid movement. The cellular functions of aquaporins are regulated by posttranslational modifications , e.g. phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation, and protein interactions. Insight into the molecular mechanisms responsible for regulated aquaporin trafficking and synthesis is proving to be fundamental for development of novel therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan Er Road, Guangzhou, 510080, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Desantis S, Accogli G, Silvestre F, Binetti F, Cox SN, Roscino M, Caira M, Lacalandra GM. Glycan profile of oviductal isthmus epithelium in normal and superovulated ewes. Theriogenology 2016; 85:1192-202. [DOI: 10.1016/j.theriogenology.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
|
47
|
|
48
|
Klein N, Kümmerer N, Hobernik D, Schneider D. The AQP2 mutation V71M causes nephrogenic diabetes insipidus in humans but does not impair the function of a bacterial homolog. FEBS Open Bio 2015; 5:640-6. [PMID: 26442203 PMCID: PMC4552806 DOI: 10.1016/j.fob.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/21/2015] [Indexed: 01/26/2023] Open
Abstract
The aquaporin 2 mutation V71M causes nephrogenic diabetes insipidus in humans. Val71 is highly conserved in aqua(glycero)porins and points into the translocation pore. The V71M mutation does not impair the activity and oligomerization of a bacterial homolog.
Several point mutations have been identified in human aquaporins, but their effects on the function of the respective aquaporins are mostly enigmatic. We analyzed the impact of the aquaporin 2 mutation V71M, which causes nephrogenic diabetes insipidus in humans, on aquaporin structure and activity, using the bacterial aquaglyceroporin GlpF as a model. Importantly, the sequence and structure around the V71M mutation is highly conserved between aquaporin 2 and GlpF. The V71M mutation neither impairs substrate flux nor oligomerization of the aquaglyceroporin. Therefore, the human aquaporin 2 mutant V71M is most likely active, but cellular trafficking is probably impaired.
Collapse
Key Words
- AQP ER, endoplasmic reticulum
- AQP, aquaporin
- AVP, arginine vasopressin
- AVPR2, V2 receptor
- Activity
- Aquaporin
- GlpF
- GlpF, glycerol facilitator
- GpA, glycophorin A
- HM, half-membrane-spanning
- NDI, nephrogenic diabetes insipidus
- Nephrogenic diabetes insipidus
- Protein oligomerization
- TM, transmembrane
- wt, wild-type
Collapse
Affiliation(s)
- Noreen Klein
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Nadine Kümmerer
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Dominika Hobernik
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| |
Collapse
|
49
|
Desantis S, Accogli G, Silvestre F, Binetti F, Caira M, Lacalandra GM. Modifications of carbohydrate residues in the sheep oviductal ampulla after superovulation. Theriogenology 2015; 83:943-52. [PMID: 25601578 DOI: 10.1016/j.theriogenology.2014.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/17/2023]
Abstract
Epithelium of oviductal ampulla was studied in normal and in superovulated sheep using morphologic analysis and lectin glycohistochemistry. The lining epithelium consisted of two types of cells, ciliated and nonciliated cells. Unlike superovulated samples, the nonciliated cells from control ewes showed apical protrusions indicating an apocrine secretory activity. The ciliated cells showed lectin-binding sites mainly at the level of the cilia which bound all the used lectins except Peanut agglutinin, suggesting the lack of glycans terminating with Galβ1,3GalNAc. In superovulated specimens, the ciliated cells with high mannosylated glycans Concanavalin A (Con A) and GlcNAc and GalNac termini Griffonia simplicifolia agglutinin II (GSA II) and Dolicurus biflorus agglutinin (DBA) decreased. The luminal surface of nonciliated cells showed all investigated sugar residues in controls, whereas it was lacking in high mannosylated (Con A) and terminal GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 sequence (DBA) in superovulated ewes. Apical protrusions from control ampullae nonciliated cells showed glycans containing mannose, GlcNac, GalNAc, galactose, and α2,3-linked sialic acid (Con A, KOH-sialidase- Wheat germ agglutnin [WGA], GSA II, SBA, Griffonia simplicifolia agglutinin-isolectin B4 [GSA I-B4], Maackia amurensis agglutinin II [MAL II]). The supranuclear cytoplasm of nonciliated cells expressed terminal GlcNAc (GSA II) in all specimens, also O-linked glycans (mucin-type glycans) with GalNAc and sialic acid termini (Helix pomatia agglutinin [HPA] and MAL II) in control animals, and also N-linked glycans with fucose, galactose, lactosamine, and α2,3-linked sialic acid termini (Ulex europaeus agglutinin I [UEA I], GSA I-B4, Ricinus communis agglutinin120 [RCA120], and Sambucus nigra agglutinin [SNA] ) in superovulated ewes. These results report for the first time that the superovulation treatment affects the secretory activity and the glycan pattern of the epithelium lining the sheep oviductal ampulla.
Collapse
Affiliation(s)
- S Desantis
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy.
| | - G Accogli
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - F Silvestre
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - F Binetti
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - M Caira
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - G M Lacalandra
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
50
|
Li X, Yang B, Chen M, Klein JD, Sands JM, Chen G. Activation of protein kinase C-α and Src kinase increases urea transporter A1 α-2, 6 sialylation. J Am Soc Nephrol 2015; 26:926-34. [PMID: 25300290 PMCID: PMC4378103 DOI: 10.1681/asn.2014010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/18/2014] [Indexed: 11/03/2022] Open
Abstract
The urea transporter A1 (UT-A1) is a glycosylated protein with two glycoforms: 117 and 97 kD. In diabetes, the increased abundance of the heavily glycosylated 117-kD UT-A1 corresponds to an increase of kidney tubule urea permeability. We previously reported that diabetes not only causes an increase of UT-A1 protein abundance but also, results in UT-A1 glycan changes, including an increase of sialic acid content. Because activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway is elevated in diabetes and PKC-α regulates UT-A1 urea transport activity, we explored the role of PKC in UT-A1 glycan sialylation. We found that activation of PKC specifically promotes UT-A1 glycan sialylation in both UT-A1-MDCK cells and rat kidney inner medullary collecting duct suspensions, and inhibition of PKC activity blocks high glucose-induced UT-A1 sialylation. Overexpression of PKC-α promoted UT-A1 sialylation and membrane surface expression. Conversely, PKC-α-deficient mice had significantly less sialylated UT-A1 compared with wild-type mice. Furthermore, the effect of PKC-α-induced UT-A1 sialylation was mainly mediated by Src kinase but not Raf-1 kinase. Functionally, increased UT-A1 sialylation corresponded with enhanced urea transport activity. Thus, our results reveal a novel mechanism by which PKC regulates UT-A1 function by increasing glycan sialylation through Src kinase pathways, which may have an important role in preventing the osmotic diuresis caused by glucosuria under diabetic conditions.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Department of Physiology and
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; and
| | | | - Janet D. Klein
- Department of Physiology and
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jeff M. Sands
- Department of Physiology and
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Guangping Chen
- Department of Physiology and
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|